Skip to main content

Characterization of Solids—Chemical Composition

  • Chapter
  • First Online:
  • 332 Accesses

Part of the book series: Treatise on Solid State Chemistry ((TSSC,volume 1))

Abstract

In any series of studies, experimental or theoretical, in the chemistry, the physical chemistry, or the chemical physics of solids it is very important that there be reliable, descriptive, analytical information available about the materials used in the studies.(1,2) Such information is obtained through the process called “characterization,” which has been given the following definition by the National Academy of Sciences—National Research Council Committee on Characterization of the Materials Advisory Board:(3)

“Characterization describes those features of the composition and structure (including defects) of a material that are significant for a particular preparation, study of properties, or use, and suffice for reproduction of the material.”

Contribution of the National Bureau of Standards, not subject to copyright.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. B. Hannay, Trace characterization and the properties of materials, in Trace Characterization, Chemical and Physical (W. W. Meinke and B. F. Scribner, eds.), pp. 5–38, NBS Monograph 100, U.S. Government Printing Office, Washington, D.C. (1967).

    Google Scholar 

  2. R. A. Laudise, Opportunities for analytical chemistry in solid state research and electronics, in Analytical Chemistry: Key to Progress on National Problems (W. W. Meinke and J. K. Taylor, eds.), pp. 19–64, NBS Special Publication 351, U.S. Government Printing Office, Washington, D.C. (1972).

    Google Scholar 

  3. The Committee on Characterization of Materials, Materials Advisory Board, Division of Engineering, National Research Council, National Academy of Sciences, National Academy of Engineering, Characterization of Materials, MAB-229-M, U.S. Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia (1967).

    Google Scholar 

  4. G. E. F. Lundell, The chemical analysis of things as they are, Ind. and Eng. Chem. (Anal. Ed.) 5, 221–225 (1933).

    CAS  Google Scholar 

  5. P. Albert, A combination of chemical and physiochemical methods for a systematic separation of large numbers of radioisotopes on one experimental analysis of aluminum, iron, and zirconium by radioactivation, in Modern Trends in Activation Analysis (Proc. 1961 Int. Conf. on Modern Trends in Activation Analysis, College Station, Texas, December 1961), pp. 86–94, Texas A & M University, College Station, Texas (1962).

    Google Scholar 

  6. I. M. Kolthoffand P. J. Elving (eds.), Treatise on Analytical Chemistry, A Comprehensive Account in three parts, Part I: Theory and Practice (10 vols.), Part II: Analytical Chemistry of the Elements (14 vols.), Part III: Analysis of Industrial Products (2 vols.), Interscience, New York (1959-1971).

    Google Scholar 

  7. W. W. Meinke and B. F. Scribner (eds.), Trace Characterization, Chemical and Physical (Proc. 1st Materials Research Symp., October 1966), NBS Monograph 100, U. S. Government Printing Office, Washington, D.C. 20402 (1967).

    Google Scholar 

  8. Analytical reviews 1972, Fundamentals, Anal. Chem.44(5), 1R–572R (1972).

    Google Scholar 

  9. Analytical reviews 1971, Applications, Anal. Chem.43(5), IR–388R (1971).

    Google Scholar 

  10. W. W. Meinke, Is radiochemistry the ultimate in trace analysis?, Proc. Int. Conf. on Analytical Chemistry, Kyoto, Japan, April 1972, Pure and Appl. Chem.34, 93–104 (1973).

    CAS  Google Scholar 

  11. W. W. Meinke, The ultimate contribution of nuclear activation analysis, Proc. of 4th Int. Conf. on Modern Trends in Activation Analysis, Saclay, France, October 1972, J. Radioanalytical Chem. (in press).

    Google Scholar 

  12. W. F. Hillebrand, G. E. F. Lundell, H. A. Bright, and J. I. Hoffman, Applied Inorganic Analysis, 2nd ed., Wiley, New York (1953).

    Google Scholar 

  13. I. M. Kolthoffand P. J. Elving (eds.), Treatise on Analytical Chemistry, Part 1, Vol. 1; Part 2, Vols. 1-14, Wiley—Interscience, New York (1959-1971).

    Google Scholar 

  14. L. Erdey, L. Pólos, and R. A. Chalmers, Development and publication of new gravimetric methods of analysis, Talanta17, 1143–1155 (1970).

    CAS  PubMed  Google Scholar 

  15. E. B. Sandell, Errors in chemical analysis, in Treatise on Analytical Chemistry (I. M. Kolthoffand P. J. Elving, eds.), Part 1, Vol. 1, pp. 19–46, The Interscience Encyclopedia, Inc., New York (1959).

    Google Scholar 

  16. A. Ringbom, Complexation in Analytical Chemistry, Interscience, New York (1963).

    Google Scholar 

  17. J. R. Bacon and R. B. Ferguson, Gravimetric and coulometric analysis of beryllium samples using 2-methyl-8-quinolinol, Anal. Chem.44, 2149–2152 (1972).

    CAS  Google Scholar 

  18. R. S. Danchik, Analytical reviews 1971/Applications: Nonferrous metallurgy. 1. Light metals: aluminum, beryllium, titanium, and magnesium, Anal. Chem.43(5), 109R–145R (1971).

    CAS  Google Scholar 

  19. R. P. Buck, Analytical reviews 1972/Fundamentals: Ion-selective electrodes, potentiometry, and potentiometric titrations, Anal. Chem.44(5), 270R–295R (1972).

    CAS  Google Scholar 

  20. G. Marinenko and C. E. Champion, High-precision coulometric titrations of boric acid, J. Res. NBS (U.S.), 75A (Phys. and Chem.), 421–428 (1971).

    Google Scholar 

  21. C. E. Champion, G. Marinenko, J. K. Taylor, and W. E. Schmidt, Determination of submicrogram amounts of chromium by coulometric titrimetry, Anal. Chem.42, 1210–1213 (1970).

    CAS  Google Scholar 

  22. G. Marinenko and J. K. Taylor, High-precision coulometric iodimetry, Anal. Chem.39, 1568–1571 (1967).

    CAS  Google Scholar 

  23. G. Marinenko, Gallium arsenide stoichiometry, in Electrochemical Analysis Section, Summary of Activities, July 1970 to June 1971 (R. A. Durst, ed.), pp. 24–29, NBS Technical Note 583, U. S. Government Printing Office, Washington, D.C. (1973).

    Google Scholar 

  24. G. Marinenko and J. K. Taylor, Electrochemical equivalents of benzoic and oxalic acid, Anal. Chem.40, 1645–1651 (1968).

    CAS  Google Scholar 

  25. G. Marinenko and R. T. Foley, A new determination of the atomic weight of zinc, J. Res. NBS (U.S.), 75A (Phys. and Chem.), 561–564 (1971).

    Google Scholar 

  26. K. M. Sappenfield, G. Marinenko, and J. L. Hague, Standard Reference Materials: Comparison of Redox Standards, NBS Special Publication 260-24, U.S. Government Printing Office, Washington, D. C. (1972).

    Google Scholar 

  27. R. A. Durst (ed.), Ion-Selective Electrodes (Proc. of a Symp. on Ion-Selective Electrodes, January 1969), NBS Special Publications 314, U.S. Government Printing Office, Washington, D.C. (1969).

    Google Scholar 

  28. J. Koryta, Theory and applications of ion-selective electrodes, Anal. Chim. Acta61, 329–411 (1972).

    CAS  Google Scholar 

  29. R. A. Durst, Ion-selective electrodes in science, medicine, and technology, Am. Scientist59, 353–361 (1971).

    CAS  PubMed  Google Scholar 

  30. L. Meites, Polarographic Techniques, 2nd ed., Interscience, New York (1965).

    Google Scholar 

  31. D. D. Gilbert, Electroanalytical methods, in Guide to Modern Methods of Instrumental Analysis (T. H. Gouw, ed.), pp. 393–431, Wiley—Interscience, New York (1972).

    Google Scholar 

  32. E. J. Maienthal, Polarographic analysis at NBS, Am. Laboratory4(6), 12–21 (1972).

    Google Scholar 

  33. T. M. Florence, Anodic stripping voltammetry with a glassy carbon electrode mercury-plated in situ, J. Electroanal. Chem.27, 273–281 (1970).

    CAS  Google Scholar 

  34. E. J. Maienthal and J. K. Taylor, Improvement of polarographic precision by a comparative technique, Mikrochim. Acta1967, 939-945.

    Google Scholar 

  35. Certificates of analysis (provisional): Trace elements in a glass matrix, standard reference materials 610 and 611 (trace element concentration 500 ppm); 612 and 613 (trace element concentration 50 ppm); 614 and 615 (trace element concentration 1 ppm); and 616 and 617 (trace element concentration 0.02 ppm); August 5, 1970, revised August 8, 1972; available from Office of Standard Reference Materials, National Bureau of Standards, Washington, D.C.

    Google Scholar 

  36. I. L. Barnes, B. S. Carpenter, E. L. Garner, J. W. Grämlich, E. C. Kuehner, L. A. Machlan, E. J. Maienthal, J. R. Moody, L. J. Moore, T. J. Murphy, P. J. Paulsen, K. M. Sappenfield, and W. R. Shields, Isotopic abundance ratios and concentrations of selected elements in Apollo 14 samples, Proc. Third Lunar Science Conf., Geochim. Cosmochim. Acta, Supplement 3, Vol. 2, pp. 1465–1472, MIT Press, Cambridge, Mass. (1972).

    Google Scholar 

  37. E. J. Maienthal, Analysis of botanical standard reference materials by cathode ray polarography, J. Assoc. Official Analytical Chemists55, 1109–1113 (1972).

    CAS  Google Scholar 

  38. T. S. West, Chemical spectrophotometry in trace characterization, in Trace Characterization, Chemical and Physical (W. W. Meinke and B. F. Scribner, eds.), pp. 215–301, NBS Monograph 100, U.S. Government Printing Office, Washington, D.C. (1967).

    Google Scholar 

  39. J. D. Ingle, Jr. and S. R. Crouch, Pulse overlap effects on linearity and signal-to-noise ratio in photon counting systems, Anal. Chem.44, 777–783 (1972).

    CAS  PubMed  Google Scholar 

  40. S. Shibata, M. Furukawa, and K. Goto, Dual-wavelength spectrophotometry. Part II. The determination of mixtures, Anal. Chim. Acta53, 369–377 (1971).

    CAS  Google Scholar 

  41. T. J. Porro, Double-wavelength spectroscopy, Anal. Chem.44(4), 93A–103A (1972).

    CAS  Google Scholar 

  42. D. M. Dodd, D. L. Wood, and R. L. Barns, Spectrophotometric determination of chromium concentration in ruby, J. Appl. Phys.35, 1183–1186 (1964).

    CAS  Google Scholar 

  43. C. E. White and R. J. Argauer, Fluorescence Analysis, Marcel Dekker, New York (1970).

    Google Scholar 

  44. R. Mavrodineanu, J. I. Shultz, and O. Menis (eds.), Accuracy in spectrophotometry and luminescence measurements, Part 2. Luminescence, Proc. Conf. on Accuracy in Spectrophotometry and Luminescence Measurements, March 1972, J. Res. NBS (U.S.), 76A (Phys. and Chem.), 547–654 (1973); also NBS Special Publication 378, U. S. Government Printing Office, Washington, D.C. (1973).

    Google Scholar 

  45. C. A. Parker, Spectrophosphorimeter microscopy: an extension of fluorescence microscopy, The Analyst94, 161–176 (1969).

    CAS  Google Scholar 

  46. S. Udenfriend, Fluorescence Assay in Biology and Medicine, Vols. I, II, Academic, New York (1962, 1969).

    Google Scholar 

  47. J. P. Dixon, Modern Methods of Organic Microanalysis, Van Nostrand, Princeton, New Jersey (1968).

    Google Scholar 

  48. G. Tölg, Ultramicro Elemental Analysis, Wiley-Interscience New York (1970).

    Google Scholar 

  49. H. Weisz, Microanalysis by the Ring-Oven Technique, 2nd ed., Pergamon, New York (1970).

    Google Scholar 

  50. F. Feigl, Spot Tests in Organic Analysis, 7th ed., Elsevier, Amsterdam (1966).

    Google Scholar 

  51. E. Stahl, Thin-Layer Chromatography, Springer-Verlag, New York (1969).

    Google Scholar 

  52. A. Niederwieser and G. Pataki (eds.), Progress in Thin-Layer Chromatography and Related Methods, Vol. I (1970), Vol. II (1970), Vol. III (1972), Ann Arbor-Humphrey Science Publishers, Ann Arbor.

    Google Scholar 

  53. S. Dal Nogare and R. S. Juvet, Jr., Gas—Liquid Chromatography, Theory and Practice, Interscience, New York (1962).

    Google Scholar 

  54. A. E. Pierce, Silylation of Organic Compounds, Pierce Chemical Co., Rockford, Illinois (1968).

    Google Scholar 

  55. R. W. McKinney, Pyrolysis gas chromatography, in Ancillary Techniques of Gas Chromatography (L. S. Ettre and W. H. McFadden, eds.), pp. 55–87, Wiley-Interscience, New York (1969).

    Google Scholar 

  56. M. Beroza and M. N. Inscoe, Precolumn reactions for structure determination, in Ancillary Techniques of Gas Chromatography (L. S. Ettre and W. H. McFadden, eds.), pp. 89–144, Wiley-Interscience, New York (1969).

    Google Scholar 

  57. A. J. Raymond, D. M. G. Lawrey, and T. J. Mayer, Acquisition and processing of gas Chromatographic data using a time-shared computer, J. Chromatog. Sci.8, 1–12 (1970).

    CAS  Google Scholar 

  58. J. J. Kirkland, Modern Practice of Liquid Chromatography, Wiley-Interscience, New York (1971).

    Google Scholar 

  59. J. J. Kirkland, Columns for modern analytical liquid chromatography, Anal. Chem.43(12), 36A–48A (1971).

    CAS  Google Scholar 

  60. H. Veening, Liquid chromatography detectors, J. Chem. Ed. 47, A549–A568, A675-A686, A749-A762 (1970).

    CAS  Google Scholar 

  61. P. Kruger, Principles of Activation Analysis, Wiley-Interscience, New York (1971).

    Google Scholar 

  62. J. R. DeVoe and P. D. LaFleur (eds.), Modern Trends in Activation Analysis (Proc. 1968 Int. Conf. on Modern Trends in Activation Analysis, October 1968), NBS Special Publication 312, Vols. I and II, U.S. Government Printing Office, Washington, D.C. (1969).

    Google Scholar 

  63. G. J. Lutz, R. J. Boreni, R. S. Maddock, and J. Wing (eds.), Activation Analysis: A Bibliography Through 1971, NBS Technical Note 467, U.S. Government Printing Office, Washington, D.C. (1972).

    Google Scholar 

  64. D. DeSoete, R. Gijbels, and J. Hoste, Neutron Activation Analysis, Wiley, New York (1972).

    Google Scholar 

  65. G. J. Lutz, Photon activation analysis—a review, Anal. Chem.43, 93–103 (1971).

    CAS  Google Scholar 

  66. E. A. Schweikert and H. L. Rook, Determination of oxygen in silicon in the sub-part-per-million range by charged-particle activation analysis, Anal. Chem.42, 1525–1527 (1970).

    CAS  Google Scholar 

  67. W. S. Horton and C. C. Carson, Gas analysis: Determination of gases in metals, in Treatise on Analytical Chemistry (I. M. Kolthoffand P. J. Elving, eds.), Part I, Vol. 10, Section E, Chapter 103, pp. 6017–6144, Wiley, New York (1972).

    Google Scholar 

  68. O. Menis and J. T. Sterling, Standard Reference Materials: Determination of Oxygen in Ferrous Metals—SRM 1090, 1091 and 1092, National Bureau of Standards Misc. Publ. 260-14, U.S. Government Printing Office, Washington, D.C. (1966).

    Google Scholar 

  69. K. W. Guardipee, Two methods for separation of surface and bulk gases in vacuum-fusion analysis of metals, Anal. Chem.42, 469–473 (1970).

    CAS  Google Scholar 

  70. J. W. Frazer, Digital control computers in analytical chemistry, Anal. Chem.40(8), 26A–40A (1968).

    Google Scholar 

  71. P. D. Garn, Thermoanalytical Methods of Investigation, Academic, New York (1965).

    Google Scholar 

  72. R. F. Schwenker, Jr. and P. D. Garn (eds.), Thermal Analysis, Vol. 1, Instrumentation, Organic Materials, and Polymers, Vol. 2, Inorganic Materials and Physical Chemistry, Academic, New York (1969).

    Google Scholar 

  73. O. Menis (ed.), Status of Thermal Analysis (Proc. Symp. on the Current Status of Thermal Analysis, April 1970), NBS Special Publication 338, U.S. Government Printing Office, Washington, D.C. (1970).

    Google Scholar 

  74. H. G. Wiedemann (ed.), Thermal Analysis, Vol. 1, Advances in Instrumentation, Vol. 2, Inorganic Chemistry, Vol. 3, Organic and Macromolecular Chemistry, Ceramics, Earth Science, Birkhäuser, Basel, Switzerland (1972).

    Google Scholar 

  75. C. B. Murphy, Analytical reviews 1972/Fundamentals: Thermal analysis, Anal. Chem.44(5), 513R–524R (1972).

    CAS  Google Scholar 

  76. H. A. Liebhafsky, H. G. Pfeiffer, E. H. Winslow, and P. D. Zemany, X-Ray Absorption and Emission in Analytical Chemistry, Wiley, New York (1960).

    Google Scholar 

  77. R. O. Müller, Spectrochemical Analysis by X-Ray Fluorescence (K. Keil, transi.), Plenum, New York (1972).

    Google Scholar 

  78. C. L. Luke, Determination of trace elements in inorganic and organic materials by x-ray fluorescence spectroscopy, Anal. Chim. Acta41, 237–250 (1968).

    CAS  Google Scholar 

  79. L. S. Birks, Analytical reviews 1972/Fundamentals: X-ray absorption and emission, Anal. Chem. 44(5), 557R–562R (1972).

    CAS  Google Scholar 

  80. R. D. Giauque and J. M. Jaklevic, Rapid quantitative analysis by x-ray spectrometry, in Advances in X-ray Analysis (K. F. J. Heinrich, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), Vol. 15, pp. 164–175, Plenum, New York (1972).

    Google Scholar 

  81. R. Brown, M. L. Jacobs, and H. E. Taylor, A survey of the most recent applications of spark source mass spectrometry, Am. Laboratory4(11), 29–40 (1972).

    CAS  Google Scholar 

  82. R. A. Bingham and R. M. Elliott, Accuracy of analysis by electrical detection in spark source mass spectrometry, Anal. Chem.43, 43–54 (1971).

    CAS  Google Scholar 

  83. P. J. Paulsen, R. Alvarez, and C. W. Mueller, Spark source mass spectrographic analysis of ingot iron for Ag, Cu, Mo, and Ni by isotope dilution and for Co by an internal standard technique, Anal. Chem.42, 673–675 (1970).

    CAS  Google Scholar 

  84. E. C. Kuehner, R. Alvarez, P. J. Paulsen, and T. J. Murphy, Production and analysis of special high-purity acids purified by sub-boiling distillation, Anal. Chem.44, 2050–2056 (1972).

    CAS  Google Scholar 

  85. C. C. McMullen and H. G. Thode, Isotope abundance measurements and their application to chemistry, in Mass Spectrometry (A. McDowell, ed.), pp. 375–441, McGraw-Hill, New York (1963).

    Google Scholar 

  86. I. L. Barnes, E. L. Garner, J. W. Gramlich, L. J. Moore, T. J. Murphy, L. A. Machlan, W. R. Shields, M. Tatsumoto, and R. J. Knight, The determination of lead, uranium, thorium and thallium in silicate glass standard materials, Anal. Chem.45, 880–885 (1973).

    CAS  Google Scholar 

  87. Certificates of analysis (provisional): Orchard leaves, standard reference material 1571 (October 1, 1971); Bovine liver, Standard Reference material 1577 (April 15, 1972); available from the Office of Standard Reference Materials, National Bureau of Standards, Washington, D.C.

    Google Scholar 

  88. B. F. Scribner and M. Margoshes, Emission spectroscopy, in Treatise on Analytical Chemistry (I. M. Kolthoffand P. J. Elving, eds.), Part I, Vol. 6, Chapter 64, pp. 3347–3461, Interscience, New York (1965).

    Google Scholar 

  89. E. L. Grove (ed.), Analytical Emission Spectroscopy, Vol. I, Part I (Analytical Spectroscopy Series, Vol. II, 1972; Vol. III, to be published), Marcel Dekker, New York (1971).

    Google Scholar 

  90. V. G. Mossotti, Emission spectroscopy including dc arc, spark, and other methods, in Techniques of Metals Research (R. F. Bunshah, ed.), Vol. III, Part 2, pp. 533–572, Interscience, New York (1970).

    Google Scholar 

  91. R. M. Barnes, Analytical reviews 1972/Fundamentals: Emission spectrometry, Anal. Chem.44(5), 122R–150R (1972).

    CAS  Google Scholar 

  92. J. A. Dean and T. C. Rains, Flame Emission and Atomic Absorption Spectrometry, Vol. 1, Theory, Vol. 2, Components and Techniques, Marcel Dekker, New York (1969, 1971).

    Google Scholar 

  93. R. Mavrodineanu (ed.), Analytical Flame Spectroscopy, Selected Topics, Macmillan, London (1970).

    Google Scholar 

  94. E. E. Pickett and S. R. Koirtyohann, Emission flame photometry—A new look at an old method, Anal. Chem.41(14), 28A–42A (1969).

    CAS  Google Scholar 

  95. D. P. Hubbard, Annual Reports on Analytical Atomic Spectroscopy 1971, Vol. 1, The Society for Analytical Chemistry, London (1972).

    Google Scholar 

  96. G. D. Christian and F. J. Feldman, A comparison study of detection limits using flame-emission spectroscopy with the nitrous oxide—acetylene flame and atomic-absorption spectroscopy, Appl. Spectr.25, 660–663 (1971).

    CAS  Google Scholar 

  97. J. W. Robinson and P. J. Slevin, Recent advances in instrumentation in atomic absorption, Am. Laboratory4(8), 10–18 (1972).

    CAS  Google Scholar 

  98. G. F. Kirkbright, The application of non-flame atom cells in atom-absorption and atomic-fluorescence spectroscopy, a review, The Analyst96, 609–623 (1971).

    CAS  Google Scholar 

  99. V. I. Goldanskii and R. H. Herber, Chemical Applications of Mössbauer Spectroscopy, Academic, New York (1968).

    Google Scholar 

  100. L. May, An Introduction to Mössbauer Spectroscopy, Plenum, New York (1971).

    Google Scholar 

  101. G. Stevens, J. C. Travis, and J. R. DeVoe, Analytical reviews 1972/Fundamentals: Mössbauer spectrometry, Anal. Chem.44(5), 384R–406R (1972).

    CAS  Google Scholar 

  102. R. L. Mössbauer, Gamma resonance spectroscopy and chemical bonding, Angew. Chem. Internat. Ed.10, 462–472 (1971).

    Google Scholar 

  103. J. J. Spijkerman and P. A. Pella, A review of selected highlights of Mössbauer spectrometry, Crit. Rev. Anal. Chem.1, 7–45 (1970).

    CAS  Google Scholar 

  104. R. M. Lynden-Bell and R. K. Harris, Nuclear Magnetic Resonance Spectroscopy, Nelson, London (1969).

    Google Scholar 

  105. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, Vols. 1, 2, Pergamon, New York (1965, 1966).

    Google Scholar 

  106. F. A. Bovey, Nuclear Magnetic Resonance Spectroscopy, Academic, New York (1969).

    Google Scholar 

  107. C. A. Poole, Jr. and H. A. Farach, Relaxation in Magnetic Resonance; Dielectric and Mössbauer Applications, Academic, New York (1971).

    Google Scholar 

  108. J. I. Kaplan, Numerical solution of the equation governing nuclear magnetic spin-lattice relaxation in a paramagnetic-spin-doped insulator, Phys. Rev.B3, 604–607 (1971).

    Google Scholar 

  109. J. E. Wertz and J. R. Bolton, Electron Spin Resonance: Elementary Theory and Practical Applications, McGraw-Hill, New York (1972).

    Google Scholar 

  110. F. Gerson, High Resolution Electron Spin Resonance Spectroscopy, Wiley, New York (1970).

    Google Scholar 

  111. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford, Clarendon Press, London (1970).

    Google Scholar 

  112. L. R. Weisberg, Electrical measurement for trace characterization, in Trace Characterization, Chemical and Physical (W. W. Meinke and B. F. Scribner, eds.), NBS Monograph 100, U.S. Government Printing Office, Washington, D.C. (1967).

    Google Scholar 

  113. V. A. Deason, A. F. Clark, and R. L. Powell, Characterization of high purity metals by the residual resistivity ratio, Mat. Res. and Std.1971(8), 25–28.

    Google Scholar 

  114. A. F. Clark, V. A. Deason, J. G. Hust, and R. L. Powell, Standard Reference Materials: The Eddy Current Decay Method for Resistivity Characterization of High Purity Metals, NBS Special Publication 260-39, U.S. Government Printing Office, Washington, D.C. (1972).

    Google Scholar 

  115. L. S. Birks, Electron Probe Microanalysis, 2nd ed., Wiley—Interscience, New York (1971).

    Google Scholar 

  116. K. F. J. Heinrich, Scanning electron probe microanalysis, NBS Technical Note 278, U.S. National Technical Information Service, Springfield, Virginia (1967).

    Google Scholar 

  117. K. F. J. Heinrich, Quantitative Electron Probe Microanalysis, NBS Special Publication 298, U.S. Government Printing Office, Washington, D.C. (1968).

    Google Scholar 

  118. K. F. J. Heinrich, Errors in theoretical correction systems in quantitative electron probe microanalysis—A synopsis, Anal. Chem.44, 350–354 (1972).

    CAS  Google Scholar 

  119. R. Tixier and J. Philibert, Analyse quantitative d’echantillons minces, in Proc. 5th Int. Congress on X-Ray Optics and Microanalysis (G. Möllenstedt and K. H. Gaukler, eds.), pp. 180–186, Springer-Verlag, Berlin (1968).

    Google Scholar 

  120. W. J. Campbell and J. V. Gilfrich, Analytical reviews 1970/Fundamentals: X-ray absorption and emission, Anal. Chem.42(5), 248R–268R (1970).

    CAS  Google Scholar 

  121. A. J. Socha, Analysis of surfaces utilizing sputter ion source instruments, Surface Sci.25, 147–170 (1971).

    CAS  Google Scholar 

  122. A. Benninghoven, Beobachtung von Oberflächenreaktionen mit der statischen Methode der Sekundärionen-massenspektroskopie; I. Die Methode, Surface Sci.28, 541–562 (1971).

    CAS  Google Scholar 

  123. A. Benninghoven, Surface investigation of solids by the statistical method of secondary ion mass spectroscopy (SIMS) Surface Sci.35, 427–457 (1973).

    CAS  Google Scholar 

  124. C. A. Anderson, Progress in analytical methods for the ion microprobe mass analyzer, Int. J. Mass Spectry. Ion Phys.2, 61–74 (1969).

    Google Scholar 

  125. J. A. McHugh and J. F. Stevens, Elemental analysis of single micrometer-size airborne particulates by ion microprobe mass spectrometry, Anal. Chem.44, 2187–2192 (1972).

    CAS  Google Scholar 

  126. K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S. Karlsson, I. Lindgren, and B. Lindberg, ESC A: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series IV, Vol. 20, Almqvist and Wiksells Boktryckeri AB Uppsala (1967).

    Google Scholar 

  127. D. A. Shirley (ed.), Electron Spectroscopy, North-Holland, Amsterdam (1972).

    Google Scholar 

  128. D. M. Hercules, Analytical reviews 1972/Fundamentals: Electron spectroscopy. II, X-ray photoexcitation, Anal. Chem.44(5), 106R–112R (1972).

    CAS  Google Scholar 

  129. K. Siegbahn, D. Hammond, H. Fellner-Feldegg, and E. F. Barnett, Electron spectroscopy with monochromatized x-rays, Science176, 245–252 (1972).

    CAS  PubMed  Google Scholar 

  130. W. H. McCurdy, Jr. and D. H. Wilkins, Analytical reviews 1966/Fundamentals: Volumetric and gravimetric analytical methods for inorganic compounds, Anal. Chem.38, 469R–478R (1966).

    CAS  Google Scholar 

  131. A. L. Underwood, Photometric titration, in Advances in Analytical Chemistry and Instrumentation (C. N. Reilley, ed.), Vol. 3, pp. 31–104, Interscience, New York (1964).

    Google Scholar 

  132. G. Marinenko and J. K. Taylor, Precise coulometric titration of dichromate, J. Res. NBS (U.S.), 76A (Phys. and Chem.), 453–459 (1963).

    Google Scholar 

  133. T. M. Florence, Ion-selective electrodes, Proc. Roy. Austral. Chem. Inst.37, 261–270 (1970).

    CAS  Google Scholar 

  134. T. S. West, Some sensitive and selective reactions in inorganic spectroscopic analysis, The Analyst91, 69–77 (1966).

    CAS  Google Scholar 

  135. J. A. Roberts, J. Winwood, and E. J. Millett, The spectrophotometric determination of sub-microgram amounts of impurities in semiconductor materials, in Proc. Soc. Analytical Chemistry Conf., Nottingham, 1965, pp. 528–538, Heffer & Sons, Cambridge (1965).

    Google Scholar 

  136. I. P. Alimarin, Progress and problems of trace determination in pure substances, Zh. Analit. Khim.18, 1412–1425 (1963).

    Google Scholar 

  137. M. Vecera and J. Horska, A study of the accuracy and precision of methods for the determination of carbon and hydrogen in organic compounds, Pure Appl. Chem.21(1), 47–84 (1970).

    Google Scholar 

  138. N. Hadden, F. Baumann, F. MacDonald, M. Munc, R. Stevenson, D. Gere, F. Zamaroni, and R. Majors, Basic Liquid Chromatography, Varian Aerograph, Walnut Creek, California (1971).

    Google Scholar 

  139. J. M. A. Lenihan and S. J. Thomson (eds.), Advances in Activation Analysis, Vol. 2, Academic, New York (1972).

    Google Scholar 

  140. J. P. Bruch, Determination of gases in steel and application of the results, Iron and Steel Institute Special Report No. 131, Determination of Chemical Composition— Its Application and Process Control, Iron and Steel Institute, London (1971).

    Google Scholar 

  141. W. Schwarz and H. Zitter, Determination for oxygen content in steel by hot extraction, Berg. Hutten. Monatsh.113, 1–10 (1968).

    Google Scholar 

  142. C. Mazieres, Differential thermal microanalysis, physical chemical applications, Bull. Soc. Chim. France1961, 1695–1701.

    Google Scholar 

  143. G. V. Davis and R. S. Porter, Application of the differential scanning calorimeter to purity measurements, J. Thermal Anal.1, 449–458 (1969).

    CAS  Google Scholar 

  144. N. W. H. Addink, DC Arc Analysis, Macmillan, London (1971).

    Google Scholar 

  145. M. D. Amos, P. A. Bennett, K. G. Brodie, P. W. Y. Lung, and J. P. Matousek, Carbon rod atomizer in atomic absorption and fluorescence spectrometry and its clinical application, Anal. Chem.43, 211–215 (1971).

    CAS  Google Scholar 

  146. P. A. Pella and J. R. DeVoe, Determination of tin in copper-base alloys by Mössbauer spectroscopy, Anal. Chem.42, 1833–1835 (1970).

    CAS  Google Scholar 

  147. L. H. Schwartz, Quantitative analysis using Mössbauer effect spectroscopy, Int. J. Nondestruct. Test.1, 353–381 (1970).

    CAS  Google Scholar 

  148. P. A. Pella and J. R. DeVoe, International standardization in Mössbauer spectrometry, Appl. Spectry.25, 472–474 (1971).

    CAS  Google Scholar 

  149. T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR, Academic, New York (1971).

    Google Scholar 

  150. R. S. Alger, Electron Paramagnetic Resonance: Techniques and Applications, Section 3.3, Sensitivity, pp. 69–91, Interscience, New York (1968).

    Google Scholar 

  151. C. P. Poole, Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, pp. 523–600, Interscience, New York (1967).

    Google Scholar 

  152. R. F. Gould, Nonstoichiometric Compounds, Advances in Chemistry Series 39, American Chemical Society, Washington, D.C. (1963).

    Google Scholar 

  153. A. Benninghoven, Mass spectrometric analysis of monomolecular layers of solids by secondary ion emission, in Advances in Mass Spectrometry (A. Quale, ed.), Vol. 5, pp. 444–447, Elsevier, New York (1971).

    Google Scholar 

  154. D. P. Smith, Analysis of surface composition with low-energy backscattered ions, Surface Sci.25, 171–191 (1971).

    CAS  Google Scholar 

  155. E. D. Tolmie and D. A. Robins, The zone-refining of impure copper, J. Inst. Metals85, 171–176 (1957).

    CAS  Google Scholar 

  156. M. Cuypers, Systematic analysis of high purity copper, following its irradiation by thermal neutrons, Ann. Chim. (Paris)9, 509–540 (1964).

    CAS  Google Scholar 

  157. C. H. Lewis, M. B. Giusto, H. C. Kelly, and S. Johnson, The preparation of high-purity silicon from silane, in Ultrapurification of Semiconductor Materials (M. S. Brooks and J. K. Kennedy, eds.), pp. 55–56, Macmillan, New York (1962).

    Google Scholar 

  158. F. A. Pohl and W. Bonseis, Zur spurenanalyse sehr reinen siliciums, Mikrochim. Acta1960, 641–649.

    Google Scholar 

  159. C. T. Butler, J. R. Russell, R. B. Quincy, Jr., and D. E. LaValle, A method for purification and growth of KC1 single crystal, Oak Ridge National Laboratory Technical Report ORNL-3906, U.S. Atomic Energy Commission Technical Information Center, Oak Ridge, Tennessee.

    Google Scholar 

  160. A. Glasner and P. Avinur, Spectrophotometric methods for the determination of impurities in pure and analytical reagents—III. The determination of six ions in KC1, Talanta11, 775–780 (1964).

    CAS  Google Scholar 

  161. A. Kremheller, Growth and heat treatment of zinc sulfide single crystals, J. Electrochem. Soc.107, 422–427 (1960).

    CAS  Google Scholar 

  162. G. J. Sloan, Studies on the purification of anthracene; determination and use of segregation coefficients, Molecular Crystals1, 161–194 (1966).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Bell Telephone Laboratories, Incorporated

About this chapter

Cite this chapter

Meinke, W.W. (1973). Characterization of Solids—Chemical Composition. In: Hannay, N.B. (eds) The Chemical Structure of Solids. Treatise on Solid State Chemistry, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-2661-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2661-8_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-2663-2

  • Online ISBN: 978-1-4684-2661-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics