Skip to main content

Circumvention of Biologic Diversity of Cancer Metastasis

  • Chapter
Anticarcinogenesis and Radiation Protection
  • 111 Accesses

Abstract

The major challenge facing the oncologist is how to treat cancer that has disseminated to and is growing in multiple organs throughout the body. Despite major advances in general patient care, surgical techniques, and adjuvant therapies, most deaths from cancer are caused by the growth of metastases that are resistant to chemotherapy or radiotherapy. A major factor which prevents treatment of metastases is the fact that cancer cells populating both primary and secondary neoplasms are biologically heterogeneous (1, 2). By the time of diagnosis, and certainly in clinically advanced lesions, malignant neoplasms contain multiple cell populations exhibiting a wide range of biological characteristics such as cell surface structures, growth rate, sensitivity to various cytotoxic drugs, and the ability to further invade and metastasize. The implication of the heterogeneous responses of tumor cells to conventional anticancer drugs is that the successful therapy of disseminated metastases must circumvent the problems of biologic heterogeneity and be a treatment modality to which resistance is unlikely to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. J. Fidler and I. R. Hart, Biological diversity in metastatic neoplasms: Origins and implications. Science, 217, 998–1003 (1982).

    Article  PubMed  CAS  Google Scholar 

  2. I. J. Fidler and G. Poste, The cellular heterogeneity of malignant neoplasms: Implications for adjuvant chemotherapy. Semin. Oncol. 12, 207–222 (1985).

    PubMed  CAS  Google Scholar 

  3. I. J. Fidler, Macrophages and metastases: A biological approach to cancer therapy. Cancer Res. 45, 4714–4726 (1985).

    PubMed  CAS  Google Scholar 

  4. L. Chedid, L. Carelli, and F. Audibert, Recent developments concerning muramyl dipeptide, a synthetic immunoregulating molecule. J. Reticuloendothel. Soc. 26, 631–641 (1979).

    PubMed  CAS  Google Scholar 

  5. E. Lederer, Synthetic immunostimulants derived from the bacterial cell wall. J. Med. Chem. 23, 819–825 (1980).

    Article  PubMed  CAS  Google Scholar 

  6. W. E. Fogler and I. J. Fidler, Modulation of the immune response by muramyl dipeptide. In: Immune Modulation Agents and Their Mechanisms (M. A. Chirigos and R. L. Fenichel, Eds.), pp. 499–512. Marcel Dekker, New York, 1984.

    Google Scholar 

  7. I. J. Fidler, The MAF dilemma. Lymphokine Res. 3, 51–54 (1984).

    PubMed  CAS  Google Scholar 

  8. I. Saiki and I. J. Fidler, Synergistic activation by recombinant mouse interferon-gamma and muramyl dipeptide of tumoricidal properties in mouse macrophages. J. Immunol. 135, 684–688, (1985).

    PubMed  CAS  Google Scholar 

  9. I. Saiki, S. Sone, W. E. Fogler, E. S. Kleinerman, G. Lopez-Berestein, and I. J. Fidler, Synergism between human recombinant gamma-interferon and muramyl dipeptide encapsulated in liposomes for activation of antitumor properties in human blood monocytes. Cancer Res. 45, 6188–6193, (1985).

    PubMed  CAS  Google Scholar 

  10. I. J. Fidler, W. E. Fogler, E. S. Kleinerman, and I. Saiki, Abrogation of species specificity for activation of tumoricidal properties in macrophages by recombinant mouse or human gamma interferon encapsulated in liposomes. J. Immunol. 135, 4289–4294, (1985).

    PubMed  CAS  Google Scholar 

  11. J. B. Jr. Hibbs. Discrimination between neoplastic and nonneoplastic cells in vitro by activated macrophages. J. Natl. Cancer Inst. 53, 1487–1492, (1974).

    PubMed  Google Scholar 

  12. C. D. Bucana, L. C. Hoyer, A. J. Schroit, E. S. Kleinerman, and I. J. Fidler, Ultrastructural studies of the interaction between liposomes-activated human blood monocytes and allogeneic tumor cells in vitro. Am. J. Pathol. 112, 101–111, (1983).

    PubMed  CAS  Google Scholar 

  13. I. J. Fidler, Recognition and destruction of target cells by tumoricidal macrophages. Isr. J. Med. Sci. 14, 177–191, (1978).

    PubMed  CAS  Google Scholar 

  14. I. J. Fidler and E. S. Kleinerman, Lymphokine-activated human blood monocytes destroy tumor cells but not normal cells under cocultivation conditions. J. Clin. Oncol. 2, 937–943, (1984).

    PubMed  CAS  Google Scholar 

  15. W. E. Fogler and I. J. Fidler, Nonselective destruction,of murine neoplastic cells by syngeneic tumoricidal macrophages. Cancer Res. 45, 14–18, (1985).

    PubMed  CAS  Google Scholar 

  16. G. Poste, R. Kirsh, W. Fogler, and I. J. Fidler, J. Activation of tumoricidal properties in mouse macrophages by lymphokines encapsulated in liposomes. Cancer Res. 39, 881–892, (1979).

    PubMed  CAS  Google Scholar 

  17. G. Poste and R. Kirsh, Rapid decay of tumoricidal activity and loss of responsiveness to lymphokines in inflammatory macrophages. Cancer Res. 39, 2582–2590, (1979).

    PubMed  CAS  Google Scholar 

  18. G. Poste, The tumoridal properties of inflammatory tissue microphages and multinucleate giant cells. Am. J. Pathol. 96, 595–606, (1979).

    PubMed  CAS  Google Scholar 

  19. A. C. Allison, Mode of action of immunological adjuvants. J. Reticuloendothel. Soc. 26, 619–630, (1979).

    PubMed  CAS  Google Scholar 

  20. A. J. Schroit and I. J. Fidler, Effects of liposome structure and lipid composition on the activation of the tumoricidal properties of macrophages by liposomes containing muramyl dipeptide. Cancer Res. 42, 161–167, (1982).

    PubMed  CAS  Google Scholar 

  21. G. Poste, R. Kirsh, and P. Bugelski, Liposomes as a drug delivery system in cancer therapy. In: Novel Approaches to Cancer Chemotherapy (P. S. Sunkara, Ed.), pp. 166–221. Academic Press, New York, 1984.

    Google Scholar 

  22. A. J. Schroit, I. R. Hart, J. Madsen, and I. J. Fidler, Selective delivery of drugs encapsulated in liposomes: Natural targeting to macrophages involved in various disease states. J. Biol. Response Modif. 2, 97–100, (1983).

    CAS  Google Scholar 

  23. I. J. Fidler, Therapy of spontaneous metastases by intravenous injection of liposomes containing lymphokines. Science, 208, 1469–1471, (1980).

    Article  PubMed  CAS  Google Scholar 

  24. I. J. Fidler, S. Sone, W. E. Fogler, and Z. L. Barnes, Eradication of spontaneous metastases and activation of alveolor macrophages by intravenous injection of liposomes containing muramyl dipeptide. Proc. Natl. Acad. Sci. U.S.A. 78, 1680–1684, (1981).

    Article  PubMed  CAS  Google Scholar 

  25. S. D. Deodhar, B. P. Barna, M. Edinger, and T. Chiang, Inhibition of lung metastases by liposomal immunotherapy in a murine fibrosarcoma model. J. Biol. Response Modif. 1, 27–34, (1982).

    Google Scholar 

  26. G. Lopez-Berestein, L. Milas, N. Hunter, K. Mehta, D. Eppstein, M. A. VanderPas, T. R. Mathews, and E. M. Hersh, Prophylaxis and treatment with liposome-encapsulated 6-O-steroyl-N-acetyl muramyl-L-aminobutyryl-D-isoglutamine. Clin. Exp. Metastasis, 2, 366–367, (1984).

    Google Scholar 

  27. N. C. Phillips, M. L. Mora, L. Chedid, P. Lefrancier, and J. M. Bernard, Activation of tumoricidal activity and eradication of experimental metastases by freeze-dried liposomes containing a new lipophilic muramyl derivative. Cancer Res. 45, 128–134, (1985).

    PubMed  CAS  Google Scholar 

  28. D. A. Eppstein, M. A. Van Der Pas, E. B. Fraser-Smith, C. G. Kurahara, P. L. Feigner, T. R. Matthews, R. V. Waters, M. C. Venuti, G. H. Jones, R. Metha, G. Lopez-Berestein, Liposome-encapsulated muramyl dipeptide analogue enhances non-specific host immunity. Int. J. Immunother. 2, 115–126, (1986).

    CAS  Google Scholar 

  29. J. E. Talmadge, B. F. Lenz, R. Klabansky, R. Simon, C. Riggs, S. Guo, R. K. Oldham, and I. J. Fidler, Therapy of autochthonous skin cancers in mice with intravenously injected liposomes containing muramyltripeptide. Cancer Res. 46, 1160–1163, (1986).

    PubMed  CAS  Google Scholar 

  30. S. Sone and I. J. Fidler, Synergistic activation by lymphokines and muramyl dipeptide of tumoricidal properties in rat alveolar macrophages. J. Immunol. 125, 2454–2460, (1980).

    PubMed  CAS  Google Scholar 

  31. I. J. Fidler and A. J. Schroit, Synergism between lymphokines and muramyl dipeptide encapsulated in liposomes: In situ activation of macrophages and therapy of spontaneous cancer metastasis. J. Immunol. 133, 515–518, (1984).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Fidler, I.J. (1987). Circumvention of Biologic Diversity of Cancer Metastasis. In: Cerutti, P.A., Nygaard, O.F., Simic, M.G. (eds) Anticarcinogenesis and Radiation Protection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6462-1_69

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6462-1_69

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6464-5

  • Online ISBN: 978-1-4615-6462-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics