Skip to main content

Loading Conditions and Left Ventricular Relaxation

  • Chapter

Abstract

Relaxation refers to the process by which the myocardium returns to its initial or resting length and tension; in the intact heart the term refers to the process by which the left ventricle returns to its presystolic or end diastolic pressure and volume. Relaxation is controlled by a complex interaction between deactivation (the time-dependent decay of active-force-generation capacity) and loading conditions (forces affecting myocardial length and tension). These forces may be subdivided into loads that are applied early in the cardiac cycle (contraction loads) and those that are abruptly applied late in the cycle (relaxation loads) (Table 14-1). Our rationale for separating early and late loads rests in the experimental observation that the application of an early or contraction load results in a more prolonged relaxation, whereas the application of a late or relaxation load results in a premature and more rapid relaxation; this latter phenomenon has been called “load dependent relaxation” [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brutsaert DL, Housmans PR, Goethals MA (1980). Dual control of relaxation: Its role in the ventricular function in the mammalian heart. Circ Res 47: 637–652.

    Google Scholar 

  2. Brutsaert DL, Rademakers FE, Sys SU, et al (1985). Ventricular relaxation. In Levine HJ, Gaasch WH (eds): The Ventricle. Boston: Martinus Nijhoff, 1985.

    Google Scholar 

  3. Gaasch WH, Carroll JD, Blaustein AS, Bing OHL (1986). Myocardial relaxation: Effects of preload on the time course of isovolumetric relaxation. Circulation 73: 1037–1041.

    Google Scholar 

  4. Weiss JL, Frederiksen JW, Weisfeldt ML (1970). Hemodynamic determinants of the time course of fall in canine left ventricular pressure. J Clin Invest 58: 751–760.

    Article  Google Scholar 

  5. Mirsky I (1984). Assesment of diastolic function: Suggested methods and future considerations. Circulation 69: 836–841.

    Article  PubMed  CAS  Google Scholar 

  6. Yellin EL, Hori M, Chaim Y, et al (1986). Left ventricular relaxation in the filling and non-filling intact canine heart. Am J Physiol 250: H620–629.

    PubMed  CAS  Google Scholar 

  7. Wiegner AW, Bing OHL (1982). Mechanics of myocardial relaxation: Application of a model to isometric and isotonic relaxation of rat myocardium. J Biomech 15: 831–840.

    Google Scholar 

  8. Wiegner AW, Bing OHL (1978). Isometric relaxation of rat myocardium at end-systolic fiber length. Circ Res 43: 865–869.

    PubMed  CAS  Google Scholar 

  9. Zile MR, Gaasch WH, Wiegner AW, et al (1985). Mechanical determinants of the rate of isotonic lengthening in rat left ventricular myo-cardium. Circulation 72: III - 184

    Google Scholar 

  10. Karliner JS, LeWinter MM, Mahler F, et al (1977). Pharmacologic and hemodynamic influences on the rate of isovolumic left ventricular relaxation in the normal conscious dog. J Clin Invest 60: 511–521.

    Article  PubMed  CAS  Google Scholar 

  11. Gaasch WH, Blaustein AS, Andrias CW, et al (1980). Myocardial relaxation. II. Hemodynamic determinants of the rate of left ventricular isovolumic pressure decline. Am J Physiol 239: H1–6.

    PubMed  CAS  Google Scholar 

  12. Blaustein AS, Gaasch WH (1983). Myocardial relaxation. VI. Effects,of beta adrenergic tone and asynchrony on LV relaxation rate. Am J Physiol 244: H417–422.

    PubMed  CAS  Google Scholar 

  13. Bahler RC, Martin P (1985). Effects of loading conditions and inotropic state on rapid filling phase of left ventricle. Am J Physiol 248: H523533.

    Google Scholar 

  14. Hori M, Inoue M, Kitakaze M, et al (1985). Loading sequence is a major determinant of afterload-dependent relaxation in intact canine heart. Am J Physiol 249: H747–754.

    PubMed  CAS  Google Scholar 

  15. Ishida Y, Meisner JS, Tsujioka K, et al (1986). Left ventricular filling dynamics: Influence of left ventricular relaxation and left atrial pressure. Circulation 74: 187–196.

    Google Scholar 

  16. Zile MR, Blaustein AS, Gaasch WH (1985). In the normal left ventricle catecholamine induced changes in filling rate are mediated through changes in end systolic size. Circulation 72:III88.

    Google Scholar 

  17. Goethals MA, Kersschot IE, Claes VA, et al (1980). Influence of abrupt pressure increments on left ventricular relaxation. Am J Cardiol 45: 392, (abstract).

    Article  Google Scholar 

  18. Gaasch WH, Ariel Y, McMahon TA (1986). Load-dependent relaxation in the intact left ventricle. J Am Coll Cardiol 7: 243A, (abstract).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing

About this chapter

Cite this chapter

Gaasch, W.H., Zile, M.R., Blaustein, A.S., Bing, O.H.L. (1987). Loading Conditions and Left Ventricular Relaxation. In: Grossman, W., Lorell, B.H. (eds) Diastolic Relaxation of the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6832-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6832-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6834-6

  • Online ISBN: 978-1-4615-6832-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics