Skip to main content

Activation of Organic Hydroperoxide Tumor Promoters to Free Radicals in Target Cells

  • Chapter
Anticarcinogenesis and Radiation Protection

Abstract

Although the molecular mechanisms involved in carcinogenesis are poorly understood at this time, intermediary events in the development of cancer have been described through the selective actions of discrete chemical agents (1). These processes have been studied in various model systems and have been termed initiation, promotion and progression (2). Initiation appears to involve the modification of cellular DNA, resulting in genotypically altered cells, while promotion encompasses a continuum of events allowing for the selection and clonal expansion of the initiated cells (3). Finally, progression completes the conversion of pre-malignant cells to malignant cells. Substantial evidence supports the involvement of free radical species, especially those derived from molecular oxygen, in multiple aspects of these processes (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Hicks, Pathological and biochemical aspects of tumour promotion. Carcinogenesis 4, 1209–1214 (1983).

    Article  PubMed  CAS  Google Scholar 

  2. S.H. Yuspa, T. Ben, H. Hennings, and U. Lichti, Divergent responses in epidermal basal cells exposed to the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA). Cancer Res. 42. 2344–2349 (1982).

    PubMed  CAS  Google Scholar 

  3. T.J. Slaga, (Ed.), Mechanisms of Tumor Promotion, Vol. 1–4, CRC Press, Boca Raton, 1984.

    Google Scholar 

  4. T.W. Kensler and B.G. Taffe, Free radicals in tumor promotion. Adv. Free Radical Biol. Med. 2, 347–387 (1986).

    CAS  Google Scholar 

  5. J.F. O’Connell, A.J.P. Klein-Szanto, D.M. DiGiovanni, J.W. Fries, and T.J. Slaga, Enhanced malignant progression of mouse skin tumors by the free-radical generator benzoyl peroxide. Cancer Res. 46, 2863–2865 (1986).

    PubMed  Google Scholar 

  6. P. Watts, Peroxides, genes and cancer. Food Chem. Toxicol. 23, 957–960 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. T.J. Slaga, A.J.P. Klein-Szanto, L.L. Triplett, L.P. Yotti, and J.E. Trosko, Skin tumor-promoting activity of benzoyl peroxide, a widely used free radical-generating compound. Science 213, 1023–1025 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. W.A. Pryor, Free Radicals. McGraw-Hill Book Company, New York, 1966.

    Google Scholar 

  9. S.H. Yuspa, P. Hawley-Nelson, J.R. Stanley, and H. Hennings, Epidermal cell culture. Transplant. Proc. 12S, 114–122 (1976).

    Google Scholar 

  10. C.H. Kennedy, W.A. Pryor, G.W. Winston, and D.F. Church, Hydroperoxide-induced radical formation in liver mitochondria. Biochem. Biophys Res. Commun. 141, 1123–1129 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. B. Kalyanaraman, C. Mottley, and R.P. Mason, A direct electron spin resonance and spin-trapping investigation of peroxyl free radical formation by hematin/hydroperoxide systems. J. Biol. Chem. 258, 3855-3858 (1983).

    Google Scholar 

  12. W.A. Pryor, D.L. Fuller, and J.P. Stanley, Reactivity patterns of the methyl radical. J. Am. Chem. Soc. 94, 1632–1638 (1972).

    Article  CAS  Google Scholar 

  13. D.E. Levin, M. Hollstein, M.F. Christman, E.A. Schwiers, and B.N. Ames, A new Salmonella tester strain (TA 102) with A-T base pairs at the site of mutation detects oxidative mutagens. Proc. Natl. Acad. Sci. U.S.A. 79, 7445–7449 (1982).

    Article  PubMed  CAS  Google Scholar 

  14. H.L. Gensler, and G.T. Bowden, Evidence suggesting a dissociation of DNA strand scissions and late-stage promotion of tumor cell phenotype. Carcinogenesis 4, 1507–1511 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. T. Ochi, and P.A. Cerutti, Clastogenic action of hydroperoxy-5,8,11,13-eicosatetraenoic acids on the mouse embryo fibroblasts C3H/10T2. Proc. Natl. Acad. Sci. U.S.A. 84, 990–994 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. H. Sies, P. Graf, and J.M. Estrela, Hepatic calcium efflux during cytochrome P-450 dependent drug oxidations at the endoplasmic reticultun in intact liver. Proc. Natl. Acad. Sci. U.S.A. 78, 3358–3362 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. O. Augusto, L.R. Du Plessis, and C.L.V. Weingrill, Spin trapping of methyl radical in the oxidative metabolism of 1,2-dimethylhydrazine. Biochem. Biophys. Res. Commun. 126, 853–858 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. L.C. Boffa, R.J. Gruss, and V.G. Allfrey, Aberrent and nonrandom methylation of chromosomal DNA-binding-proteins of colonic epithelial cells by 1,2-dimethylhydrazine. Cancer Res. 42. 382–388 (1982).

    PubMed  CAS  Google Scholar 

  19. S. Ichimura, K. Mita, and M. Zama, Essential role of arginine residues in the folding of deoxyribonucleic acid into nucleosome cores. Biochemistry 21. 5329–5334 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. W.K. Paik, P. Dimaria, S. Kim, P.N. Magee, and P.D. Lotlikar, Alkylation of protein by methyl methane sulfonate and 1-methyl-1-nitrosourea in vitro. Cancer Lett. 23, 9–17 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. C. Turberville and V.M. Craddock, Methylation of nuclear proteins by dimethylnitrosamine and by methionine in the rat in vivo. Biochem. J. 124, 725–739 (1971).

    PubMed  CAS  Google Scholar 

  22. R.L. Willson, Organic peroxy free radicals as ultimate agents in oxygen toxicity. In: Oxidative Stress (H. Sies, Ed.) pp. 41–72. Academic Press, London, 1985.

    Google Scholar 

  23. M.E. Hemler, H.W. Cook, and W.E.M. Lands, Prostaglandin biosynthesis can be triggered by lipid peroxides. Arch. Biochem. Biophys. 193, 340–345 (1979).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Taffe, B.G., Kensler, T.W., Takahashi, N., Mason, R.P. (1987). Activation of Organic Hydroperoxide Tumor Promoters to Free Radicals in Target Cells. In: Cerutti, P.A., Nygaard, O.F., Simic, M.G. (eds) Anticarcinogenesis and Radiation Protection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6462-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6462-1_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6464-5

  • Online ISBN: 978-1-4615-6462-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics