Skip to main content

Drpase, A New Activity in the DNA Base Excision Repair Pathway

  • Chapter
Anticarcinogenesis and Radiation Protection
  • 117 Accesses

Abstract

Agents that damage DNA are known to cause both mutagenesis and carcinogenic effects to cells. One specific type of DNA damage results in the loss of a purine or pyrimidine base, resulting in the formation of a base-free sugar or so-called apurinic/apyrimidinic (AP) site. Agents responsible for the induction of AP sites include gamma radiation (1), alkylating agents (2), and several other environmental and chemical carcinogens (3). AP sites can also form spontaneously in DNA (4), and they often result from the action of specific DNA glycosylases, such as uracil-DNA-glycosylase, which act to remove unusual or damaged DNA bases from DNA (5). The repair of AP sites can result in the formation of a mutation at the AP site, and such mutations may ultimately be responsible for the induction of the carcinogenic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Ward, Adv. Radiat. Biol. 5, 181–239 (1975).

    CAS  Google Scholar 

  2. P.D. Lawley and P. Brooks. Biochem. J. 89, 127–138 (1963).

    PubMed  CAS  Google Scholar 

  3. P.C. Hanawalt, P.K. Cooper, A.K. Ganesan and C.A. Smith, Annu. Rev. Biochem 48,. 783–836 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. T. Lindahl and B. Nyberg. Biochemistry 11, 3610–3618 (1972).

    Article  PubMed  CAS  Google Scholar 

  5. T. Lindahl. Progr. Nucleic Acid Res. Mol. Biol. 22, 135–192 (1979).

    Article  CAS  Google Scholar 

  6. B. Demple and S. Linn. Nature (London) 257, 203–208 (1980).

    Article  Google Scholar 

  7. S. Linn. In Nucleases (S.M. Linn and R.J. Roberts, Eds.), pp 291–309. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982).

    Google Scholar 

  8. D.M. Yajko and B. Weiss. Proc. Natl. Acad. Sci. U.S.A. 72, 688–692 (1975).

    Article  PubMed  CAS  Google Scholar 

  9. B. Weiss. J. Biol. Chem. 251, 1896–1901 (1976).

    PubMed  CAS  Google Scholar 

  10. S. Ljungquist. J. Biol. Chem. 252, 2808–2814 (1977).

    PubMed  CAS  Google Scholar 

  11. L.H. Breimer and T. Lindahl, J. Biol. Chem. 259, 5543–5548 (1984).

    PubMed  CAS  Google Scholar 

  12. V. Bailly and W.G. Verly. FEBS Letts. 178, 223–224 (1984).

    Article  CAS  Google Scholar 

  13. D.W. Mosbaugh and S. Linn, J. Biol. Chem. 257, 575–583 (1982).

    PubMed  CAS  Google Scholar 

  14. L.K. Gordon and W.A. Haseltine. J. Biol.Chem. 256, 6608–6616 (1981).

    CAS  Google Scholar 

  15. L.K. Gordon and W.A. Haseltine. J. Biol.Chem. 255, 12047–12050 (1980).

    PubMed  CAS  Google Scholar 

  16. J.D. Regan and R.B. Setlow. Cancer Res. 34, 3318–3325 (1974).

    PubMed  CAS  Google Scholar 

  17. P. Karran, N.P. Higgins and B. Strauss. Biochemistry 16, 4483–4490 (1977).

    Article  PubMed  CAS  Google Scholar 

  18. H. Kataoka and M. Sekiguchi. J. Biochem. 92, 971–973 (1982).

    PubMed  CAS  Google Scholar 

  19. R.H. Grafstrom, N.L. Shaper and L. Grossman, J. Biol. Chem. 257, 13459–13465 (1982).

    PubMed  CAS  Google Scholar 

  20. P. Whitcome, K. Fry and W. Salser. Methods Enzymol. 29, 295–321 (1974).

    Article  PubMed  CAS  Google Scholar 

  21. E.C. Friedberg. DNA Repair, pp 505–574, W.H. Freeman, San Francisco, (1974).

    Google Scholar 

  22. W.D. Henner, S.M. Grunberg and W.A. Haseltine, J. Biol. Chem. 258, 15198–15205 (1983).

    PubMed  CAS  Google Scholar 

  23. W.D. Henner, L.O. Rodriguez, S.M. Hecht and W.A. Haseltine, J. Biol. Chem. 258, 711–713 (1983).

    PubMed  CAS  Google Scholar 

  24. M.F. Janicek, W.A. Haseltine and W.D. Henner. Nucleic Acids Res. 13, 9011–9029 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. B. Demple, A. Johnson and D. Fung, Proc. Natl. Acad. Sci. U.S.A. 83, 7731–7735 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Franklin, W.A. (1987). Drpase, A New Activity in the DNA Base Excision Repair Pathway. In: Cerutti, P.A., Nygaard, O.F., Simic, M.G. (eds) Anticarcinogenesis and Radiation Protection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6462-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6462-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6464-5

  • Online ISBN: 978-1-4615-6462-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics