Skip to main content

Tumor Promotion: A Problem of Differential Responses of Normal and Neoplastic Cells to Trophic Stimuli

  • Chapter
Anticarcinogenesis and Radiation Protection

Abstract

Increased understanding of the tumor promotion phase of chemical carcinogenesis has resulted from the discovery of pure tumor promoting-agents and the development of animal models in which tumor promoters modify experimental carcinogenesis (1). Simultaneously, interest in this area of cancer research has been stimulated by epidemiological studies indicating that a promotion phase is important in the development of human cancer (2). Tumor promoters cause or allow the expression of the latent tumor phenotype induced in some cells by limited doses of carcinogens. Commonly, the model systems where tumor promotion plays an important role in neoplastic development are those involving epithelial tissues, in particular those composed of more than one cell type or cells in different states of maturation such as skin, breast and bronchus. As a classical model for carcinogenesis in a lining epithelium, mouse skin has provided most of the conceptual framework regarding the biology of tumor promotion (1,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.J. Slaga, Mechanisms of Tumor Promotion, Vols. I, II, III, IV. CRC Press, Boca Raton, 1983.

    Google Scholar 

  2. S.H. Moolgavkar and A.G. Knudson, Mutation and cancer: A model for human carcinogenesis. J. Natl. Cancer Inst. 66, 1037–1052 (1981).

    PubMed  CAS  Google Scholar 

  3. S.H. Yuspa, Cutaneous chemical carcinogenesis. J. Am. Acad. Dermatol. 15, 1031–1044 (1986).

    Article  PubMed  CAS  Google Scholar 

  4. H. Hennings, R. Shores, M.L. Wenk, E.F. Spangler, R. Tarone, and S. H. Yuspa, Malignant conversion of mouse skin tumours is increased by tumour initiators and unaffected by tumour promoters. Nature (London) 304, 67–69 (1983).

    Article  CAS  Google Scholar 

  5. T.L. Goldsworthy and H.C. Pitot, The quantitative analysis and stability of histochemical markers of altered hepatic foci in rat liver following initiation by diethyl nitrosamine administration and promotion with phenobarbital. Carcinogenesis 6, 1261–1269 (1985).

    Article  PubMed  CAS  Google Scholar 

  6. W.K. Kaufman, S.A. Mackenzie, and D.G. Kaufman, Quantitative relationship between hepatocytic neoplasms and islands of cellular alteration during hepatocarcinogenesis in the male F344 rat. Am. J. Pathol. 119, 171–174 (1985).

    PubMed  Google Scholar 

  7. P.M. Blumberg, In vitro studies on the mode of action of the phorbol esters, potent tumor promoters: part I. CRC Crit. Rev. Toxicol. 8, 153–197 (1980).

    Article  CAS  Google Scholar 

  8. K.L. Leach, M.L. James, and P.M. Blumberg, Characterization of a specific phorbol ester aporeceptor in mouse brain cytosol. Proc. Natl. Acad. Sci. USA 80, 4208–4212 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. C.L. Ashendel, The phorbol ester receptor: a phospholipid-regulated protein kinase. Biochim. Biophys. Acta. 822, 219–242 (1985).

    PubMed  CAS  Google Scholar 

  10. Y. Nishizuka, Studies and perspectives of protein kinase C. Science 233, 305–312 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. S.H. Yuspa, H. Hennings, and U. Lichti, Initiator and promoter induced specific changes in epidermal function and biological potential. J. Cell Biochem. 17, 245–257 (1981).

    CAS  Google Scholar 

  12. S.H. Yuspa, T. Ben, H. Hennings, and U. Lichti, Divergent responses in epidermal basal cells exposed to the tumor promoter 12-0-tetradecanoyl phorbol-13-acetate. Cancer Res. 42, 2344–2349 (1982).

    PubMed  CAS  Google Scholar 

  13. J.A. Dunn and P.B. Blumberg, Specific binding of [20–3H]12-deoxyphorbol 13-isobutyrate to phorbol ester receptor subclasses in mouse skin particulate preparations. Cancer Res. 43, 4632–4637 (1983).

    PubMed  CAS  Google Scholar 

  14. J.A. Dunn, A.Y. Jeng, S.H., Yuspa, and P.B. Blumberg, Heterogeneity of [3H]phorbol 12,13 dibutyrate binding in primary mouse keratinocytes at different stages of maturation. Cancer Res. 5540–5546 (1985).

    Google Scholar 

  15. J.J. Reiners and T.J. Slaga, Effects of tumor promoters on the rate and commitment to terminal differentiation of subpopulations of murine keratinocytes. Cell 32, 247–255 (1983).

    Article  PubMed  CAS  Google Scholar 

  16. T.S. Argyris, Regeneration and the mechanism of epidermal tumor promotion. CRC Crit. Rev. Toxicol. 14, 211–258 (1985).

    Article  CAS  Google Scholar 

  17. S.H. Yuspa, D. Morgan, U. Lichti, E.F. Spangler, D. Michael, A. Kilkenny, and H. Hennings, Cultivation and characterization of cells derived from mouse skin papillomas induced by an initiation promotion protocol. Carcinogenesis 7, 949–958 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. H. Hennings, D. Michael, U. Lichti, and S.H. Yuspa, Response of carcinogen-altered mouse epidermal cells to phorbol ester tumor promoters and calcium. J. Invest. Dermatol. 88, 60–65 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. S.H. Yuspa and U. Lichti, Retinoids and skin carcinogenesis: a mechanism of anticarcinogenesis by the modulation of epidermal differentiation. In, Retinoids: New Trends in Research and Therapy (J.H. Saurat, Ed.), pp. 56–64. S. Karger AG, Basel, 1985.

    Google Scholar 

  20. T.J. Slaga, U. Lichti, H. Hennings, K. Elgjo, and S.H. Yuspa, Effects of tumor promoters and steroidal anti-inflammatory agents on skin of newborn mice in vivo and in vitro. J. Natl. Cancer Inst. 60, 425–431 (1978).

    PubMed  CAS  Google Scholar 

  21. G.R. Pettit, C.L. Herald, D.L. Doubek, E. Arnold, and J. Clardy, Isolation and structure of bryostatin 1. J. Am. Chem. Soc. 104, 6846–6848 (1982).

    Article  CAS  Google Scholar 

  22. J.A. Smith, L. Smith, and G.R. Pettit, Bryostatins: potent, new mitogens that mimic phorbol ester tumor promoters. Biochem. Biophys, Res. Commun. 132, 939–945 (1985).

    Article  CAS  Google Scholar 

  23. A.S. Kraft, J.B. Smith, and R.L. Berkow, Bryostatin, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells HL-60. Proc. Natl. Acad. Sci. USA 83, 1334–1338 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. M.L. Dell’Aquila, H.T. Nguyen, C.L. Herald, G.R. Pettit and P.M. Blumberg, Bryostatin 1 inhibits phorbol ester-induced blockage of differentiation in hexamethylene bisacetamide-treated Friend erythroleukemia cells. Submitted.

    Google Scholar 

  25. T. Sako, S.H. Yuspa, C.L. Herald, G.R. Pettit, and P.M. Blumberg, Bryostatin 1 both mimics and blocks effects of phorbol ester tumor promoters on primary mouse epidermal cells. Cancer Res., in press.

    Google Scholar 

  26. H. Hennings, P.M. Blumberg, G.R. Pettit, C.L. Herald, R. Shores, and S.H. Yuspa, Bryostatin 1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters in Senear mouse skin. Carcinogenesis, in press.

    Google Scholar 

  27. T.J. Slaga, A.J.P. Klein-Szanto, L.L. Triplett, and L.P. Yotti, Skin tumor-promoting activity of benzoyl peroxide, a widely used free radical-generating compound. Science 213, 1023–1025 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. A.J.P. Klein-Szanto and T.J. Slaga, Effects of peroxides on rodent skin: epidermal hyperplasia and tumor promotion. J. Invest. Dermatol. 79, 30–34 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. J.F. O’Connell, A.J.P. Klein-Szanto, D.M. DiGiovanni, J.W. Fries, and T.J. Slaga, Enhanced malignant progression of mouse skin tumors by the free-radical generator benzoyl peroxide. Cancer Res. 2863–2865 (1986).

    Google Scholar 

  30. J.A. Hartley, N.W. Gibson, L.A. Zwelling, and S.H. Yuspa, The association of DNA strand breaks with accelerated terminal differentiation in mouse epidermal cells exposed to tumor promoters. Cancer Res. 45, 4864–4870 (1985).

    PubMed  CAS  Google Scholar 

  31. J.A. Hartley, N.W. Gibson, A. Kilkenny, and S.H. Yuspa, Mouse keratinocytes derived from initiated skin or papillomas are resistant to DNA strand breakage by benzoyl peroxide: a possible mechanism for tumor promotion mediated by benzoyl peroxide. Submitted.

    Google Scholar 

  32. S.H. Yuspa, Tumor promotion. In, Accomplishments in Cancer Research 1986 (J.G. Fortner and J.E. Rhoads, Eds.) pp. 169–182. Lippincott Co., Philadelphia, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Yuspa, S.H., Hennings, H., Sako, T., Pettit, G.R., Hartley, J., Blumberg, P.M. (1987). Tumor Promotion: A Problem of Differential Responses of Normal and Neoplastic Cells to Trophic Stimuli. In: Cerutti, P.A., Nygaard, O.F., Simic, M.G. (eds) Anticarcinogenesis and Radiation Protection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6462-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6462-1_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6464-5

  • Online ISBN: 978-1-4615-6462-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics