Skip to main content

The Multiconfiguration Hartree-Fock Method for Atomic Energy Levels and Transition Probabilities

  • Conference paper
6th International Conference on Atomic Physics Proceedings
  • 52 Accesses

Abstract

The effect of correlation in the motion of electrons in a many electron system is an important factor in the theoretical determination of atomic properties. When Hartree1 derived his equations, he assumed the electrons moved in the field of the nucleus screened by the spherically averaged distribution of all the other electrons. Thus the effect of correlation in the motion of electrons was neglected. In fact, in his model there was a finite probability that two electrons might occupy the same region of space. Later Fock2 modified these equations. Starting with an antisymmetric total wavefunction and applying a variational procedure, he obtained what Hartree called the “equations with exchange” now referred to as the Hartree-Fock (HF) equations. Electrons with the same spin co-ordinates are repelled in this model but other correlation effects remain. For reasons such as these, Löwdin3 defined the error in the HF approximation as the correlation error.

This work was supported in part by the U. S. Department of Energy under contract EG-77-02-4264.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89, 111 (1927).

    Google Scholar 

  2. V. Fock, Z. Phys. 61, 126 (1930); 62, 795 (1930).

    Article  ADS  MATH  Google Scholar 

  3. P. O. Löwdin, Adv. Chem. Phys. 2, 207 (1959).

    Google Scholar 

  4. F. Sasaki and M. Yoshimine Phys. Rev. A9, 17, 26 (1974).

    Article  ADS  Google Scholar 

  5. O. Sinanoglu, Proc. Roy. Soc. (London) A260, 379 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  6. O. Sinanoglu, Adv. Atom. Molec. Phys. 14, 237 (1969).

    Google Scholar 

  7. A. W. Weiss, Adv. Atom. Molec. Phys. 9, 1 (1973).

    Article  ADS  Google Scholar 

  8. H. P. Kelly, Adv. Chem. Phys. 14, 129 (1969).

    Google Scholar 

  9. M. Ya. Amusia, Proceedings of the IV International Conference on Vacuum Ultraviolet Radiation Physics (eds. E. E. Koch, R. Haensel, and C. Kunz, Pergamon Vieweg 205, (1974).

    Google Scholar 

  10. C. Froese Fischer, The Hartree-Fock Method for Atoms, (Wiley, New York, 1977).

    Google Scholar 

  11. M. Gavrila and J. E. Hansen, J. Phys. B: Atom. Molec. Phys. 11, 1353 (1978).

    Article  ADS  Google Scholar 

  12. M. Ya. Amusia, V. K. Ivanov, L. V. Chernysheva, Phys. Lett. 59A, 191 (1976).

    Article  ADS  Google Scholar 

  13. O. Goscinski, B. T. Pickup, and G. Purvis, Chem. Phys. Lett. 22, 167 (1973).

    Article  ADS  Google Scholar 

  14. M. Godefroid, J. J. Berger, and G. Verhaegen, J. Phys. B: Atom. Molec. Phys. 9, 2181 (1976).

    Article  ADS  Google Scholar 

  15. C. Nicolaides and D. R. Beck, Chem. Phys. Lett. 36, 79 (1975).

    Article  ADS  Google Scholar 

  16. E. A. Hylleraas and B. Undheim, Z. Phys. 65, 759 (1930);

    Article  ADS  MATH  Google Scholar 

  17. J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).

    Article  ADS  Google Scholar 

  18. A. W. Weiss, Phys. Rev. A 9, 1524 (1974).

    Article  ADS  Google Scholar 

  19. C. E. Moore, Atomic Energy Levels, NBS Circular 467, U. S. Government Printing Office, Washington, D. C., (1949).

    Google Scholar 

  20. C. Froese Fischer, J. Phys. B: Atom. Molec. Phys. 10, 1241 (1977).

    Article  ADS  Google Scholar 

  21. D. Layzer, Z. Horak, M. N. Lewis, and D. P. Thompson, Ann. Phys. 29, 101 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Eckart, Phys. Rev. 36 , 828 (1930).

    ADS  Google Scholar 

  23. A. P. Jucys, Int. J. Quantum Chem. 1, 311 (1967).

    Article  ADS  Google Scholar 

  24. A. P. Jucys, E. P. Nasšlėnas and P. S. Žvirblis, Int. J. Quantum Chem. 6, 465 (1972).

    Article  Google Scholar 

  25. C. Froese Fischer, J. E. Hansen, and M. Barwell, J. Phys. B: Atom. Molec. Phys. 9, 1841 (1976).

    Article  ADS  Google Scholar 

  26. T. M. Bieniewski, Astrophys. J. 208, 228 (1976).

    Article  ADS  Google Scholar 

  27. A. Hibbert, Phys. Scripta 16, 7 (1977).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. C. Froese Fischer, J. Quant. Spectrosc. Radiat. Transfer 13, 201 (1973).

    Article  ADS  Google Scholar 

  29. A. W. Weiss, Beam-Foil Spectroscopy 1 (ed. I. A. Sellin and D. J. Pegg, Plenum, New York, (1976) p. 51.

    Chapter  Google Scholar 

  30. C. Froese Fischer, Can. J. Phys. (1978) to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this paper

Cite this paper

Fischer, C.F. (1979). The Multiconfiguration Hartree-Fock Method for Atomic Energy Levels and Transition Probabilities. In: Damburg, R. (eds) 6th International Conference on Atomic Physics Proceedings. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9113-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9113-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9115-3

  • Online ISBN: 978-1-4615-9113-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics