Skip to main content

Noninvasive Detection of Complement Activation Through Radiologic Imaging

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 735))

Abstract

A wealth of experimental and clinical data demonstrates that the complement system is involved in the pathogenesis of numerous inflammatory diseases. Complement activation contributes to injury in disorders that involve nearly every tissue in the body. Concerted effort has been expended in recent years to develop therapeutic complement inhibitors. Eculizumab, an inhibitory antibody to C5, was recently approved for the treatment of several diseases, and many other complement inhibitors are in clinical development. As these drugs are developed, the need for improved methods of detecting and monitoring complement activation within particular tissues will be increasingly important. We have developed a magnetic resonance imaging (MRI)-based method for noninvasive detection of complement activation. This method utilizes iron-oxide nanoparticles that are targeted to sites of complement activation with a recombinant protein that contains the C3d-binding region of complement receptor (CR) 2. Iron-oxide nanoparticles darken (negatively enhance) images obtained by T2-weighted MRI. We have demonstrated that the CR2-targeted nanoparticles bind within the kidneys of mice with lupus-like kidney disease (MRL/lpr mice), causing a decrease in the T2 signal within the kidneys. This method discriminates diseased kidneys from healthy controls, and the magnitude of the negative enhancement in the cortex of MRL/lpr mice correlates with their disease severity. This method may be useful for idenepsying those patients most likely to benefit from complement inhibitors and for monitoring the response of these patients to treatment. These results may open up new avenues to develop tools for the monitoring of disease progression in complement-dependent diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, Hancox LS, Hu J, Ebright JN, Malek G et al (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29:95–112

    Article  CAS  Google Scholar 

  • Atkinson C, Song H, Lu B, Qiao F, Burns TA, Holers VM, Tsokos GC, Tomlinson S (2005) Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J Clin Invest 115:2444–2453

    Article  CAS  Google Scholar 

  • Atkinson C, Qiao F, Song H, Gilkeson GS, Tomlinson S (2008) Low-dose targeted complement inhibition protects against renal disease and other manifestations of autoimmune disease in MRL/lpr mice. J Immunol 180: 1231–1238

    Article  CAS  Google Scholar 

  • Badar A, DeFreitas S, McDonnell JM, Yahya N, Thakor D, Razavi R, Smith R, Sacks S, Mullen GE (2011) Recombinant complement receptor 2 radiolabeled with [99mTc(CO)3]+: a potential new radiopharmaceutical for imaging activated complement. PLoS One 6:e18275

    Article  CAS  Google Scholar 

  • Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH et al (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 11):2321–2337

    Article  Google Scholar 

  • Barrera P, Oyen WJ, Boerman OC, van Riel PL (2003) Scintigraphic detection of tumour necrosis factor in patients with rheumatoid arthritis. Ann Rheum Dis 62:825–828

    Article  CAS  Google Scholar 

  • Cameron JS, Turner DR, Heaton J, Williams DG, Ogg CS, Chantler C, Haycock GB, Hicks J (1983) Idiopathic mesangiocapillary glomerulonephritis. Comparison of types I and II in children and adults and long-term prognosis. Am J Med 74:175–192

    Article  CAS  Google Scholar 

  • de Cordoba SR, de Jorge EG (2008) Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin Exp Immunol 151:1–13

    Article  Google Scholar 

  • di Belgiojoso GB, Tarantino A, Durante A, Guerra L (1975) Complement deposition in glomerular diseases. Proc Eur Dial Transplant Assoc 11:515–521

    PubMed  Google Scholar 

  • Dodds AW, Ren XD, Willis AC, Law SK (1996) The reaction mechanism of the internal thioester in the human complement component C4. Nature 379:177–179

    Article  CAS  Google Scholar 

  • Elward K, Griffiths M, Mizuno M, Harris CL, Neal JW, Morgan BP, Gasque P (2005) CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J Biol Chem 280:36342–36354

    Article  CAS  Google Scholar 

  • Fishelson Z, Horstmann RD, Muller-Eberhard HJ (1987) Regulation of the alternative pathway of complement by pH. J Immunol 138:3392–3395

    CAS  PubMed  Google Scholar 

  • Gilbert HE, Aslam M, Guthridge JM, Holers VM, Perkins SJ (2006) Extended flexible linker structures in the complement chimaeric conjugate CR2-Ig by scattering, analytical ultracentrifugation and constrained modelling: implications for function and therapy. J Mol Biol 356:397–412

    Article  CAS  Google Scholar 

  • Gratz S, Rennen HJ, Boerman OC, Oyen WJ, Corstens FH (2001) Rapid imaging of experimental colitis with (99m)Tc-interleukin-8 in rabbits. J Nucl Med 42:917–923

    CAS  PubMed  Google Scholar 

  • Griselli M, Herbert J, Hutchinson WL, Taylor KM, Sohail M, Krausz T, Pepys MB (1999) C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med 190:1733–1740

    Article  CAS  Google Scholar 

  • He C, Imai M, Song H, Quigg RJ, Tomlinson S (2005) Complement inhibitors targeted to the proximal tubule prevent injury in experimental nephrotic syndrome and demonstrate a key role for c5b-9. J Immunol 174:5750–5757

    Article  CAS  Google Scholar 

  • Hebert LA, Cosio FG, Neff JC (1991) Diagnostic significance of hypocomplementemia. Kidney Int 39:811–821

    Article  CAS  Google Scholar 

  • Hebert LA, Cosio FG, Birmingham DJ (2001) Complement and complement regulatory proteins in renal disease. In: Neilson EG, Couser WG (eds) Immunologic renal diseases. Lippincott Williams & Wilkins, Philadelphia, pp 367–393

    Google Scholar 

  • Huang Y, Qiao F, Atkinson C, Holers VM, Tomlinson S (2008) A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury. J Immunol 181:8068–8076

    Article  CAS  Google Scholar 

  • Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293:855–862

    Article  CAS  Google Scholar 

  • Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P (2006) Structure of C3b reveals conformational changes that underlie complement activity. Nature 444:213–216

    Article  CAS  Google Scholar 

  • Josephson L, Lewis J, Jacobs P, Hahn PF, Stark DD (1988) The effects of iron oxides on proton relaxivity. Magn Reson Imaging 6:647–653

    Article  CAS  Google Scholar 

  • Lucignani G (2009) Nanoparticles for concurrent multimodality imaging and therapy: the dawn of new theragnostic synergies. Eur J Nucl Med Mol Imaging 36:869–874

    Article  Google Scholar 

  • Manzi S, Rairie JE, Carpenter AB, Kelly RH, Jagarlapudi SP, Sereika SM, Medsger TA Jr, Ramsey-Goldman R (1996) Sensitivity and specificity of plasma and urine complement split products as indicators of lupus disease activity. Arthritis Rheum 39:1178–1188

    Article  CAS  Google Scholar 

  • McAteer MA, Sibson NR, von Zur Muhlen C, Schneider JE, Lowe AS, Warrick N, Channon KM, Anthony DC, Choudhury RP (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13:1253–1258

    Article  CAS  Google Scholar 

  • Moll S, Miot S, Sadallah S, Gudat F, Mihatsch MJ, Schifferli JA (2001) No complement receptor 1 stumps on podocytes in human glomerulopathies. Kidney Int 59:160–168

    Article  CAS  Google Scholar 

  • Morita Y, Ikeguchi H, Nakamura J, Hotta N, Yuzawa Y, Matsuo S (2000) Complement activation products in the urine from proteinuric patients. J Am Soc Nephrol 11:700–707

    CAS  PubMed  Google Scholar 

  • Pickering MC, Cook HT, Warren J, Bygrave AE, Moss J, Walport MJ, Botto M (2002) Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet 31:424–428

    Article  CAS  Google Scholar 

  • Pons F, Sanmarti R, Herranz R, Collado A, Piera C, Vidal-Sicart S, Munoz-Gomez J, Setoain J (1996) Scintigraphic evaluation of the severity of inflammation of the joints with 99TCm-HIG in rheumatoid arthritis. Nucl Med Commun 17:523–528

    Article  CAS  Google Scholar 

  • Porcel JM, Ordi J, Castro-Salomo A, Vilardell M, Rodrigo MJ, Gene T, Warburton F, Kraus M, Vergani D (1995) The value of complement activation products in the assessment of systemic lupus erythematosus flares. Clin Immunol Immunopathol 74:283–288

    Article  CAS  Google Scholar 

  • Ramos-Casals M, Campoamor MT, Chamorro A, Salvador G, Segura S, Botero JC, Yague J, Cervera R, Ingelmo M, Font J (2004) Hypocomplementemia in systemic lupus erythematosus and primary antiphospholipid syndrome: prevalence and clinical significance in 667 patients. Lupus 13:777–783

    Article  CAS  Google Scholar 

  • Ricker DM, Hebert LA, Rohde R, Sedmak DD, Lewis EJ, Clough JD (1991) Serum C3 levels are diagnostically more sensitive and specific for systemic lupus erythematosus activity than are serum C4 levels. The Lupus Nephritis Collaborative Study Group. Am J Kidney Dis 18:678–685

    Article  CAS  Google Scholar 

  • Ricklin D, Lambris JD (2007) Complement-targeted therapeutics. Nat Biotechnol 25:1265–1275

    Article  CAS  Google Scholar 

  • Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nature Immunol 11:785–797

    Article  CAS  Google Scholar 

  • Rohrer B, Long Q, Coughlin B, Wilson RB, Huang Y, Qiao F, Tang PH, Kunchithapautham K, Gilkeson GS, Tomlinson S (2009) A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration. Invest Ophthalmol Vis Sci 50:3056–3064

    Article  Google Scholar 

  • Rohrer B, Long Q, Coughlin B, Renner B, Huang Y, Kunchithapautham K, Ferreira VP, Pangburn MK, Gilkeson GS, Thurman JM et al (2010) A targeted inhibitor of the complement alternative pathway reduces RPE injury and angiogenesis in models of age-related macular degeneration. Adv Exp Med Biol 703:137–149

    Article  CAS  Google Scholar 

  • Roivainen A, Parkkola R, Yli-Kerttula T, Lehikoinen P, Viljanen T, Mottonen T, Nuutila P, Minn H (2003) Use of positron emission tomography with methyl-11C-choline and 2-18F-fluoro-2-deoxy-D-glucose in comparison with magnetic resonance imaging for the assessment of inflammatory proliferation of synovium. Arthritis Rheum 48:3077–3084

    Article  CAS  Google Scholar 

  • Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L (2007) Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25:1256–1264

    Article  CAS  Google Scholar 

  • Sargsyan SA, Serkova NJ, Renner B, Hasebroock KM, Larsen B, Stoldt C, McFann K, Pickering MC, Thurman JM (2011) Detection of glomerular complement C3 fragments by magnetic resonance imaging in murine lupus nephritis. Kidney Int, 81:152–159

    Article  Google Scholar 

  • Sargsyan SA, Serkova NJ, Renner B, Hasebroock KM, Larsen B, Stoldt C, McFann K, Pickering MC, Thurman JM (2012) Detection of glomerular complement C3 fragments by magnetic resonance imaging in murine lupus nephritis. Kidney Int, 81:152–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze M, Pruchno CJ, Burns M, Baker PJ, Johnson RJ, Couser WG (1993) Glomerular C3c localization indicates ongoing immune deposit formation and complement activation in experimental glomerulonephritis. Am J Pathol 142:179–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serkova NJ, Renner B, Larsen BA, Stoldt CR, Hasebroock KM, Bradshaw-Pierce EL, Holers VM, Thurman JM (2010) Renal inflammation: targeted iron oxide nanoparticles for molecular MR imaging in mice. Radiology 255:517–526

    Article  Google Scholar 

  • Shubayev VI, Pisanic TR II, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477

    Article  CAS  Google Scholar 

  • Signore A, Picarelli A, Annovazzi A, Britton KE, Grossman AB, Bonanno E, Maras B, Barra D, Pozzilli P (2003) 123I-Interleukin-2: biochemical characterization and in vivo use for imaging autoimmune diseases. Nucl Med Commun 24:305–316

    Article  CAS  Google Scholar 

  • Song H, He C, Knaak C, Guthridge JM, Holers VM, Tomlinson S (2003) Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation. J Clin Invest 111:1875–1885

    Article  CAS  Google Scholar 

  • Swaak AJ, Groenwold J, Bronsveld W (1986) Predictive value of complement profiles and anti-dsDNA in systemic lupus erythematosus. Ann Rheum Dis 45:359–366

    Article  CAS  Google Scholar 

  • Thurman JM, Renner B, Kunchithapautham K, Ferreira VP, Pangburn MK, Ablonczy Z, Tomlinson S, Holers VM, Rohrer B (2009) Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem 284:16939–16947

    Article  CAS  Google Scholar 

  • Vlaicu R, Rus HG, Niculescu F, Cristea A (1985) Immunoglobulins and complement components in human aortic atherosclerotic intima. Atherosclerosis 55:35–50

    Article  CAS  Google Scholar 

  • Walport MJ (2001) Complement. Second of two parts. N Engl J Med 344:1140–1144

    Article  CAS  Google Scholar 

  • Weis JJ, Tedder TF, Fearon DT (1984) Idenepsication of a 145,000 Mr membrane protein as the C3d receptor (CR2) of human B lymphocytes. Proc Natl Acad Sci USA 81:881–885

    Article  CAS  Google Scholar 

  • Weller GE, Lu E, Csikari MM, Klibanov AL, Fischer D, Wagner WR, Villanueva FS (2003) Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation 108:218–224

    Article  Google Scholar 

  • West C (1998) Complement and glomerular diseases. In: Volanakis JE, Frank MM (eds) The human complement system in health and disease. Marcel Dekker, Inc., New York, pp 571–596

    Chapter  Google Scholar 

  • Zhou J, Fonseca MI, Pisalyaput K, Tenner AJ (2008) Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer’s disease. J Neurochem 106:2080–2092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Thurman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thurman, J.M., Rohrer, B. (2013). Noninvasive Detection of Complement Activation Through Radiologic Imaging. In: Lambris, J., Holers, V., Ricklin, D. (eds) Complement Therapeutics. Advances in Experimental Medicine and Biology, vol 735. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4118-2_19

Download citation

Publish with us

Policies and ethics