Skip to main content

A Non-Monetary Multidimensional Poverty Analysis of Tunisia Using Generalized Sen-Shorrocks-Thon Measures

  • Chapter
  • First Online:

Part of the book series: Economic Studies in Inequality, Social Exclusion and Well-Being ((EIAP,volume 9))

Abstract

A monetary approach cannot represent the complex and multidimensional phenomena of poverty, as it only takes economic aspects into account. Many attempts have been made to propose multidimensional approaches to poverty using basic needs or capabilities approaches. For our study we adopted a non-monetary approach, using multivariate correspondence analysis to construct a composite welfare indicator as an aggregation index of the various well-being attributes. In order to measure poverty within a composite indicator distribution we first developed new classes of poverty measures. Indeed, we developed classes of ethical generalized Sen-Shorrocks-Thon (SST) poverty measures. These are a generalization of the Shorrocks (Econometrica 63:1225–1230, 1995) poverty measure which itself is a modified version of the Sen (Econometrica 44:219–231, 1976) poverty measure. We analyzed the non-monetary poverty trend in Tunisia between 1994 and 2006 using the composite welfare indicator and the generalized SST poverty measures. In order to achieve this, we constructed confidence intervals and tested hypotheses based on the bootstrap method. We found that poverty decreased between 1994 and 2006, but that there were inequalities within the poorer population. We also found that poverty was essentially rural poverty and that it was concentrated in the North West, Center West, and South East of Tunisia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There currently exist different literature reviews on one-dimensional poverty measures (see for example, Foster 1984; Seidl 1988; Chakravarty 1990; Foster and Sen 1997; Zheng 1997).

  2. 2.

    There exist different literature reviews of the capabilities approach, see e.g. Robeyns (2005).

  3. 3.

    In an unpublished master's thesis Chtioui (2004) constructed a composite welfare indicator using factor analysis as developed by Stifel et al. (1999) and analyzed poverty in Tunisia. Bibi (2004) only applied multidimensional poverty measures developed in the literature on Tunisia. In relation to Tunisia both applied bidimensional stochastic dominance as developed by Duclos et al. (2006).

  4. 4.

    A measure that satisfies the scale invariance axiom is called a relative poverty measure. This axiom requires that the value of a poverty measure should remain unchanged after a relative change in both real incomes and the real poverty line. A relative change consists for example of doubling real incomes and the real poverty line or dividing them by the poverty line. A measure that satisfies the translation invariance axiom is called an absolute poverty measure. This axiom stipulates that the value of a poverty measure should remain unchanged after an absolute change of both real incomes and the real poverty line. It requires that adding a real value to all real incomes and the real poverty line should leave the poverty value unchanged.

  5. 5.

    The normative approach was proposed by Dalton (1920) for the measurement of income inequality. He recommended that an inequality index should have a normative foundation in terms of social evaluation and should incorporate society's judgments regarding inequality. Two well-known procedures were developed for the construction of a normative inequality measure. The first procedure, the Atkinson-Kolm-Sen (AKS) approach, was proposed separately by Atkinson (1970) and Kolm (1969) and popularized by Sen (1973) for developing relative indices. The second procedure, the Kolm-Pollak (KP) approach, was proposed separately by Kolm (1969) in income inequality literature and by Pollak (1971) in the consumer theory for developing absolute indices.

  6. 6.

    The three 'I's of Poverty Curve were first introduced by Jenkins and Lambert (1997).

  7. 7.

    The functional form of the members of this class was first proposed by Chakravarty (1983) as an example of an ethical poverty measure.

  8. 8.

    Jenkins and Lambert (1997), who introduced this curve in the measurement of poverty, called it a “TIP” curve (TIP or the three “I”s of poverty: Incidence, Intensity and Inequality among poorer people).

  9. 9.

    If each person receives an equally distributed equivalent income then we obtain a distribution which is socially equivalent to the initial distribution, but which is less unequal.

  10. 10.

    From this point onwards and until the end of the paper, we will use the term “income” to signify a welfare indicator, which is not necessarily money income.

  11. 11.

    The function \( \Upxi_{G}^{n} \left( {\underline{x}^{*} } \right) \) is positively linearly homogeneous if and only if W is homothetic and it is unit-translatable if and only if W is translatable.

  12. 12.

    This inequality is obtained from Eq. (6.12) where \( w_{n + 1} \ge w_{n} . \)

  13. 13.

    This expression was first proposed by Chakravarty (1983) as noted earlier.

  14. 14.

    This inequality is obtained from Eq. (6.24) with \( \pi_{1} \ge \pi_{2}. \)

  15. 15.

    Similar results can easily be derived for absolute single-series SST measures and absolute single-parameter measures.

  16. 16.

    This method is more appropriate when using and retaining only categorical variables for the analysis.

  17. 17.

    Ayadi et al. (2007) conducted MCA using Stata. We opted to use the R language of programing because it gives more appropriate weights for the attributes.

  18. 18.

    The bootstrap technique was introduced by Efron (1979, 1981, 1982) and further developed by Efron and Tibshirani (1993) among others.

  19. 19.

    The Osberg and Xu (1999) approach has been adopted by the World Bank in the Handbook of Poverty Analysis.

  20. 20.

    The Osberg and Xu (2000) approach has been adopted by Luxembourg Income Study.

  21. 21.

    The Hall (1992) method consists of computing the difference between each bootstrap point estimate and the point estimate of the initial data: \( \hat{y}_{b}^{*} = \hat{P}_{b}^{*} - \hat{P} \). Then, it establishes the \( \frac{\alpha }{2} \) and the \( (1 - \frac{\alpha }{2}) \) limits of the new distribution of the \( \hat{y}_{b}^{*} \)s. Finally, the confidence interval limits are obtained as follows

    \( \left( {1 - \alpha } \right)100\% CI = \left[ {\hat{P} - \hat{y}_{{\left( {1 - \frac{\alpha }{2}} \right)}}^{*} ,\hat{P} - \hat{y}_{{\left( {\frac{\alpha }{2}} \right)}}^{*} } \right] \); \( \alpha \): significance level.).

  22. 22.

    We developed a program using the R language of programing which contains estimates of different poverty measures, statistics to be computed (mean, standard error), estimates of the different bootstrap confidence intervals and estimates of the different hypothesis tests to be conducted.

  23. 23.

    We conducted a first MCA on the preliminary attributes selected. This technique produced non-intuitive results for the “statute of occupation” variable. They showed a negative weight for its “owner” and “joint owner” modalities and a positive weight for its “Rent the house” modality along with a low contribution to the first factor. It appears evident that these variables should not be included.

  24. 24.

    As noted before, this absolute change has no effect in terms of poverty on the values of absolute poverty measures that we apply in this section.

  25. 25.

    For area comparisons and regional comparisons we chose a poverty line equal to 75 % of the median rather than a poverty line equal to 50 % of the median. This is because for rural areas and some regions, when applying the second threshold we only obtained a small number of poorer people and this prevented us from using the bootstrap technique and computing poverty measures.

  26. 26.

    We limited our regional comparisons. For each of the three cases we chose to test regional disparities between the most deprived regions and the least deprived regions (the Capital Tunis and its surrounding area, as shown by the poverty values in Table C.8).

  27. 27.

    For more details on the economical and social changes in Tunisia since the independence see Ayadi et al. (2007).

References

  • Asselin, L. M. (2002). Multidimensional poverty: composite indicator of multidimensional poverty. Lévis: Institut de Mathématique Gauss.

    Google Scholar 

  • Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory, 2, 244–263.

    Article  Google Scholar 

  • Ayadi, M., El Lahga, A., Chtioui, N. (2007). Poverty and inequality in Tunisia: a non-monetary approach. PMMA Working Paper No. 2007-05.

    Google Scholar 

  • Bibi, S. (2004). Comparing multidimensional poverty between Egypt and Tunisia. CIRPEE Working Paper No. 04-16.

    Google Scholar 

  • Booth, C. (1902). A case of town life. London: Macmillan.

    Google Scholar 

  • Chakravarty, S. R. (1983). Ethically flexible measures of poverty. The Canadian Journal of Economics, 16, 74–85.

    Article  Google Scholar 

  • Chakravarty, S. R. (1990). Ethical social index numbers. New York: Springer-Verlag.

    Book  Google Scholar 

  • Chtioui, N. (2004). Les Mesures de la Pauvreté Multidimensionnelle. Mémoire de Mastère de Modélisation non publiée. Tunis: Institut Supérieur de Gestion.

    Google Scholar 

  • Dalton, H. (1920). The measurement of the inequality incomes. Economic Journal, 30, 348–362.

    Article  Google Scholar 

  • Donaldson, D., & Weymark, J. A. (1980). A single-parameter generalization of the Gini indices of inequality. Journal of Economic Theory, 22, 67–86.

    Article  Google Scholar 

  • Duclos, J.-Y., & Gregoire, P. (2002), Absolute and Relative Deprivation and the Measurement of Poverty, Review of Income and Wealth, series 48(4).

    Google Scholar 

  • Duclos, J.-Y., Sahn, D., & Younger, S.D. (2006). Robust multidimensional poverty comparisons. Economic Journal, 116(514), 943–968.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7, 1–26.

    Article  Google Scholar 

  • Efron, B. (1981). Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika, 68, 589–599.

    Article  Google Scholar 

  • Efron, B. (1982). The Jackknife, the Bootstrap, and other resampling plans. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1993). An introduction to the Bootstrap. New York: Chapman and Hall.

    Google Scholar 

  • Filmer, D., & Pritchett, L. (1998). Estimating wealth effects without expenditure data or tears: an application of educational enrollment in states of India, Mimeo. Washington: The World Bank.

    Google Scholar 

  • Foster, J. E. (1984). On economic poverty: a survey a aggregate measures. In R. L. Basmann, G. F. Rhodes (Eds.), Advances in Econometrics, 3.Connecticut (pp. 215–251). Bingley: JAI Press.

    Google Scholar 

  • Foster, J. E. & Sen, A. (1997). Economic inequality after a quarter century. In On Economic Inequality (expanded edition). Oxford: Clarendon Press.

    Google Scholar 

  • Hall, P. (1992). The Bootstrap and Edgeworth expansion. New York: Springer.

    Google Scholar 

  • Hammer, J. (1998). Health outcomes across wealth groups in Brazil and India. Mimeo. DECRG. Washington: The World Bank.

    Google Scholar 

  • Jenkins, S. P., & Lambert, P. J. (1997). Three is of poverty curves, with an analysis of UK poverty trends. Oxford Economic Papers, 49, 317–327

    Google Scholar 

  • Kolm, S. C. (1969). The optimal production of social justice. In J. Magolis & H. Guittor (Eds.), Public economics (pp. 145–200). London: Macmillan.

    Google Scholar 

  • Moran, T. (2005). Bootstrapping the LIS: statistical inference and patterns of inequality in the Global North. LIS Working Paper No. 378.

    Google Scholar 

  • Osberg, L. (2000). Poverty in Canada and the United States: measurement, trends, and implications. The Canadian Journal of Economics/Revue Canadienne d’Economique, 33(4), 847–877.

    Google Scholar 

  • Osberg, L. & Xu, K. (1999). Poverty intensity-How well do Canadian provinces compare? Canadian Public Policy, 25(2), 179–195.

    Google Scholar 

  • Osberg, L. & Xu, K. (2000). International comparison of poverty intensity: Index decomposition and bootstrap inference. Journal of Human Resources, 35(1), 51–81.

    Google Scholar 

  • Pollak, R. A. (1971). Additive utility functions and linear Engel curves. Review of Economic Studies, 38, 401–414.

    Article  Google Scholar 

  • Ravallion, M. (1992). On hunger and public action: a review article on the book by Jean Dreze and Amartya Sen. The World Bank Research Observer, 7, 1–16.

    Article  Google Scholar 

  • R Development Core Team (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Robeyns, I. (2005). The capability approach: a theoretical survey. Journal of Human Development, 6(1), 93–117.

    Article  Google Scholar 

  • Rowntree, B. S. (1901). Poverty: a study of town life. London: Macmillan.

    Google Scholar 

  • Seidl, C. (1988). Poverty measurement: a survey. In D. Bös, M. Rose & C. Seidl (Eds.), Welfare and efficiency in public economics (pp. 219–231). Heidelberg: Springer-Verlag.

    Google Scholar 

  • Sen, A. (1973). On Economic Inequality. Oxford: Clarendon Press.

    Google Scholar 

  • Sen, A. (1976). Poverty: an ordinal approach to measurement. Econometrica, 44, 219–231.

    Article  Google Scholar 

  • Sen, A. (1985). Commodities and capabilities (p. 89). New Delhi: Oxford India paper backs.

    Google Scholar 

  • Shorrocks, A. F. (1995). Revisiting the Sen Poverty index. Econometrica, 63, 1225–1230.

    Article  Google Scholar 

  • Stifel, D., Sahn, D. & Younger, S. (1999). Inter-temporal changes in welfare: preliminary results from nine African countries. CFNPP WP, 6–94.

    Google Scholar 

  • Streeten, P. (1981). First things first: meeting basic human needs in developing countries. New York: Oxford University Press.

    Google Scholar 

  • Thon, D. (1979). On measuring poverty. Review of Income and Wealth, 25, 429–439.

    Article  Google Scholar 

  • Thon, D. (1983). A note on a troublesome axiom for poverty indices. Economic Journal, 93, 199–200.

    Article  Google Scholar 

  • Weymark, J. A. (1981). Generalized Gini inequality indices. Mathematical Social Sciences, 1, 409–430.

    Article  Google Scholar 

  • Xu, K. (1998). The statistical inference for the Sen-Shorrocks-Thon index of poverty intensity. Journal of Income Distribution, 8(1), 143–152.

    Google Scholar 

  • Xu, K. (2000). Inference for generalized Gini indices using the iterated bootstrap method. Journal of Business and Economics Statistics, 18(2), 223–227.

    Google Scholar 

  • Xu, K., & Osberg, L. (2002). On Sen’s approach to poverty measures and recent developments, paper presented at the Sixth International Meeting of the Society for Social Choice and Welfare (2002). Printed in Chinese in China Economic Quarterly, 1, 151–170.

    Google Scholar 

  • Zhen G, B. (1993). Poverty measurement, statistical inference, and an application to the United States. Ph.D Dissertation, West Virginia University, Virginia.

    Google Scholar 

  • Zheng, B. (1997). Aggregate poverty measures. Journal of Economic Surveys, 11, 123–163.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naouel Chtioui .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proofs

1.1 Proof of Proposition 3

Proof 1:

\( \phi \left( m \right) = \sum\nolimits_{j = 1}^{m} {\pi_{j} } ,m \in I. \)

$$ \begin{aligned} \varphi \left( m \right) &= \sum\nolimits_{i = 1}^{m} {w_{i} } \\ &= w_{1} + w_{2} + {\ldots} + w_{m} \\ &= w_{m - m + 1} + w_{m - (m - 1) + 1} + {\ldots} + w_{m - 1 + 1} \\ &= \sum\nolimits_{j = 1}^{m} {w_{m - j + 1} } \\ &= \pi_{m} + \pi_{m - 1} + {\ldots} + \pi_{1} \\ &= \sum\nolimits_{j = 1}^{m} {\pi_{j} } . \\ \end{aligned} $$

Proof 2:

\( \pi_{j} = \varphi \left( i \right) - \varphi \left( {i - 1} \right) \).

For i = m, j = 1; prove that \( \pi_{1} = \varphi \left( m \right) - \varphi \left( {m - 1} \right). \).

By proof 1, we have \( \varphi \left( m \right) = \sum\nolimits_{j = 1}^{m} {\pi_{j} } = \sum\nolimits_{j = 1}^{m} {w_{m - j + 1} } = \sum\nolimits_{i = 1}^{m} {w_{i} } . \)

We have j = mi + 1, if \( i = 1 \to j = m, \)if \( i = m \to j = 1 \)and if \( i = m - 1 \to j = 2 \).

Then, by change of variable in the precedent equation, we obtain

$$ \varphi \left( {m - 1} \right) = \sum\nolimits_{j = 2}^{m} {\pi_{j} } = \sum\nolimits_{j = 2}^{m} {w_{m - j + 1} } = \sum\nolimits_{i = 1}^{m - 1} {w_{i} } . $$

Verification

$$ \begin{aligned} \varphi \left( {m - 1} \right) &= \sum\nolimits_{i = 1}^{m - 1} {w_{i} } \\ &= w_{1} + w_{2} + {\ldots} + w_{m - 1} \\ &= w_{m - m + 1} + w_{{m - \left( {m - 1} \right) + 1}} + {\ldots} + w_{m - 2 + 1} \\ &= \sum\nolimits_{j = 2}^{m} {w_{m - j + 1} } \\ &= \pi_{m} + \pi_{m - 1} + {\ldots} + \pi_{2} \\ &= \sum\nolimits_{j = 2}^{m} {\pi_{j} } . \\ \end{aligned} $$

.

Then,

$$ \begin{aligned} \pi_{1} &= \left( {\pi_{1} + \pi_{2} + {\ldots} + \pi_{m} } \right) - \left( {\pi_{2} + \pi_{3} + {\ldots} + \pi_{m} } \right) \\ &= \sum\nolimits_{j = 1}^{m} {\pi_{j} } - \sum\nolimits_{j = 2}^{m} {\pi_{j} } \\ &= \varphi \left( m \right) - \varphi \left( {m - 1} \right). \\ \end{aligned} $$

.

Gradually, we obtain \( \pi_{j} = \varphi \left( i \right) - \varphi \left( {i - 1} \right). \)

Proof 3:

\( \pi_{j} = \varphi \left( {m - j + 1} \right) - \varphi \left( {m - j} \right). \)

We have, j = mi + 1, then by change of variable, we obtain:

\(\pi_j = \phi{i}-\phi{i-1} = \phi{m-j+1}-\phi{m-j}.\)

1.2 Proof of Proposition 4

Similar to the proof of Proposition 1, we just have to replace i by nj + 1.

$$ \begin{aligned} \pi_{j} &= \phi \left( i \right) - \phi \left( {i - 1} \right) \\ &= \phi \left( {m - j + 1} \right) - \phi \left( {m - j} \right) \\ \end{aligned} $$

1.3 Proof of Proposition 5

We have \( \pi_{j} = w_{n - j + 1} \).

Then \( w_{1} \le w_{2} \le {\ldots} \le w_{n} \Leftrightarrow \pi_{1} \ge \pi_{2} \ge {\ldots} \ge \pi_{n} \).

So the function \( \varphi \) with \( \pi_{1} \ge \pi_{2} \ge {\ldots} \ge \pi_{n} \).

satisfies the equation \( \varphi (kn) = \varphi (k)\varphi (n), \)

if and only if \( \varphi (n) = n^{\nu } \).

1.4 Proof of lemma 1

I/\( \sum\nolimits_{i = 1}^{n} {\left[ {i^{\nu } - \left( {i - 1} \right)^{\nu } } \right]} = \sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} = n^{\nu }. \)

Let, \( k = i - 1 \Rightarrow i = 1 \to k = 0 \) and \( i = n \to k = n - 1 \).

Proof 1:

\( \sum\nolimits_{i = 1}^{n} {\left[ {i^{\nu } - \left( {i - 1} \right)^{\nu } } \right]} = n^{\nu } . \)

$$ \begin{aligned} \sum\nolimits_{i = 1}^{n} {\left[ {i^{\nu } - \left( {i - 1} \right)^{\nu } } \right]} &= \sum\nolimits_{i = 1}^{n} {i^{\nu } - \sum\nolimits_{i = 1}^{n} {\left( {i - 1} \right)^{\nu } } } \\ &= \sum\nolimits_{i = 1}^{n} {i^{\nu } - \sum\nolimits_{k = 0}^{n - 1} {k^{\nu } } } \\ &= \sum\nolimits_{i = 1}^{n} {i^{\nu } - \left[ {\sum\nolimits_{k = 1}^{n} {k^{\nu } + 0^{\nu } - n^{\nu } } } \right]} \\ &= \sum\nolimits_{i = 1}^{n} {i^{\nu } - } \sum\nolimits_{i = 1}^{n} {i^{\nu } + n^{\nu } } \\ &= n^{\nu } . \\ \end{aligned} $$

Proof 2:

\( \sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} = n^{\nu } . \)

We have j = ni + 1, then \( \sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} = \sum\nolimits_{i = 1}^{n} {\left[ {i^{\nu } - \left( {i - 1} \right)^{\nu } } \right]} . \)

By proof 1, we have \( \sum\nolimits_{i = 1}^{n} {\left[ {i^{\nu } - \left( {i - 1} \right)^{\nu } } \right]} = n^{\nu }. \)

Then \( \sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} = n^{\nu }.\)

II/\( \sum\nolimits_{i = 1}^{n} {\left[ {i^{\nu } - \left( {i - 1} \right)^{\nu } } \right]} \tilde{x}_{i}^{*} = \sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]\hat{x}_{j}^{*} }. \)

We have j = ni + 1, then \( i^{\nu } - \left( {i - 1} \right)^{\nu } = \left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } .\)

And we have \( \sum\nolimits_{i = 1}^{n} {\tilde{x}_{i}^{*} } = \sum\nolimits_{j = 1}^{n} {\hat{x}_{j}^{*} } . \) \( \Rightarrow \) \( \sum\nolimits_{i = 1}^{n} {\left[ {i^{\nu } - \left( {i - 1} \right)^{\nu } } \right]} \tilde{x}_{i}^{*} = \sum\nolimits_{j = 1}^{n} {\left[ {i^{\nu } - \left( {i - 1} \right)^{\nu } } \right]} \hat{x}_{j}^{*} . \) \( \Rightarrow \) \( \sum\nolimits_{i = 1}^{n} {\left[ {i^{\nu } - \left( {i - 1} \right)^{\nu } } \right]} \tilde{x}_{i}^{*} = \sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} \hat{x}_{j}^{*} . \)

Dividing by \( n^{\nu } \), we obtain \( \Upxi_{S - SST}^{n} \left( {\tilde{x}^{*} } \right) = \hat{\Upxi }_{S - SST}^{n} \left( {\hat{x}^{*} } \right). \)

1.5 Proof of Proposition 6

Proof 1:

\( S - SST^{R} \left( {\underline{x}^{*} ;z} \right) = \frac{{\left[ {z - \hat{\Upxi }_{{G^{\nu } }} \left( {\underline{{\hat{x}}}^{*} } \right)} \right]}}{z}. \)

By Eq. (6.41), we have

$$ \begin{aligned} S - SST^{R} \left( {\underline{x}^{*} ;z} \right) &= S - S\hat{S}T^{R} \left( {\underline{x}^{*} ;z} \right) \\ &= 1 - \frac{{\sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} \hat{x}_{j}^{*} }}{{n^{\nu } z}} \\ &= SST^{\nu } \left( {\underline{x}^{*} ;z} \right) \\ &= 1 - \frac{{\hat{\Upxi }_{S - SST}^{n} \left( {\underline{{\hat{x}}}^{*} } \right)}}{z} \\ &= \frac{{z - \hat{\Upxi }_{S - SST}^{n} \left( {\underline{{\hat{x}}}^{*} } \right)}}{z} \\ &= \frac{{z - \hat{\Upxi }_{{G^{\nu } }} \left( {\underline{{\hat{x}}}^{*} } \right)}}{z}. \\ \end{aligned} $$

.

Proof 2:

\( S - SST^{R} \left( {\underline{x}^{*} ;z} \right) = \hat{\Upxi }_{{G^{\nu } }} \left( {\underline{y}^{*} } \right). \)

We have \( \sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} = n^{\nu } . \).

Hence,

$$ \begin{aligned} S - SST^{R} \left( {\underline{x}^{*} ;z} \right) & = S - S\hat{S}T^{R} \left( {\underline{x}^{*} ;z} \right) \\ &= 1 - \frac{{\sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} \hat{x}_{j}^{*} }}{{n^{\nu } z}} \\ &= \frac{{n^{\nu } z - \sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} \hat{x}_{j}^{*} }}{{n^{\nu } z}} \\ &= \frac{{\sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} }}{{n^{\nu } }}\left( {\frac{{z - \hat{x}_{j}^{*} }}{z}} \right) \\ &= \frac{{\sum\nolimits_{j = 1}^{n} {\left[ {\left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } } \right]} }}{{n^{\nu } }}y_{j}^{*} \\ &= \hat{\Upxi }_{{G^{\nu } }} \left( {\underline{y}^{*} } \right). \\ \end{aligned} $$

where \( y_{j}^{*} = \frac{{z - \hat{x}_{j}^{*} }}{z} \) so \( \hat{x}_{j}^{*} \uparrow \Rightarrow y_{j}^{*} \downarrow \).

1.6 Proof of Lemma 2

Similar to the proof of Lemma 1, we just have to replace \( i^{\nu } - (i - 1)^{\nu } \) by \( w_{i} \) and \( \left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } \) by \( \pi_{j} \).

1.7 Proof of Proposition 7

Similar to the proof of Proposition 6, we just have to replace \( i^{\nu } - \left( {i - 1} \right)^{\nu } \)by \( w_{i} \) and \( \left( {n - j + 1} \right)^{\nu } - \left( {n - j} \right)^{\nu } \) by \( \pi_{j} \).

Appendix B: Multivariate Correspondence Analysis

Table B.1B.4

Appendix C: Analysis of Poverty in Tunisia

Table C.1C.8

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chtioui, N., Ayadi, M. (2013). A Non-Monetary Multidimensional Poverty Analysis of Tunisia Using Generalized Sen-Shorrocks-Thon Measures. In: Berenger, V., Bresson, F. (eds) Poverty and Social Exclusion around the Mediterranean Sea. Economic Studies in Inequality, Social Exclusion and Well-Being, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5263-8_6

Download citation

Publish with us

Policies and ethics