Skip to main content

Infinitely Divisible Distributions; Gibbs States and Correlations

  • Chapter
Dependence in Probability and Statistics

Part of the book series: Progress in Probability and Statistics ((PRPR,volume 11))

  • 80 Accesses

Abstract

Let S be a non-empty set. S may be either finite or countably infinite. Elements of S are referred to as sites. We wish to consider random distributions of ±1 values on S. The configuration space is the product space Ω = {−1,1}S equipped with the Borel sigma-field ⌁ for the product topology on Ω when {−1,1} has the discrete topology, Equivalently, ⌁ is the sigma-field generated by the finite-dimensional events. Let ℒ denote the collection of finite subsets of S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burton, R. and E. Waymire, Scaling limits for associated random measures. Ann. of Prob., in press, (1985).

    Google Scholar 

  2. Burton, R. and E. Waymire, The central limit problem for infinitely divisible random measures, This edition, (1985).

    Google Scholar 

  3. Esary, J., Proschan F., and D. Walkup, Association of random variables with applications. Ann. Math. Stat., 58 (1967), 1466–1474.

    Article  MathSciNet  Google Scholar 

  4. Fortuin, C., Kasteleyn, P., and J. Ginibre, Correlation inequalities on some partially ordered sets. Comm. Mth. Phys., 22 (1971), 89–103.

    Article  MATH  MathSciNet  Google Scholar 

  5. Glaffig, C. and E. Waymire, Infinite divisibility of the Bethe lattice Ising model. Preprint (1985).

    Google Scholar 

  6. Griffiths, R.B., Correlations in Ising ferromagnets. J. Math. Phys., 8 (1967), 478–489.

    Article  Google Scholar 

  7. Griffiths, R.B., Hurst, C.A., and S. Sherman, Concavity of magnetization of an Ising ferro-magnet in a positive external field. J. Math. Phys., 11 (1970), 790–795.

    Article  MathSciNet  Google Scholar 

  8. Grimmet, G.R., A theorem about random fields. Bull. London Math. Soc., 5 (1973), 81–84.

    Article  MathSciNet  Google Scholar 

  9. Harris, T.E., A correlation inequality for Markov processes in partially ordered spaces. Ann. of Prob., 5 (1977), 451–454.

    Article  MATH  Google Scholar 

  10. Holley, R., Remarks on the FKG inequalities. Comm. Math. Phys., 36 (1974), 227–231.

    Article  MathSciNet  Google Scholar 

  11. Ising, E., Beitrag sur theorie des ferromagnetismus. Zeit, fur Physik, 31 (1925), 253–258.

    Article  Google Scholar 

  12. Kelly, D.G. and S. Sherman, General Griffiths inequalities on correlations in Ising ferro-magnets. J. Math. Phys., 9 (1968), 466–484.

    Article  Google Scholar 

  13. Liggett, T.M., Interacting Particle Systems. Springer-Verlag, New York, 1985.

    Book  MATH  Google Scholar 

  14. Newman, C.M., Asymptotic independence and limit theorems for positively and negatively dependent random variables. Inequalities in Statistics and Probability, IMS Lecture Notes, 1984.

    Google Scholar 

  15. Parthasarathy, K.R., Probability measures on metric spaces. Academic Press, New York, 1967.

    MATH  Google Scholar 

  16. Preston, C., Generalized Gibbs states and Markov random fields. Adv. in Appld. Prob., 5 (1973), 242–261.

    Article  MATH  MathSciNet  Google Scholar 

  17. Preston, C., Gibbs states on countable sets. Cambridge Univ. Press, 1974.

    Book  MATH  Google Scholar 

  18. Preston, C., Random Fields. Springer-Verlag, No.534, New York, 1976.

    Google Scholar 

  19. Rudin, W., Fourier analysis on groups. Wiley, New York, 1962.

    MATH  Google Scholar 

  20. Sherman, S., Markov random fields and Gibbs random fields. Israel J. Math., 14 (1973), 92–103.

    Google Scholar 

  21. Spitzer, F., Random fields and interacting particle systems. M.A.A. Summer Seminar Notes, 1971.

    Google Scholar 

  22. Sptizer, F., Markov random fields on an infinite tree. Ann. of Prob., 3 (1975), 387–398.

    Article  Google Scholar 

  23. Sullivan, W.G., Potentials for almost Markovian random fields. Comm. Math. Phys., 133 (1973), 61–74.

    Article  Google Scholar 

  24. Taqqu, M., Self-similar processes and long-range dependence: a bibliographical survey. This edition, 1985.

    Google Scholar 

  25. Waymire, E., Infinitely divisible Gibbs states. Rcky. Mtn. J. Math., 14(3) (1984), 665–678.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waymire, E. (1986). Infinitely Divisible Distributions; Gibbs States and Correlations. In: Eberlein, E., Taqqu, M.S. (eds) Dependence in Probability and Statistics. Progress in Probability and Statistics, vol 11. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4615-8162-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8162-8_16

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4615-8163-5

  • Online ISBN: 978-1-4615-8162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics