Skip to main content

The Expression of Bacterial DNA Alkylation Repair Enzymes in Mer- Human Cells

  • Chapter
Anticarcinogenesis and Radiation Protection
  • 113 Accesses

Abstract

Simple monofunctional alkylating agents such as methylmethane sulphonate (MMS) and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) cause a variety of alkylated lesions in DNA, and these lesions can cause the induction of mutation and cell death in both human and bacterial cells. The repair of these DNA alkylation damages reduces cell killing and the induction of mutations and chromosome damage. In E. coli, the repair of 06-methylguanine (06MeG) and 04-methylth5anine (04MeT) specifically prevents these lesions from causing G:C to A:T and A:T to G:C transition mutations, because if left unrepaired these lesions mispair during replication (1–6). On the other hand, the repair of N3-methylpurines (N3MeA and N3MeG) and 02-methylpyrimidines (02MeC and 02MeT) in E. coli specifically prevents cell killing (7–9). The repair of DNA alkylation damage in mammalian cells is somewhat less well understood, and it is not yet clear which alkylated lesions cause mutation and which cause cell death. Like E. coli, mammalian cells can repair 06alkylG, N3alkylA, N3alkylG, 04alkylT, 02alkylT and 02alkylC lesions (10–21). However, because observations have been made with a variety of cell types the results have not always been consistent. For instance, some studies indicated that 04MeT is repaired by rat liver cells (13,20,21), while others did not (22–24). Not all cell lines are able to repair all the alkylated lesions; for instance, CHO and V79 cells (25,26) and some human tumor cell lines (27–29) are unable to repair 06MeG. The ability of these particular cell lines to repair alkylated pyrimidines has not yet been measured. Other human cells, however, have been shown to repair 06MeG (19,27–29), 04alkylT, 02alkylT, 02alkylC (11), N3alkylA, N7alkylG (11,14,15), N3alkylG (15,30) and N7alkylA (15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Loveless, Possible relevance of 0–6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature (London) 223, 206–207 (1969).

    Article  CAS  Google Scholar 

  2. P. F. Schendel and P. E. Robins, Repair of 06-methylguanine in adapted Escherichia coli. Proc. Natl. Acad. Sci. USA 75, 6017–6020 (1978).

    Article  PubMed  CAS  Google Scholar 

  3. P. Karran, T. Lindahl, and B. Griffin, Adaptive response to alkylating agents involves alteration in situ of 06-methylguanine residues in DNA. Nature (London) 280, 76–77 (1979).

    Article  CAS  Google Scholar 

  4. L. A. Dodson, R. S. Foote, S. Mitra, and W. E. Masker, Mutagenesis of bacteriophage T7 in vitro by Incorporation of 06-methylguanine during DNA synthesis. Proc. Natl. Acad. Sci. USA 79, 7440–7444 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. E. L. Loechler, C. L. Green, and J. M. Essigman, In vivo mutagenesis by 06-methylguanine built into a unique site in a virai genome. Proc. Nati. Acad. Sci. USA 81, 6271–6275 (1984).

    Google Scholar 

  6. B. D. Preston, B. Singer, and L. A. Loeb, Mutagenic potential of 04-methylthymine vivo determined by an enzymatic approach to site-specific mutagenesis. Proc. Natl. Acad. Sci. USA 8501–8505 (1986).

    Google Scholar 

  7. P. Karran, T. Lindahl, I. Ofsteng, G. B. Evensen, and E. Seeberg, Escherichia coli mutants deficient in 3-methyladenine-DNA glycosylase. J. Mol. Biol. 140, 101–127 (1980).

    Article  PubMed  CAS  Google Scholar 

  8. P. Karran, T. Hjelmgren, and T. Lindahl, Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents. Nature (London) 296, 770–773 (1982).

    Article  CAS  Google Scholar 

  9. G. Evensen and E. Seeberg, Adaptation to alkylation resistance involves the induction of a DNA glycosylase. Nature (London) 296, 773–775 (1982).

    Article  CAS  Google Scholar 

  10. J. Shackleton, W. Warren, and J. J. Roberts, The excision of N-methyl-N-nitrosourea-induced lesions from the DNA of Chinese hamster cells as measured by the loss of sites sensitive to an enzyme extract that excises 3-methyIpurInes but not 06-methylguanine. Eur. J. Biochem 97, 425–433 (1979).

    Article  PubMed  CAS  Google Scholar 

  11. W. J. Bodell, B. Singer, G. H. Thomas, and J. E. Cleaver, Evidence for removal at different rates of 0-ethyl pyrimidines and ethyl-phosphotriesters in two human fibroblast cell lines. Nucleic Acids Res. 6, 2819–2829 (1979).

    Article  PubMed  CAS  Google Scholar 

  12. T. P. Brent, Partial purification and characterization of a human 3-methyladenine-DNA glycosylase. Biochemistry 8, 911–916 (1979).

    Article  Google Scholar 

  13. B. Singer, S. Spengler, and W. J. Bodell, Tissue-dependent enzyme-mediated repair or removal of 0-ethyl pyrimidines and ethyl purines in carcinogen-treated rats. Biochemistry 18, 911–916 (1981).

    Google Scholar 

  14. R. Cathcart and D. A. Goldthwait, Enzymatic excision of 3-methyl-adenosine and 7-methylguanine by a rat liver nuclear fraction. Biochemistry 19, 273–280 (1981).

    Article  Google Scholar 

  15. B. Singer and T. P. Brent, Human lymphoblasts contain DNA glycosylase activity excising N-3 and N-7 methyl and ethyl purines but not 06-alkylguanines or 1-alkyladenines. Proc. Natl. Acad. Sci. USA 78, 856–860 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. G. P. Marglson, and A. E. Pegg, Enzymatic release of 7-methylguanine from methylated DNA by rodent liver extracts. Proc. Natl. Acad. Sci. USA 78, 861–865 (1981).

    Article  Google Scholar 

  17. J. M. Bogden, A. Eastman, and E. Bresnik, A system in mouse liver for the repair of 06-methylguanine lesions in methylated DNA. Nucleic Acids Res. 9, 3089–3092 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. J. R. Mehta, D. B. Ludlum, A. Renard, and W. G. Verly, Repair of 06-ethylguanine in DNA by a chromatin fraction from rat liver: transfer of the ethyl group to an acceptor protein. Proc. Natl. Acad. Sci. USA 78, 6766–6770 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. A. E. Pegg, M. Roberfroid, C. vonBahr, R. S. Foote, S. Mitra, H. Bresil, A. Likkacher, and R. Montesano, Removal of 06-methylguanine from DNA by human liver fractions. Proc. Natl. Acad. Sci. USA 79, 5162–5165 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. R. A. Becker and R. Montesano, Repair of 04-methyldeoxythymidine residues in DNA by mammalian liver extracts. Carcinogenesis 6, 313–317 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. L. D. Engelse, G. J. Menkveld, R. J. D. Brij, and A. D. Tates, Formation and stability of alkylated pyrimidines and purines (including amidazole ring-opened 7-alkylguanine) and alkyl-phosphotriesters in liver DNA of adult rats treated with ethylnitrosourea or dimethyl-nitrosamine. Carcinogenesis 7, 393–403 (1986).

    Article  CAS  Google Scholar 

  22. M. E. Dolan, D. Sciccitano, B. Singer, and A. E. Pegg, Comparison of repair of methylated pyrimidines in poly(dT) by extracts from rat liver and Escherichia coli. Biochem. Biophys. Res. Commun. 123, 324–330 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. M. E. Dolan and A. E. Pegg, Extent of formation of 04-methylthymidine in calf thymus DNA methylated by N-methyl-N-nitrosourea and lack of repair of this product by rat liver 06-alkylguanine-DNA-alkyltransferase. Carcinogenesis 6, 1611–1614 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. N. Huh and M. F. Rajewsky, Enzymatic elimination of 06-ethylguanine and stability of 04-ethylthymlne in the DNA of malignant neural cell lines exposed to N-ethyl-N-nitrosourea in culture. Carcinogenesis 7, 435–439 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. W. Warren, A. R. Crathom, and K. V. Shooter, The stability of methylated purines and of methylphosphotriesters in the DNA of V79 cells after treatment with N-methyl-N-nitrosourea. Biochem. Biophys. Res. Commun. 563, 82–88 (1979).

    CAS  Google Scholar 

  26. R. Goth-Goldstein, Inability of Chinese hamster ovary cells to excise 06-alkylguanine. Cancer Res. 40, 2623–2624 (1980).

    PubMed  CAS  Google Scholar 

  27. R. S. Day III, C. H. J. Ziolkowski, D. A. Scuidero, S. A. Meyer, A. S. Lubiniecki, A. J. Girardi, S. M. Galloway, and G. D. Bynum, Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains. Nature (London) 288, 724–727 (1980).

    Article  CAS  Google Scholar 

  28. R. S. Day III, C. H. J. Ziolkowski, D. A. Scuidero, S. A. Meyer, and M. R. Mattem, Human tumor cell strains defective in the repair of alkylatlon damage. Carcinogenesis 1, 21–31 (1980).

    Article  PubMed  CAS  Google Scholar 

  29. R. Sklar and B. Strauss, Removal of 06-methylguanlne from DNA of normal and xeroderma pigmentosum-derived lymphoblastoid lines. Nature (London) 289, 417–420 (1981).

    Article  CAS  Google Scholar 

  30. L. Samson and S. Linn, DNA alkylatlon repair and the induction of cell death and sister chromatid exchange in human cells. Carcinogenesis 8, 227–230 (1987).

    Article  PubMed  CAS  Google Scholar 

  31. L. Samson and J. L. Schwartz, Evidence for an adaptive DNA repair pathway in CHO and human skin fibroblast cell lines. Nature (London) 287, 861–863 (1980).

    Article  CAS  Google Scholar 

  32. I. Teo, B. Sedgewick, M. W. Kilpatrick, T. V. McCarthy, and T. Lindahl, The intracellular signal for induction of resistance to alkylating agents in E. coll. Cell 45, 315–324 (1986).

    CAS  Google Scholar 

  33. P. Robins and J. Calms, Quantitation of the adaptive response to alkylating agents. Nature (London) 280, 74–76 (1979).

    Article  CAS  Google Scholar 

  34. T. Lindahl, B. Demple, and P. Robins, Suicide inactivation of the E. coli 06-methylguanine-DNA methyltransferase. EMBO J. 1, 1359–1363 (1982).

    PubMed  CAS  Google Scholar 

  35. B. Demple, A. Jacobsson, M. Olsson, P. Robins, and T. Lindahl, Repair of alkylated DNA in Escherichia coll. J. Biol. Chem. 257, 13776–13780 (1982).

    PubMed  CAS  Google Scholar 

  36. H. Kataoka, Y. Yamamoto, and M. Sekiguchi, A new gene (alkB) of scherichia coll that controls sensitivity to methyl methane sulfonate. J. Bacteriol. 153, 1301–1307 (1983).

    PubMed  CAS  Google Scholar 

  37. Y. Nakabeppu, H. Kondo, and M. Sekiguchi, Cloning and characterization of the alkA gene of Escherichia coli that encodes 3-methyl-adenine DNA glycosylase II. J. Biol. Chem. 259, 13723–13729 (1984).

    PubMed  CAS  Google Scholar 

  38. R. M. Baker, W. C. VanVoorhis, and L. A. Spencer, HeLa cell variants that differ in sensitivity to monofunctional alkylating agents, with independence of cytotoxic and mutagenic responses. Proc. Natl. Acad. Sci. USA 76, 5249–5253 (1979).

    Article  PubMed  CAS  Google Scholar 

  39. D. B. Yarosh, A. J. Fomace, and R. S. Day, 06alkylguanlne-DNA alkyltransferase fails to repair 04methylthymine and methylphosphotriesters in DNA as efficiently as does the alkyltransferase from Escherichia coli. Carcinogenesis 6, 949–953 (1985).

    Article  PubMed  CAS  Google Scholar 

  40. P. Karran, Possible depletion of a DNA repair enzyme in human lymphoma cells by subversive repair. Proc. Natl. Acad. Sci. USA 82, 5285–5289 (1985).

    Article  PubMed  CAS  Google Scholar 

  41. P. Karran and S. A. Williams, The cytotoxic and mutagenic effects of alkylating agents on human lymphoid cells are caused by different DNA lesions. Carcinogenesis 6, 789–792 (1985).

    Article  PubMed  CAS  Google Scholar 

  42. J. Domoradzki, A. E. Pegg, M. E. Dolan, V. M. Maher, and J. J. McCormick, Depletion of 06-methylguanine-DNA-methyltransferase in human fibroblasts increases the mutagenic response to N-methyl-N’-nitro-N-nitrosoguanidine. Carcinogenesis 6, 1823–1826 (1985).

    Article  PubMed  CAS  Google Scholar 

  43. M. E. Dolan, C. D. Corsico, and A. E. Pegg, Exposure of HeLa cells to 06-alkylguanines increases sensitivity to the cytotoxic effects of alkylating agents. Biochem. Biophys. Res. Commun. 132, 178–185 (1985).

    Article  PubMed  CAS  Google Scholar 

  44. K. Ishizaki, T. Tsujimura, H. Yawata, C. Fujio, Y. Nakabeppu, M. Sekiguchi, and M. Ikenaga, Transfer of the coli 06-methyl-guanlne methyltransferase genes into repair deficient human cells and restoration of cellular resistance to N-methyl-N’-nitro-N-nitrosoguanidine. Mutat. Res. 166, 135–141 (1986).

    PubMed  CAS  Google Scholar 

  45. H. Kataoka, J. Hall, and P. Karran, Complementation of sensitivity to alkylating agents in Escherichia coli and Chinese hamster ovary cells by expression a cloned bacterial DNA repair gene. EMBO J. 5, 3195–3200 (1986).

    PubMed  CAS  Google Scholar 

  46. J. Brennand and G.P. Margison, Reduction of the toxicity and mutagenicity of alkylating agents in mammalian cells harboring the Escherichia coli alkyltransferase gene. Proc. Natl. Acad. Sci. USA 83, 6292–6296 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Samson, L., Carroll, P., Derfler, B., Rebeck, W. (1987). The Expression of Bacterial DNA Alkylation Repair Enzymes in Mer- Human Cells. In: Cerutti, P.A., Nygaard, O.F., Simic, M.G. (eds) Anticarcinogenesis and Radiation Protection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6462-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6462-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6464-5

  • Online ISBN: 978-1-4615-6462-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics