Skip to main content

The Helicase–Primase Complex as a Target for Effective Herpesvirus Antivirals

  • Chapter
  • First Online:
DNA Helicases and DNA Motor Proteins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 767))

Abstract

Herpes simplex virus and varicella-zoster virus have been treated for more that half a century using nucleoside analogues. However, there is still an unmet clinical need for improved herpes antivirals. The successful compounds, acyclovir; penciclovir and their orally bioavailable prodrugs valaciclovir and famciclovir, ultimately block virus replication by inhibiting virus-specific DNA-polymerase. The helicase–primase (HP) complex offers a distinctly different target for specific inhibition of virus DNA synthesis. This review describes the synthetic programmes that have already led to two HP-inhibitors (HPI) that have commenced clinical trials in man. One of these (known as AIC 316) continues in clinical development to date. The specificity of HPI is reflected by the ability to select drug-resistant mutants. The role of HP-antiviral resistance will be considered and how the study of cross-­resistance among mutants already shows subtle differences between compounds in this respect. The impact of resistance on the drug development in the clinic will also be considered. Finally, herpesvirus latency remains as the most important barrier to a therapeutic cure. Whether or not helicase primase inhibitors alone or in combination with nucleoside analogues can impact on this elusive goal remains to be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Field HJ, De Clercq E. Antiviral drugs: a short history of their discovery and development. Microbiol Today. 2004;31:58–61.

    Google Scholar 

  2. De Clercq E, Field HJ. Antiviral prodrugs - the development of successful prodrug strategies for antiviral chemotherapy. Br J Pharmacol. 2006;147:1–11.

    Article  Google Scholar 

  3. Harmenberg JG, Awan AR, Alenius S, Stahle L, Erlandsson AC, Lekare G, et al. ME-609: a treatment for recurrent herpes simplex virus infections. Antivir Chem Chemother. 2003;14:205–15.

    Article  CAS  Google Scholar 

  4. Crute JJ, Tsurumi T, Zhu L, Weller SK, Olivo PD, Challberg MD, et al. Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proc Natl Acad Sci USA. 1989;86:2186–9.

    Article  CAS  Google Scholar 

  5. Spector FC, Liang L, Giordano H, Sivaraja M, Peterson MG. Inhibition of herpes simplex virus replication by a 2-amino thiazole via interactions with the helicase component of the UL5-UL8-UL52 complex. J Virol. 1998;72:6979–87.

    Article  CAS  Google Scholar 

  6. Zhu L, Weller SK. The six conserved helicase motifs of the UL5 gene product, a component of the herpes simplex virus type 1 helicase-primase, are essential for its function. J Virol. 1992;66:469–79.

    Article  CAS  Google Scholar 

  7. Crute JJ, Grygon CA, Hargrave KD, Simoneau B, Faucher A-M, Bolger G, et al. Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nat Med. 2002;8:386–91.

    Article  CAS  Google Scholar 

  8. Duan J, Liuzzi M, Paris W, Liard F, Browne A, Dansereau N, et al. Oral bioavailability and in vivo efficacy of the helicase-primase inhibitor BILS 45 BS against acyclovir-resistant herpes simplex virus type 1. Antimicrob Agents Chemother. 2003;47:1798–804.

    Article  CAS  Google Scholar 

  9. Kleymann G, Fischer R, Betz UA, Hendrix M, Bender W, Schneider U, et al. New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nat Med. 2002;8:392–8.

    Article  CAS  Google Scholar 

  10. Kleymann G. New antiviral drugs against herpesviruses. Herpes. 2003;10:46–52.

    PubMed  Google Scholar 

  11. Betz UAK, Fischer R, Kleymann G, Hendrix M, Rübsamen-Waigmann H. Potent in vivo antiviral activity of the herpes simplex virus primase-helicase inhibitor BAY57-1293. Antimicrob Agents Chemother. 2002;4:1766–72.

    Article  Google Scholar 

  12. Anderson JR, Field HJ. The distribution of herpes simplex type 1 antigen in mouse central nervous system after different routes of inoculation. J Neurol Sci. 1983;60:181–95.

    Article  CAS  Google Scholar 

  13. Baumeister J, Fischer R, Eckenberg P, Henninger K, Ruebsamen-Waigmann H, Kleymann G. Superior efficacy of helicase-primase inhibitor BAY 57-1293 for herpes infection and latency in the guinea pig model of human genital herpes disease. Antivir Chem Chemother. 2007;18:35–48.

    Article  CAS  Google Scholar 

  14. Harmenberg J, Abele G, Malm M. Deoxythymidine pools in animal and human skin with reference to antiviral drugs. Arch Dermatol Res. 1985;277:402–3.

    Article  CAS  Google Scholar 

  15. Harmenberg J, Abele G, Wahren B. Nucleoside pools of acyclovir-treated herpes simplex type 1 infected cells. Antiviral Res. 1985;5:75–81.

    Article  CAS  Google Scholar 

  16. Biswas S, Jennens L, Field HJ. The helicase primase inhibitor, BAY57-1293 shows potent therapeutic antiviral activity superior to famciclovir in BALB/c mice infected with herpes simplex virus type 1. Antiviral Res. 2007;75:30–5.

    Article  CAS  Google Scholar 

  17. Birkmann A, Hewlett G, Rubsamen-Schaeff H, Zimmermann H. Helicase primase inhibitors as the potential next gerneration of highly active drugs against herpes simplex viruses. Future Virol. 2011;6:1199–209.

    Article  CAS  Google Scholar 

  18. Birkman A, Kropeit D, Biswas S, Paulsen D, Sukla S, Field HJ. PK/PD evaluation of AIC316, a novel herpes simplex virus inhibitor currently in clinical development. Presented at Antivirals congress, Amsterdam, The Netherlands; 7–9 Nov 2010.

    Google Scholar 

  19. Wald A, Stoellben S, Tyring S, Warren T, Johnston C, Huang M-L, et al. Impact of AIC316, a novel antiviral helicase-primase inhibitor, on genital HSV shedding: randomized, double-blind, placebo-controlled trial. Presented at 19th Biennial conference of the International Society of Sexually Transmitted Diseases Research (ISSTDR) Quebec City, QC, Canada; 10–13 July 2011.

    Google Scholar 

  20. Chono K, Katsumata K, Kontani T, Kobayashi M, Sudo K, Yokota T, et al. ASP2151, a novel helicase–primase inhibitor, possesses antiviral activity against varicella-zoster virus and herpes simplex virus types 1 and 2. J Antimicrob Chemother. 2010;65:1733–41.

    Article  CAS  Google Scholar 

  21. Chono K, Katsumata K, Kontani T, Kobayashi M, Sudo K, Yokata T, et al. ASP2151, a novel helicase-primase inhibitor, possesses antiviral activity against varicella-zoster virus and herpes simplex virus types 1 and 2. J Antimicrob Chemother. 2010;65:1733–41.

    Article  CAS  Google Scholar 

  22. Katsumata K, Chono K, Sudo K, Shimizu Y, Kontani T, Suzuki H. Effect of ASP2151, a herpesvirus helicase-primase inhibitor, in a guinea pig model of genital herpes. Molecules. 2011;16:7210–23.

    Article  CAS  Google Scholar 

  23. ClinicalTrials.gov. Dose-finding study of ASP2151 in subjects with herpes zoster. http://clinicaltrials.gov/ct2/show/NCT00487682; http://clinicaltrials.gov/ct2/show/NCT00487682.

  24. ClinicalTrials.gov. A study with ASP2151 in subjects with recurrent episodes of genital herpes. http://clinicaltrials.gov/ct2/show/NCT00486200; http://clinicaltrials.gov/ct2/show/NCT00486200 .

  25. Field HJ. Herpes simplex virus antiviral drug resistance-current trends and future prospects. J Clin Virol. 2001;21:261–9.

    Article  CAS  Google Scholar 

  26. Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev. 2003;16:114–28.

    Article  CAS  Google Scholar 

  27. Parris DS, Harrington JE. Herpes simplex virus variants resistant to high concentrations of acyclovir exist in clinical isolates. Antimicrob Agents Chemother. 1982;22:71–7.

    Article  CAS  Google Scholar 

  28. Gilbert C, Bestman-Smith J, Boivin G. Resistance of herpesviruses to antiviral drugs: clinical impacts and molecular mechanisms. Antiviral Res. 2002;5:88–114.

    CAS  Google Scholar 

  29. Christophers J, Clayton J, Craske J, Ward R, Collins P, Trowbridge M, et al. Survey of resistance of herpes simplex virus to acyclovir in northwest England. Antimicrob Agents Chemother. 1998;42:868–72.

    Article  CAS  Google Scholar 

  30. Christophers J, Sutton RN. Characterization of acyclovir-resistant and sensitive clinical isolates of herpes simplex virus isolates from an immunocompromised patient. J Antimicrob Chemother. 1987;20:389–98.

    Article  CAS  Google Scholar 

  31. Liuzzi M, Kibler P, Bousquet C, Harji F, Bolger G, Garneau M, et al. Isolation and characterization of herpes simplex virus type 1 resistant to aminothiazolylphenyl-based inhibitors of the viral helicase-primase. Antiviral Res. 2004;64:161–70.

    Article  CAS  Google Scholar 

  32. Field HJ, Biswas S. Antiviral drug resistance and helicase-primase inhibitors of herpes simplex virus. Drug Resist Updat. 2011;14:45–51.

    Article  CAS  Google Scholar 

  33. Biswas S, Field HJ. Helicase-primase inhibitors: a new approach to combat herpes simplex virus and varicella-zoster virus. In: De Clercq E, editor. Antiviral drug strategies. Weinheim: Wiley; 2011. p. 129–45.

    Chapter  Google Scholar 

  34. Biswas S, Swift M, Field HJ. High frequency of spontaneous helicase-primase inhibitor (BAY 57-1293) drug-resistant variants in certain laboratory isolates of HSV-1. Antivir Chem Chemother. 2007;18:13–23.

    Article  CAS  Google Scholar 

  35. Biswas S, Smith C, Field HJ. Detection of HSV-1 variants highly resistant to the helicase-primase inhibitor BAY 57-1293 at high frequency in two of ten recent clinical isolates of HSV-1. J Antimicrob Chemother. 2007;60:274–9.

    Article  CAS  Google Scholar 

  36. Sukla S, Biswas S, Birkmann A, Lischka P, Zimmermann H, Field H. Mismatch primer-based PCR reveals that helicase-primase inhibitor resistance mutations pre-exist in herpes simplex virus type 1 clinical isolates and are not induced during incubation with the inhibitor. J Antimicrob Chemother. 2010;65:1347–52.

    Article  CAS  Google Scholar 

  37. Sukla S, Biswas S, Birkmann A, Lischka P, Ruebsamen-Schaeff H, Zimmermann H, et al. Effects of therapy using a helicase-primase inhibitor (HPI) in mice infected with deliberate mixtures of wild-type HSV-1 and an HPI-resistant UL5 mutant. Antiviral Res. 2010;87:67–73.

    Article  CAS  Google Scholar 

  38. Biswas S, Jennens L, Field HJ. Single amino acid substitutions in the HSV-1 helicase protein that confer resistance to the helicase-primase inhibitor BAY 57-1293 are associated with increased or decreased virus growth characteristics in tissue culture. Arch Virol. 2007;152:1489–500.

    Article  CAS  Google Scholar 

  39. Biswas S, Tiley LS, Zimmermann H, Birkmann A, Field HJ. Mutations close to functional motif IV in HSV-1 UL5 helicase that confer resistance to HSV helicase-primase inhibitors, variously affect virus growth rate and pathogenicity. Antiviral Res. 2008;80:81–5.

    Article  CAS  Google Scholar 

  40. Biswas S, Kleymann G, Swift M, Tiley LS, Lyall J, Aguirre-Hernández J, et al. A single drug-resistance mutation in HSV-1 UL52 primase points to a difference between two helicase-primase inhibitors in their mode of interaction with the antiviral target. J Antimicrob Chemother. 2008;61:1044–7.

    Article  CAS  Google Scholar 

  41. Field HJ, Mickelburgh I, Huang M-L, Tiley L, Wald A, Ruebsamen-Schaeff H, et al. Sensitivity of Clinical isolates to helicase primase inhibitors and no detection of resistance mutations above background frequency. In: Twenty fifth international conference on antiviral research, Sapporo, Japan; 2012, Abstract 46.

    Google Scholar 

  42. Biswas S, Miguel RN, Sukla S, Field HJ. A mutation in helicase motif IV of herpes simplex virus type 1 UL5 that results in reduced growth in vitro and lower virulence in a murine infection model is related to the predicted helicase structure. J Gen Virol. 2009;90:1937–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh J. Field .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Field, H.J., Mickleburgh, I. (2013). The Helicase–Primase Complex as a Target for Effective Herpesvirus Antivirals. In: Spies, M. (eds) DNA Helicases and DNA Motor Proteins. Advances in Experimental Medicine and Biology, vol 767. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5037-5_7

Download citation

Publish with us

Policies and ethics