Skip to main content

Diastolic Function during Exercise-Induced Ischemia in Man

  • Chapter

Abstract

Diastolic pressures frequently increase dramatically during ischemia. The mechanism for the pressure increase has been the subject of many clinical and experimental studies [1–5]. Impaired relaxation has been shown in humans during pacing-induced ischemia [2]. The alterations in left ventricular pressure decay may be important in elevating diastolic pressures, producing the upward shift in the diastolic pressure-volume relation, and impairing the time course and extent of left ventricular filling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry WH, Brooker JZ, Alderman EL, et al (1974). Changes in diastolic stiffness and tone of the left ventricle during angina pectoris. Circulation 49: 255–263.

    PubMed  CAS  Google Scholar 

  2. Mann T, Goldberg S, Mudge GH, Grossman W (1979). Factors contributing to altered left ventricular diastolic properties during angina pectoris. Circulation 59: 14–18.

    PubMed  CAS  Google Scholar 

  3. Paulus WJ, Serizawa T, Grossman W (1982). Altered left ventricular diastolic properties during pacing-induced ischemia in dogs with coronary stenoses. Circ Res 50: 218–227.

    PubMed  CAS  Google Scholar 

  4. Dwyer EM (1970). Left ventricular pressure-volume alterations and regional disorders of contraction during myocardial ischemia induced by atrial pacing. Circulation 42: 1111–1122.

    PubMed  Google Scholar 

  5. Grossman W, Serizawa T, Carabello BA (1980). Studies of the mechanisms of altered left ventricular diastolic pressure-volume relationship. Eur Heart J 1 (suppl A): 141–147.

    Google Scholar 

  6. Carroll JD, Hess OM, Hirzel HO, et al (1983). Exercise-induced ischemia: The influence of altered relaxation on early diastolic pressures. Circulation 67: 521–528.

    Google Scholar 

  7. Carroll JD, Hess OM, Hirzel HO, et al (1983). Dynamics of left ventricular filling at rest and during exercise. Circulation 68: 59–67.

    Article  PubMed  CAS  Google Scholar 

  8. Carroll JD, Hess OM, Studer NP, et al (1983). Systolic function during exercise in patients with coronary artery disease. J Am Coll Cardiol 2: 206–216.

    Article  PubMed  CAS  Google Scholar 

  9. Carroll JD, Hess OM, Hirzel HO, et al (1983). Inconsistency of changes in right atrial pressure during exercise-induced left ventricular ischemia. Circulation 68 (suppl 3): 102 (abstract).

    Google Scholar 

  10. Carroll J, Hess OM, Hirzel HO, et al (1985). Left ventricular systolic and diastolic function in patients with coronary artery disease: Effects of revascularization on exercise-induced ischemia. Circulation 72: 119–129.

    Google Scholar 

  11. Hess OM, Schneider J, Carroll JD, et al (1983). Myocardial structure of ventricular segments with and without exercise-induced wall motion abnormalities in patients with coronary artery disease. J Am Coll Cardiol 1: 734 (abstract).

    Article  Google Scholar 

  12. Brutsaert DL, Rademakers FE, Sys SU (1984). Triple control of relaxation: Implications in cardiac disease. Circulation 69: 190–196.

    Google Scholar 

  13. Carroll JD, Lang RM, Neumann AL, et al (1986). The differential effects of positive isotropic and vasodilator therapy on diastolic properties in congestive cardiomyopathy. Circulation 74: 815–825.

    Article  PubMed  CAS  Google Scholar 

  14. Parmley WW, Sonnenblick EH (1968). Relation between mechanics of contraction and relaxation in mammalian cardiac muscle. Am J Physiol 216: 1084–1091.

    Google Scholar 

  15. Blaustein AS, Gaasch WH, Carroll JD, et al (1981). Systolic load dependency of left ventricular relaxation is influenced by beta adrenergic tone and abnormal synchrony. Am J Cardiol 47: 410.

    Article  Google Scholar 

  16. Tomoike H, Franklin D, McKown D, et al (1978). Regional myocardial dysfunction and hemodynamic abnormalities with strenuous exercise in dogs with limited coronary flow. Circ Res 42: 487–496.

    PubMed  CAS  Google Scholar 

  17. Horowitz LD, Peterson DF, Bishop VS (1978). Effect of regional myocardial ischemia on cardiac pump performance during exercise. Am J Physiol 234: H157 - H162.

    Google Scholar 

  18. Hess OM, Osakada G, Lavelle JF, et al (1983). Diastolic myocardial wall stiffness and ventricular relaxation during partial and complete coronary occlusions in the conscious dog. Circ Res 52: 387–400.

    PubMed  CAS  Google Scholar 

  19. Mirsky I (1984). Assessment of diastolic function: Suggested methods and future considerations. Circulation 69: 836–841.

    Article  PubMed  CAS  Google Scholar 

  20. Grossman W, Mcaurin LP (1976). Diastolic properties of the left ventricle. Ann Intern Med 84: 316–326.

    Google Scholar 

  21. Grossman W (1985). Why is left ventricular diastolic pressure increased during angina pectoris. J Am Coll Cardio1: 607–608.

    Google Scholar 

  22. Gaasch WH, Levine HJ, Quinones MA, et al (1976). Left ventricular compliance: Mechanisms and clinical implications. Am J Cardiol 38: 645–653.

    Google Scholar 

  23. Glantz SA, Parmley WW (1978). Factors which affect the diastolic pressure-volume curve. Circ Res 42: 171–180.

    PubMed  CAS  Google Scholar 

  24. Mann T, Brodie BR, Grossman W, et al (1977). Effect of angina on the left ventricular diastolic pressure-volume relationship. Circulation 55: 761–766.

    PubMed  CAS  Google Scholar 

  25. Pouleur H, Karliner JS, LeWinter MM, Covell JW (1979). Diastolic viscous properties of the intact canine left ventricle. Circ Res 45: 410.

    PubMed  CAS  Google Scholar 

  26. Shabetai R (1981). The Pericardium. New York: Grune and Stratton.

    Google Scholar 

  27. Mirsky I, Rankin JS (1979). The effects of geometry, elasticity, and external pressure on the diastolic pressure-volume and stiffness-stress relations. How important is the pericardium? Circ Res 44: 601–611.

    PubMed  CAS  Google Scholar 

  28. Janicki JS, Weber KT (1980). The pericardium and ventricular interaction, distensibility, and function. Am J Physiol 238:H494–HSO3.

    Google Scholar 

  29. Grossman W, Barry WH (1980). Diastolic pressure-volume relations in the diseased heart. Fed Proc 39: 148–155.

    PubMed  CAS  Google Scholar 

  30. Shirato K, Shabetai R, Bargava V, et al (1978). Alterations of left ventricular diastolic pressure-segment length relation produced by the pericardium: Effects of cardiac distension and after-load reduction in conscious dogs. Circulation 57: 1191–1198.

    Google Scholar 

  31. Spadaro J, Bing OHL, Gaasch WH, et al (1981). Pericardial modulation of right and left ventricular diastolic interaction. Circ Res 48: 233–238.

    PubMed  CAS  Google Scholar 

  32. Tyberg JV, Taichman GC, Smith ER, et al (1986). The relationship between pericardial pressure and right atrial pressure: an intraoperative study. Circulation 73: 428–432.

    Article  PubMed  CAS  Google Scholar 

  33. Sasayama S, Nonogi H, Miyazaki S, et al (1985). Changes in diastolic properties of the regional myocardium during pacing-induced ischemia in human subjects. J Am Coll Cardiol 5: 599–606.

    Article  PubMed  CAS  Google Scholar 

  34. Reduto LA, Wickemeyer WJ, Young B, et al (1981). Left ventricular diastolic performance at rest and during exercise in patients with coronary artery disease. Circulation 63: 1228–1237.

    Article  PubMed  CAS  Google Scholar 

  35. Bonow RD, Bacharach SL, Green MV, et al (1981). Impaired left ventricular diastolic filling in patients with coronary artery disease: Assessment with radionouclide angiography. Circulation 64: 315–323.

    Google Scholar 

  36. Sonnenblick EH (1980). The structural basis and importance of restoring forces and elastic recoil for the filling of the heart. Eur Heart J 1 (suppl A): 107.

    Google Scholar 

  37. Sabbah HN, Stein PD (1981). Pressure-diameter relations during early diastole in dogs: Incompatibility with the concept of passive left ventricular filling. Circ Res 48: 357–365.

    Google Scholar 

  38. Yellin EL, Sonnenblick EH, Frater RWM (1980). Dynamic determinants of left ventricular filling An overview. In Baan J, Arntzenius AC, Yellin EL (eds): Cardiac Dynamics. The Hague: Martinus Nijhoff, pp 145–158.

    Chapter  Google Scholar 

  39. Noble MIN, Nilne EN, Goerke R, et al (1969). Left ventricular filling and diastolic pressure-volume relations in the conscious dog. Circ Res 24: 269–283.

    PubMed  CAS  Google Scholar 

  40. Ishida Y, Meisner JS, Tsujioka K, et al (1984). Peak rapid filling rate may not reflect left ventricular relaxation properties when left atrial pressure compensates for changes in loading conditions. Circulation 70 (suppl II): 349 (abstract).

    Google Scholar 

  41. Gage J, Hess OM, Murakami T, Krayenbuehl HP (1986). Vascoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris: Reversibility by nitroglycerin. Circulation 1986: 73: 865.

    Article  Google Scholar 

  42. Paulus WJ, Grossman W, Serizawa T, et al (1985). Different effects of two types of ischemia on myocardial systolic and diastolic function. Am J Physiol 248: H719 – H728.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing

About this chapter

Cite this chapter

Carroll, J.D., Hess, O.M., Krayenbuehl, H.P. (1987). Diastolic Function during Exercise-Induced Ischemia in Man. In: Grossman, W., Lorell, B.H. (eds) Diastolic Relaxation of the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6832-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6832-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6834-6

  • Online ISBN: 978-1-4615-6832-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics