Skip to main content

Experimental Techniques for Studies of Dynamics in Soft Materials

  • Chapter
  • First Online:

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

This chapter presents an overview of the various experimental techniques traditionally used for studies of dynamics in Soft Materials. First, we emphasize the importance of dynamics for macroscopic properties of these materials, then we compare advantages and disadvantages of the different techniques. These include mechanical and dielectric relaxation spectroscopy, NMR, light, X-ray, and neutron scattering. In particular, we discuss the advantages of neutron scattering spectroscopy. We emphasize the importance of combining neutron scattering with the other techniques for a complete analysis of the dynamics in Soft Materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267

    Article  CAS  Google Scholar 

  2. Berthier L et al (2005) Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310:1797–1800

    Article  CAS  Google Scholar 

  3. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287:627–631

    Article  CAS  Google Scholar 

  4. Russell EV, Israeloff NE (2000) Direct observation of molecular cooperativity near the glass transition. Nature 408:695–698

    Article  CAS  Google Scholar 

  5. Qiu XH, Ediger MD (2003) Length scale of dynamic heterogeneity in supercooled d-sorbitol: comparison to model predictions. J Phys Chem B 107:459–464

    Article  CAS  Google Scholar 

  6. Sokolov AP, Hayashi Y (2007) Breakdown of time-temperature superposition: from experiment to the coupling model and beyond. J Noncryst Solids 353:3838–3844

    Article  CAS  Google Scholar 

  7. Frick B, Fetters LJ (1994) Methyl group dynamics in glassy polyisoprene: a neutron backscattering investigation. Macromolecules 27:974–980

    Article  CAS  Google Scholar 

  8. Williams G (1975) In: Davies M (ed) Dielectric and related molecular processes, vol 2. The Chemical Society, London, p 151

    Chapter  Google Scholar 

  9. Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SWJ (2000) Relaxation in glass forming liquids and amorphous solids. Appl Phys 88:3113

    Article  CAS  Google Scholar 

  10. Roland CM, Hensel-Bielowka S, Paluch M, Casalini R (2005) Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure. Rep Progr Phys 68:1405–1478

    Article  CAS  Google Scholar 

  11. Surovtsev NV, Wiedersich J, Novikov VN, Rössler E, Sokolov AP (1998) Light scattering spectra of the fast relaxation in glasses. Phys Rev B 58:14888

    Article  CAS  Google Scholar 

  12. Pynn R (2009) Neutron scattering – a non-destructive microscope for seeing inside matter. Neutron applications in earth, energy and environmental sciences. Springer, New York

    Google Scholar 

  13. Schober H (2009) Neutron scattering instrumentation. Neutron applications in earth, energy and environmental sciences. Springer, Berlin

    Google Scholar 

  14. Cang H, Novikov VN, Fayer MD (2003) Experimental observation of a nearly logarithmic decay of the orientational correlation function in supercooled liquids on the picosecond-to-nanosecond time scales. Phys Rev Lett 90:197401

    Article  CAS  Google Scholar 

  15. García Sakai V, Arbe A (2009) Quasielastic neutron scattering in soft matter. Curr Opin Coll Inter Sci 14:381–390

    Article  CAS  Google Scholar 

  16. Farago B (2009) Recent developments and applications of NSE in soft matter. Curr Opin Coll Inter Sci 14:391–395

    Article  CAS  Google Scholar 

  17. Sette F, Krisch MH, Masciovecchio C, Ruocco G, Monaco G (1998) Dynamics of glasses and glass-forming liquids studied by inelastic X-ray scattering. Science 280:1550–1555

    Article  CAS  Google Scholar 

  18. Inoue T, Onogi T, Yao ML, Osaki KJ (1999) Viscoelasticity of low molecular weight polystyrene. Separation of rubbery and glassy components. Polymer Sci B Polymer Phys 37:389–397

    Article  CAS  Google Scholar 

  19. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  20. Plazek DJ (1965) Temperature dependence of the viscoelastic behavior of polystyrene. J Phys Chem 69:3480

    Article  CAS  Google Scholar 

  21. Ngai KL, Plazek DJ (1995) Identification of different modes of molecular motion in polymers that cause thermorheological complexity. Rubber Chem Tech Rubber Rev 68:376

    Article  CAS  Google Scholar 

  22. Ding Y, Sokolov AP (2006) Breakdown of time temperature superposition principle and universality of chain dynamics in polymers. Macromolecules 39:3322–3326

    Article  CAS  Google Scholar 

  23. Liu Yee A (1998) Enhancing plastic yielding in polyestercarbonate glasses by 1,4-Cyclohexylene linkage addition. Macromolecules 31:7865

    Article  Google Scholar 

  24. Jho Yee A (1991) Secondary relaxation motion in bisphenol A polycarbonate. Macromolecules 24:1905

    Article  Google Scholar 

  25. Mahaffy RE, Park S, Gerde E, Kas J, Shih CK (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793

    Article  CAS  Google Scholar 

  26. Rief M et al (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286:553

    Article  CAS  Google Scholar 

  27. Hugel T, Seitz M (2001) The study of molecular interactions by AFM force spectroscopy. Macromol Rapid Comm 22:989–1016

    Article  CAS  Google Scholar 

  28. Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Glassy dynamics. Contemp Phys 41:15–36

    Article  CAS  Google Scholar 

  29. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, New York

    Book  Google Scholar 

  30. Hill NE (1969) Dielectric properties and molecular behaviour. Van Nostrand Reinhold, London

    Google Scholar 

  31. Papadopoulos P, Floudas G, Klok HA, Schnell I, Pakula T (2004) Self-assembly and dynamics of poly(γ-benzyl-l-glutamate) peptides. Biomacromolecules 5:81–91

    Article  CAS  Google Scholar 

  32. Shindo et al (1969) Dielectric properties of stereoregular poly(methyl methacrylates). J Polym Sci A 7:297–310

    Article  Google Scholar 

  33. Miura N, Hayashi Y, Mashimo S (1996) Hinge-bending deformation of enzyme observed by microwave dielectric measurement. Biopolymers 39:183–187

    Article  CAS  Google Scholar 

  34. Hayashi Y, Miura N, Isobe J, Shinyashiki N, Yagihara S (2000) Molecular dynamics of hinge-bending motion of IgG vanishing with hydrolysis by Papain. Biophys J 79:1023–1029

    Article  CAS  Google Scholar 

  35. Nandi N, Bhattacharyya K, Bagchi B (2000) Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem Rev 100:2013–2045

    Article  CAS  Google Scholar 

  36. Oleinikova A, Sasisanker P, Weingartner H (2004) What can really be learned from dielectric spectroscopy of protein solutions? A case study of ribonuclease A. J Phys Chem B 108:8467–8474

    Article  CAS  Google Scholar 

  37. Jansson H, Bergman R, Swenson J (2005) Relation between solvent and protein dynamics as studied by dielectric spectroscopy. J Phys Chem B 109:24134–24141

    Article  CAS  Google Scholar 

  38. Khodadadi S, Pawlus S, Sokolov A (2008) Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data. J Phys Chem B 112:14273

    Article  CAS  Google Scholar 

  39. Arbe A, Colmenero J, Frick B, Monkenbusch M, Richter D (1998) Investigation of the dielectric β-process in polyisobutylene by incoherent inelastic neutron scattering. Macromolecules 31:4926–4934

    Article  CAS  Google Scholar 

  40. Price WS (1997) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part I. Basic theory. Concepts Magn Reson 9:299–336

    Article  CAS  Google Scholar 

  41. Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic, London

    Google Scholar 

  42. Brown SP, Spiess HW (2001) Advanced solid-state NMR methods for the elucidations of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem Rev 101:4125–4155

    Article  CAS  Google Scholar 

  43. Heuer A, Wilhelm M, Zimmermann H, Spiess HW (1995) Rate memory of structural relaxation in glasses and its detection by multidimensional NMR. Phys Rev Lett 75:2851–2854

    Article  CAS  Google Scholar 

  44. Bohmer R, Chamberlin RV, Diezemann G, Geil B, Heuer A, Hinze G, Kuebler SC, Richert R, Schiner B, Sillescu H, Spiess HW, Tracht U, Wilhelm M (1998) Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments. J Noncryst Solids 235:1–9

    Article  Google Scholar 

  45. Qiu XH, Ediger MD (2003) Length scale of dynamic heterogeneity in supercooled d-sorbitol: comparison to model predictions. J Phys Chem B 107:459–464

    Article  CAS  Google Scholar 

  46. Meier R, Kahlau R, Kruk D, Rossler EA (2010) Comparative study of the dynamics in viscous liquids by means of dielectric spectroscopy and field cycling NMR. J Phys Chem A 114:7847–7855

    Article  CAS  Google Scholar 

  47. Bergamn R, Borjesson L, Torell LM, Fontana A (1997) Dynamics around the liquid-glass transistion in poly(propylene) glycol investigated by wide-frequency-range light scattering techniques. Phys Rev B 56:11619

    Article  Google Scholar 

  48. Berne BJ, Pecora R (2000) Dynamic light scattering with application to chemistry, biology and physics. Dover Publications Inc, Mineola

    Google Scholar 

  49. Dell’ Anna R, Ruocco G, Sampoli M, Viliani G (1998) High frequency sound waves in vitreous silica. Phys Rev Lett 80:1236–1239

    Article  Google Scholar 

  50. Sokolov AP, Buchenau U, Richter D, Masciovecchio C, Sette F, Mermet A, Fioretto D, Ruocco G, Willner L, Frick B (1999) Brillouin and Umklapp scattering in polybutadiene: comparison of neutron and X-ray scattering. Phys Rev E 60:R2464

    Article  CAS  Google Scholar 

  51. Masciovecchio C, Baldi G, Caponi S et al (2006) Evidence of a crossover in the frequency dependence of the acoustic attenuation in vitreous silica. Phys Rev Lett 97:035501

    Article  CAS  Google Scholar 

  52. Li C, Koga T, Li C et al (2005) Viscosity measurements of very thin polymer films. Macromolecules 38:5144–5151

    Article  CAS  Google Scholar 

  53. Bandyopdahyay R, Liang D, Harden JL, Leheny RL (2006) Slow dynamics, aging, and glassy rheology in soft and living matter. Sol State Comm 139:589–598

    Article  CAS  Google Scholar 

  54. Grubel G (2008) X-ray photon correlation spectroscopy at the European X-ray free-electron laser (XFEL) facility. CR Physique 9:668–680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Division of Materials? Sciences and Engineering, DOE Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei P. Sokolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sokolov, A.P., Sakai, V.G. (2012). Experimental Techniques for Studies of Dynamics in Soft Materials. In: García Sakai, V., Alba-Simionesco, C., Chen, SH. (eds) Dynamics of Soft Matter. Neutron Scattering Applications and Techniques. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0727-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0727-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0726-3

  • Online ISBN: 978-1-4614-0727-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics