Skip to main content

Evaluation of Time Course of Left Ventricular Isovolumic Relaxation in Humans

  • Chapter

Abstract

Weiss and coworkers [1] first determined, in an open-chest, right-heart-bypass animal model, that left-ventricular-pressure decay during isovolumic relaxation can be approximated by a monoexponential function. Their technique required that the derived or best-fit monoexponential curve for the pressure data decay asymptotically toward zero pressure. [1, 2]. Subsequent evaluation of the time course of pressure fall during isovolumic relaxation has questioned whether the monoexponential decay of isovolumic pressure decline should proceed to a zero or nonzero asymptote [3–5]. Inherent in this calculation is the assumption that pressure decline during isovolumic relaxation is mono-exponential. This postulate is empiric and is not necessarily predicated by any physiologic mechanism [6]. However, in those cases where a monoexponential model applies, calculation of the time constant provides a single index which characterizes the shape of the pressure curve during isovolumic relaxation. Such an index is important if the effects of relaxation on diastolic performance and overall cardiac function are to be evaluated in diseases such as hypertrophic cardiomyopathy and exercise-induced myocardial ischemia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiss JL, Frederiksen JW, Weisfeldt ML (1976). Hemodynamic determinants of the time course of fall in canine left ventricular pressure. J Clin Invest 58: 751–760.

    Article  PubMed  CAS  Google Scholar 

  2. Frederiksen JW, Weiss JL, Weisfeldt ML (1978). Time constant of isovolumic pressure fall: Determinants in the working left ventricle. Am J Physiol 235: H701–706.

    PubMed  CAS  Google Scholar 

  3. Craig WE, Murgo JP (1980). Evaluation of isovolumic relaxation in normal man during rest, exercise, and isoproterenol infusion. Circulation 62 (suppl II): II - 92 (abstract).

    Google Scholar 

  4. Raff GL, Glantz SA (1981). Volume loading slows left ventricular isovolumic relaxation rate: Evidence of load dependent relaxation in the intact dog heart. Circ Res 48: 813–824.

    PubMed  CAS  Google Scholar 

  5. Thompson DS, Waldron CB, Coltart DJ, et al (1983). Estimation of time constant of left ventricular relaxation. Br Heart J 49: 250–258.

    Article  PubMed  CAS  Google Scholar 

  6. Pasipoularides A, Palacios I, Frist W, et al (1985). Contribution of activation-inactivation dynamics to the impairment of relaxation in hypoxic cat papillary muscle. Am J Physiol: Regulatory Integrative Comp Physiol 248: R54 - R62.

    CAS  Google Scholar 

  7. Pasipoularides A, Murgo JP, Miller JW, Craig WE. Nonobstructive left ventricular ejection pressure gradients in man. (Submitted for publication)

    Google Scholar 

  8. Sabbah HN, Stein PD (1986). Investigation of the theory and mechanism of the origin of the second heart sound. Circ Res 39: 874–882.

    Google Scholar 

  9. Brown DL, Craig WE, Layton SA, et al (1981). Exercise induced abnormalities of left ventricular relaxation in coronary artery disease. Circulation 64 (suppl IV): 28 (abstract).

    Google Scholar 

  10. Murgo JP, Craig WE (1980). Relaxation abnormalities in hypertrophic cardiomyopathies. Circulation 62 (suppl II): 206 (abstract).

    Google Scholar 

  11. Craig WE, Pasipoularides A (1986). Ventricular diastolic dynamics: Effects of wall asynchrony on global relaxation indices. In Proceedings of the 21st Annual Meeting of the Association for the Advancement of Medical Instrumentation,Chicago, IL.

    Google Scholar 

  12. Murgo JP, Craig WE, Pasipoularides A (1982). The relationship between diastolic function and ejection in hypertrophic cardiomyopathy. In Proceedings of Symposium on Diastolic Function of the Heart,Hamburg, Germany.

    Google Scholar 

  13. Pagani M, Pizzinelli P, Gussoni M, et al (1983). Diastolic abnormalities of hypertrophic cardiomyopathy reproduced by asynchrony of the left ventricle in conscious dogs. J Am Coll Cardiol 1: 641 (abstract).

    Google Scholar 

  14. Thompson DS, Waldron CB, Juul SM, et al (1982). Analysis of left ventricular pressure during isovolumic relaxation in coronary artery disease. Circulation 65: 690–697.

    Article  PubMed  CAS  Google Scholar 

  15. Brutsaert DL, Housmans PR, Goethals MA (1980). Dual control of relaxation: Its role in the ventricular function in the mammalian heart. Circ Res 47: 637–652.

    Google Scholar 

  16. Cohn PF, Liedtke AJ, Serur J, et al (1972). Maximal rate of pressure fall (peak negative dp/dt) during ventricular relaxation. Cardiovasc Res 6: 263–267.

    Article  PubMed  CAS  Google Scholar 

  17. Karliner JS, Lewinter MM, Mahler F, et al (1977). Pharmacologic and hemodynamic influences on the rate of isovolumic left ventricular relaxation in the normal conscious dog. J Clin Invest 60: 511–521.

    Article  PubMed  CAS  Google Scholar 

  18. Thompson DS, Wilmshurst P, Juul SM, et al (1983). Pressure-derived indices of left ventricular isovolumic relaxation in patients with hypertrophie cardiomyopathy. Br Heart J 49: 259–267.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing

About this chapter

Cite this chapter

Craig, W.E., Murgo, J.P., Pasipoularides, A. (1987). Evaluation of Time Course of Left Ventricular Isovolumic Relaxation in Humans. In: Grossman, W., Lorell, B.H. (eds) Diastolic Relaxation of the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6832-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6832-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6834-6

  • Online ISBN: 978-1-4615-6832-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics