Skip to main content

Abstract

During the last twenty years both the level crossing and the anticrossing methods have been used extensively to study the atomic and molecular structure and properties of atoms and molecules in external fields. The level crossing technique in fact goes back to 1924 when Hanle(1) discovered the de-polarisation of resonance fluorescence light in a weak magnetic field (Hanle effect). At the time this could be explained as the precession in the magnetic field of a damped linear (2) oscillator.(2) With progress in the development of quantum mechanics, the polarisation of resonance fluorescence light was related to the coherent superposition of the degenerate excited states and the depolarisation was readily explained by (3) the removal of the degeneracy in the magnetic field.(3) Looking at it the other way round, a resonance type signal of the polarisation or the intensity of the resonance fluorescence light is observed when the magnetic substates converge(cross) at zero magnetic field, and for this reason the Hanle effect is also referred to as zero field level crossing. The magnetic field required to remove the degeneracy is directly connected with the natural width (i.e. lifetime) of the states, and Hanle signals have, therefore, provided the basis for many lifetime measurements of excited states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Hanle, Z. Physik 30, 93–105 (1924).

    Article  ADS  Google Scholar 

  2. W. Hanle, Erg. Ex. Nat. 4, 214–232 (1925).

    Google Scholar 

  3. G. Breit, Rev. Mod. Phys. 5, 91 (1933).

    Article  ADS  MATH  Google Scholar 

  4. F.D. Colegrove, P.A. Franken, R.R. Lewis and R.H. Sands, Phys. Rev. Lett. 3, 420 (1959).

    Article  ADS  Google Scholar 

  5. P.A. Franken, Phys. Rev. 121, 508 (1961).

    Article  ADS  Google Scholar 

  6. T.G. Eck, L.L. Foldy and H. Wieder, Phys. Rev. Lett. 10, 239 (1963).

    Article  ADS  Google Scholar 

  7. G. zu Putlitz, Atomic Physics 1 (Plenum Press), 227–264 (1969).

    Google Scholar 

  8. W. Hanle and R. Pepperl, Physikal. Blätter 27, 19–27 (1971).

    Article  Google Scholar 

  9. V.G. Pokozan’ev and G.V. Skrotskii, Soviet Physics Uspekhi 15, 452–470 (1973).

    Article  ADS  Google Scholar 

  10. A. Kastler, Physikal. Blätter 30, 394–404 (1974).

    Article  Google Scholar 

  11. N.I. Kalitejewski and M. Tschaika, Atomic Physics 4 (Plenum Press), 19–45 (1975).

    Chapter  Google Scholar 

  12. T.A. Miller and R.S. Freund, Advances in Magnetic Resonance, Vol. 9, Ed. J.S. Waugh (Academic Press, New York), pp. 50–189 (1977).

    Google Scholar 

  13. W. Happer and R. Gupta, Progress in Atomic Spectroscopy, Ed. W. Hanle and H. Kleinpoppen (Plenum Press, New York), pp. 391–462 (1978).

    Chapter  Google Scholar 

  14. H.-J. Beyer and H. Kleinpoppen, Int. J. Quantum Chem. Symp. 11, 271–287 (1977).

    Article  Google Scholar 

  15. H.-J. Beyer and H. Kleinpoppen, Progress in Atomic Spectroscopy, Ed. W. Hanle and H. Kleinpoppen (Plenum Press, New York), pp. 607–637 (1978).

    Chapter  Google Scholar 

  16. M. Glass-Maujean and J.P. Descoubes, J. Phys. Bll, 413–19 (1978) and Opt. Comm. 4, 345–51 (1972).

    ADS  Google Scholar 

  17. H. Wieder and T.G. Eck, Phys. Rev. 153, 103 (1967).

    Article  ADS  Google Scholar 

  18. T. Dohnalik, private communication, July 1977, Dec. 1977.

    Google Scholar 

  19. T. Dohnalik, Acta Phys. Polonica A53, 619–632 (1978).

    Google Scholar 

  20. R.T. Robiscoe, Phys. Rev. 138, A22–34 (1965) and Phys. Rev. 168, 4–11 (1968).

    Article  ADS  Google Scholar 

  21. R.T. Robiscoe and T.W. Shyn, Phys. Rev. Lett. 24, 559–562 (1970).

    Article  ADS  Google Scholar 

  22. B.L. Cosens, Phys. Rev. 173, 49–55 (1968).

    Article  ADS  Google Scholar 

  23. M. Glass-Maujean and J.P. Descoubes, C.R. Acad. Sci. (Paris), 273, B721–724 (1971).

    Google Scholar 

  24. M. Baumann, A. Eibofner, Phys. Lett. 33A, 409–410 (1970).

    Article  ADS  Google Scholar 

  25. A. Eibofner, Z. Phys. 249, 58–72 (1971).

    Article  ADS  Google Scholar 

  26. N. Billy, C. Lhuillier and J.P. Faroux, J. Physique Lett. (Paris) 38, L429–434 (1977).

    Article  Google Scholar 

  27. H.-J. Beyer, Progress in Atomic Spectroscopy, Ed. W. Hanle and H. Kleinpoppen (Plenum Press, New York), pp. 529–605 (1978).

    Chapter  Google Scholar 

  28. T.G. Eck and R.J. Huff in “Beam Foil Spectroscopy”, Ed. S. Bashkin (Gordon and Breach, New York, 1968) pp. 193–202

    Google Scholar 

  29. T.G. Eck and R.J. Huff Phys. Rev. Lett. 22, 319–321 (1969).

    Article  ADS  Google Scholar 

  30. H.-J. Beyer and H. Kleinpoppen, J. Phys. B4, L129–32 (1971)

    ADS  Google Scholar 

  31. H.-J. Beyer, H. Kleinpoppen and J.M. Woolsey, Phys. Rev. Lett. 28, 263–5 (1972).

    Article  ADS  Google Scholar 

  32. H.-J. Beyer and H. Kleinpoppen, J. Phys. B8, 2449–55 (1975).

    ADS  Google Scholar 

  33. M. Glass-Maujean, Opt. Comm. 8, 260–262 (1973).

    Article  ADS  Google Scholar 

  34. M. Glass-Maujean, Thesis, Université de Paris (1974), unpublished.

    Google Scholar 

  35. M. Glass-Maujean, L. Julien and T. Dohnalik, J. Phys. Bll, 421–430 (1978).

    ADS  Google Scholar 

  36. H.-J. Beyer and K.-J. Kollath, unpublished.

    Google Scholar 

  37. T. Andersen, S. Isaksen, D.B. Iversen and P.S. Ramanujam, accepted for publication in Phys. Rev. A, Sept. 1978.

    Google Scholar 

  38. T.A. Miller, R.S. Freund, F. Tsai, T.J. Cook and B.R. Zegarski, Phys. Rev. A9, 2474–84 (1974).

    Article  ADS  Google Scholar 

  39. T.A. Miller, R.S. Freund and B.R. Zegarski, Phys. Rev. All, 753–7 (1975).

    Article  ADS  Google Scholar 

  40. J. Derouard, R. Jost, M. Lombardi, T.A. Miller and R.S. Freund, Phys. Rev. A14, 1025–1035 (1976).

    Article  ADS  Google Scholar 

  41. H.-J. Beyer and K.-J. Kollath, J. Phys. B8, L326–30 (1975).

    ADS  Google Scholar 

  42. H.-J. Beyer and K.-J. Kollath, J. Phys. B9, L185–88 (1976).

    ADS  Google Scholar 

  43. E.N. Fortson, D. Kleppner and N.F. Ramsey, Phys. Rev. Lett. 13, 22–23 (1964).

    Article  ADS  Google Scholar 

  44. P.C. Gibbons and N.F. Ramsey, Phys. Rev. A5, 73–78 (1972).

    Article  ADS  Google Scholar 

  45. I.A. Sellin, CD. Moak, P.M. Griffin and J.A. Biggerstaff, Phys. Rev. 188, 217–221 (1969).

    Article  ADS  Google Scholar 

  46. H.J. Andrä, Phys. Rev. A2, 2200–2207 (1970).

    Article  ADS  Google Scholar 

  47. E.H. Pinnington, H.G. Berry, J. Desesquelles and J.L. Subtil, Nucl. Instrum. Meth. 110, 315–320 (1973).

    Article  ADS  Google Scholar 

  48. A. van Wijngaarden, E. Goh, G.W.F. Drake and P.S. Farago, J. Phys. B9, 2017–2025 (1976).

    ADS  Google Scholar 

  49. J. Bourgey, A. Denis and J. Désesquelles, J. Physique (Paris), 38, 1229–36 (1977).

    Article  Google Scholar 

  50. H.-J. Beyer, H. Kleinpoppen and J.M. Woolsey, J. Phys. B6, 1849–55 (1973).

    ADS  Google Scholar 

  51. K.-J. Kollath and H. Kleinpoppen, Phys. Rev. A10, 1519–21 (1974).

    Article  ADS  Google Scholar 

  52. H.-J. Beyer and K.-J. Kollath, J. Phys. B10, L5-L9 (1977).

    ADS  Google Scholar 

  53. H.-J. Beyer, to be published.

    Google Scholar 

  54. G. Khvostenko, Opt. Spectrosc. 26, 352–3 (1968).

    ADS  Google Scholar 

  55. G. Khvostenko and M. Chaika, Opt. Spectrosc. 215, 450–51 (1968).

    Google Scholar 

  56. G. Khvostenko, V.I. Khutorshchikov and M.P. Chaika, Opt. Spectrosc. 36, 475 (1974).

    Google Scholar 

  57. L.I. Schiff and H. Snyder, Phys. Rev. 55, 59–63 (1939).

    Article  ADS  MATH  Google Scholar 

  58. H.A. Bethe and E.E. Salpeter, “Quantum Mechanics of One-and Two- Electron Atoms” (Berlin, Springer Verlag) (1957).

    Book  Google Scholar 

  59. R.H. Garstang, Rep. Prog. Phys. 40, 105–154 (1977).

    Article  ADS  Google Scholar 

  60. W.C. Martin, Phys. Chem.Ref. Data 2, 257–266 (1973).

    Article  ADS  Google Scholar 

  61. T.A. Miller and R.S. Freund, Phys. Rev. A4, 81 (1971).

    Article  ADS  Google Scholar 

  62. H.-J. Beyer and K.-J. Kollath, J. Phys. Bll, 979–991 (1978).

    ADS  Google Scholar 

  63. T.A. Miller and R.S. Freund, Phys. Rev. A5, 588–591 (1972).

    Article  ADS  Google Scholar 

  64. H.-J. Beyer, unpublished.

    Google Scholar 

  65. K.B. MacAdam and W.H. Wing, Phys. Rev. A12, 1474 (1975).

    ADS  Google Scholar 

  66. L. Holmgren, I. Lindgren, J. Morrison and A.M. Mårtensson, Z. Physik A 276, 179 (1976).

    Article  ADS  Google Scholar 

  67. G. Tepehan, H.-J. Beyer and H. Kleinpoppen, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this paper

Cite this paper

Beyer, HJ., Kleinpoppen, H. (1979). Applications of Anticrossing Spectroscopy. In: Damburg, R. (eds) 6th International Conference on Atomic Physics Proceedings. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9113-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9113-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9115-3

  • Online ISBN: 978-1-4615-9113-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics