Skip to main content

Anomalous Diffusion in Polymers: Long-Time Behaviour

  • Chapter
  • First Online:
Infinite Dimensional Dynamical Systems

Part of the book series: Fields Institute Communications ((FIC,volume 64))

  • 1712 Accesses

Abstract

We study the Dirichlet boundary value problem for viscoelastic diffusion in polymers. We show that its weak solutions generate a dissipative semiflow. We construct the minimal trajectory attractor and the global attractor for this problem.

Mathematics Subject Classification 2010(2010): Primary 35B41, 35D99; Secondary 76R50, 82D60

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Formula (4) describes the following peculiarities of the processes under consideration. The polymer network in the glassy state (low concentration area) is severely entangled, so β is approximately equal to some small βG. In the high concentration areas the system is in the rubbery state: the network disentangles, so the relaxation time is small, and its inverse is close to βR > βG. The glass-rubber phase transition occurs near a certain concentration uRG. However, we assume that β also depends on stress, cf. [2, 11, 26].

  2. 2.

    Trajectory attractors for problems with uniqueness were investigated in [6] only as an intermediate step on the way to usual global attractors of semigroups.

  3. 3.

    The case μ = 0 (“the Maxwell model” [9, 30]) is admissible as well.

  4. 4.

    e.g. in form (4).

References

  1. H. Amann, Global existence for a class of highly degenerate parabolic systems. Japan J. Indust. Appl. Math. 8, 143–151 (1991)

    Article  MathSciNet  Google Scholar 

  2. H. Amann, Highly degenerate quasilinear parabolic systems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18, 135–166 (1991)

    MathSciNet  MATH  Google Scholar 

  3. A.V. Babin, M.I. Vishik, Attractors of Evolution Equations (Nauka, Moscow, 1989) (Eng. transl.: North-Holland, 1992)

    Google Scholar 

  4. J.M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. J. Nonlinear Sci. 7, 475–502 (1997)

    Article  MathSciNet  Google Scholar 

  5. V.V. Chepyzhov, M.I. Vishik, Evolution equations and their trajectory attractors. J. Math Pures Appl. 76, 913–964 (1997)

    Article  MathSciNet  Google Scholar 

  6. V.V. Chepyzhov, M.I. Vishik, Attractors for Equations of Mathematical Physics, vol. 49 (AMS Colloquium Publications, Providence, 2002)

    MATH  Google Scholar 

  7. D.S. Cohen, A.B. White Jr., Sharp fronts due to diffusion and viscoelastic relaxation in polymers. SIAM J. Appl. Math. 51, 472–483 (1991)

    Article  MathSciNet  Google Scholar 

  8. D.S. Cohen, A.B. White Jr., T.P. Witelski, Shock formation in a multidimensional viscoelastic diffusive system. SIAM J. Appl. Math. 55, 348–368 (1995)

    Article  MathSciNet  Google Scholar 

  9. C. J. Durning, Differential sorption in viscoelastic fluids. J. Polymer Sci., Polymer Phys. Ed. 23, 1831–1855 (1985)

    Google Scholar 

  10. D.A. Edwards, A mathematical model for trapping skinning in polymers. Stud. Appl. Math. 99, 49–80 (1997)

    Article  MathSciNet  Google Scholar 

  11. D.A. Edwards, A spatially nonlocal model for polymer desorption. J. Eng. Math. 53, 221–238 (2005)

    Article  MathSciNet  Google Scholar 

  12. D.A. Edwards, R.A. Cairncross, Desorption overshoot in polymer-penetrant systems: Asymptotic and computational results. SIAM J. Appl. Math. 63, 98–115 (2002)

    Article  MathSciNet  Google Scholar 

  13. D.A. Edwards, D.S. Cohen, A mathematical model for a dissolving polymer. AIChE J. 18, 2345–2355 (1995)

    Article  Google Scholar 

  14. B. Hu, Diffusion of penetrant in a polymer: a free boundary problem. SIAM J. Math. Anal. 22, 934–956 (1991)

    Article  MathSciNet  Google Scholar 

  15. B. Hu, J. Zhang, Global existence for a class of non-Fickian polymer-penetrant systems. J. Partial Diff. Eqs. 9, 193–208 (1996)

    MathSciNet  MATH  Google Scholar 

  16. M. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations (Gostehizdat, Russian, 1956) (Engl. transl., Macmillan, 1964)

    Google Scholar 

  17. S.-W. Lee, Relaxation Characteristics of Poly(vinylidene fluoride) and Ethylene-chlorotrifluoroethylene in the Transient Uptake of Aromatic Solvents. Korean J. Chem. Eng. 21, 1119–1125 (2004)

    Article  MathSciNet  Google Scholar 

  18. I. Moise, R. Rosa, X.M. Wang, Attractors for noncompact semigroups via energy equations. Nonlinearity 11, 1369–1393 (1998)

    Article  MathSciNet  Google Scholar 

  19. B. Riviere, S. Shaw, Discontinuous Galerkin finite element approximation of nonlinear non-Fickian diffusion in viscoelastic polymers. SIAM. J. Numer. Anal. 44, 2650–2670 (2006)

    Article  MathSciNet  Google Scholar 

  20. G. Sell, Global attractors for the three-dimensional Navier-Stokes equations. J. Dyn. Diff. Eq. 8, 1–33 (1996)

    Article  MathSciNet  Google Scholar 

  21. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  22. I.V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems. Translations of Mathematical Monographs, vol. 139. (Amer. Math. Soc., Providence, 1994)

    Google Scholar 

  23. N. Thomas, A.H. Windle, Transport of methanol in poly-(methyl-methocry-late). Polymer 19, 255–265 (1978)

    Article  Google Scholar 

  24. N. Thomas, A.H. Windle, A theory of Case II diffusion. Polymer 23, 529–542 (1982)

    Article  Google Scholar 

  25. D.A. Vorotnikov, Dissipative solutions for equations of viscoelastic diffusion in polymers. J. Math. Anal. Appl. 339, 876–888 (2008)

    Article  MathSciNet  Google Scholar 

  26. D.A. Vorotnikov, Weak solvability for equations of viscoelastic diffusion in polymers with variable coefficients. J. Differ. Equat. 246, 1038–1056 (2009)

    Article  MathSciNet  Google Scholar 

  27. D.A. Vorotnikov, On repeated concentration and periodic regimes with anomalous diffusion in polymers. (Russian) Mat. Sb. 201(1), 59–80 (2010) [translation in Sb. Math. 201(1–2), 57–77 (2010)]

    Article  MathSciNet  Google Scholar 

  28. D.A. Vorotnikov, The second boundary value problem for equations of viscoelastic diffusion in polymers, in Advances in Mathematics Research, ed. by R. Albert Baswell, vol. 10 (Nov. Sc. Publ., New York, 2010) pp. 249–271

    Google Scholar 

  29. D.A. Vorotnikov, V.G. Zvyagin, Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium. J. Math. Fluid Mech. 10, 19–44 (2008)

    Article  MathSciNet  Google Scholar 

  30. T.P. Witelski, Traveling wave solutions for case II diffusion in polymers. J. Polymer Sci. Part B: Polymer Phys. 34, 141–150 (1996)

    Article  Google Scholar 

  31. V.G. Zvyagin, D.A. Vorotnikov, Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, de Gruyter Series in Nonlinear Analysis and Applications, vol. 12 (Walter de Gruyter, Berlin, 2008)

    MATH  Google Scholar 

Download references

Acknowledgements

The work was partially supported by RFBR.

Received 9/8/2009; Accepted 6/3/2010

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Vorotnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vorotnikov, D.A. (2013). Anomalous Diffusion in Polymers: Long-Time Behaviour. In: Mallet-Paret, J., Wu, J., Yi, Y., Zhu, H. (eds) Infinite Dimensional Dynamical Systems. Fields Institute Communications, vol 64. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4523-4_19

Download citation

Publish with us

Policies and ethics