Skip to main content

Action of Calcium Slow Channel Inhibitors on Cardiac and Vascular Smooth Muscle Membranes

  • Chapter
Calcium Antagonists

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 39))

  • 27 Accesses

Abstract

Cardiac and most vascular smooth muscle cells depend on extracellular Ca2+ for contraction. The influx of Ca2+ in these cells is known to occur through Ca2+-selective slow channels during the phase 2 of the action potential when these channels are presumably “open.” A number of organic compounds classified as calcium antagonists (1) were found to antagonize the extracellular Ca2+-dependent contraction. These compounds are also referred to as “calcium slow channel inhibitors,” “calcium channel blockers,” or “calcium entry blockers.” While they differ in chemical structures (Fig. 1), they do exert at least one common effect, viz., inhibition of contraction or relaxation in cardiac and vascular smooth muscles. They are much more potent in vascular smooth muscle than in cardiac muscle, producing vasodilation at low concentrations and negative inotropy at much higher concentrations. By virtue of this differential effect, some of these calcium antagonists have been found to be useful in the treatment of angina pectoris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleckenstein A: Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol. (17): 149–166, 1977.

    Article  CAS  Google Scholar 

  2. Hartshorne DJ: Biochemical basis for contraction of vascular smooth muscle. Chest (78): 140–149, 1980.

    Article  CAS  PubMed  Google Scholar 

  3. Kanamor M, Naka M, Asano M, and Hidaka A: Effect of N-(6-aminohexy)-5-chloro-1-naphthalenesulfonamide and other calmodulin antagonists (calmodulin interacting agents) on calcium-induced contraction of rabbit aortic strips. J. Exptl. Pharmacol. Ther. (217): 494–499, 1981.

    Google Scholar 

  4. Johnson JD, Vaghy PL, Crouch TH, Potter JD, and Schwartz A: An hypothesis for the mechanism of action of some Ca2+ antagonist drugs: Calmodulin as a receptor. In: Yoshida H, Hagihara Y, and Ebashi S (eds.) Advances in Pharmacology and Therapeutics. Pergamon Press, Oxford, 1982, pp. 121–138.

    Google Scholar 

  5. Hidaka H, Yamaki T, Totsuka T, and Asano M: Selective inhibition of Ca2+-binding modulator of phosphodiesterase produces vascular relaxation and inhibits actin-myosin interaction. Mol. Pharmacol. (15): 49–59, 1979.

    CAS  PubMed  Google Scholar 

  6. Asano M, Suzuki Y, and Hidaka H: Effects of various calmodulin antagonist on contraction of rabbit aortic strips. J. Pharmacol. Exptl. Ther. (220): 191–196, 1981.

    Google Scholar 

  7. Johnson JD, and Fugman DA: Calcium and calmodulin antagonists binding to calmodulin and relaxation of coronary segments. J. Pharmacol. Exptl. Ther. (226): 330–334, 1983.

    CAS  Google Scholar 

  8. Thayer SA and Fairhurst AS: The interaction of dihydropyridine calcium channel blockers with calmodulin and calmodulin inhibitors. Mol. Pharmacol. (24): 6–9, 1983.

    CAS  PubMed  Google Scholar 

  9. Metzger H, Stern HO, Pfeizer G, and Ruegg JC: Calcium antagonists affect calmodulin dependent contractility of skinned smooth muscle. Arzneim- Forch/Drug Res. (32) (Suppl. II): 1425–1427, 1982.

    CAS  Google Scholar 

  10. Spedding M: Direct inhibitory effects of some calcium-antagonists and trifluoperazine on the contractile proteins in smooth muscle. Br. J. Pharmacol. (79): 225–231, 1983.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Godfraind T: Actions of nifedipine on calcium fluxes and contraction in isolated rat arteries. J. Exptl. Pharmacol. Ther. (224): 443–450, 1983.

    CAS  Google Scholar 

  12. Van Breeman C, Hwang OK, and Meisheri KD: Mechanism of inhibitory action of diltiazem on vascular smooth muscle contractility. J. Pharmacol. Exptl. Ther. (218): 459–463, 1981.

    Google Scholar 

  13. Morel N. Wibo M, Godfraind T: A calmodulin—stimulated Ca2+ pump in rat aorta plasma membranes. Biochim. Biophys. Acta (644): 82–88, 1981.

    Article  CAS  PubMed  Google Scholar 

  14. DePover A, Matlib MA, Lee SW, Dube GP, Grupp IL, Grupp G, and Schwartz A: Specific binding of 3H-nimodipine to membranes from coronary arteries and heart in relation to pharmacological effects. Paradoxical stimulation by diltiazem. Biochem. Biophys. Res. Comm. (108): 110–117, 1982.

    Article  CAS  PubMed  Google Scholar 

  15. Janis RA, Maurer SC, Sarmiento JG, Bolger FT, and Triggle DJ: Binding of [3H]nimodipine to cardiac and smooth muscle membranes. Eur. J. Pharmacology, (82): 191–194, 1982.

    Article  CAS  Google Scholar 

  16. Triggle CR, Agrawal DK, Bolger GT, Daniel EE, Kwan C-Y, Luchowski EM, and Triggle DJ: Calcium-channel antagonist binding to isolated vascular smooth muscle membranes. Canad. J. Physiol. Pharmacol. (60): 1738–1741, 1982.

    Article  CAS  Google Scholar 

  17. Boiger GT, Geno PJ, Luchowski EM, Siegel H, Triggle DJ, and Janis RA: High affinity binding of a calcium channel antagonist to smooth and cardiac muscle. Biochem. Biophys. Res. Comm. (104): 1604–1609, 1982.

    Article  Google Scholar 

  18. Williams LT and Tremble P: Binding of calcium antagonist, [3H] nitrendipine, to high affinity sites in bovine aortic smooth muscle and canine cardiac membranes. J. Clin. Invest. (70): 209–212, 1982.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Fleckenstein A: Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial legions. In: Harris P and Opie LH (eds) Calcium and the heart. Academic Press, London, 1971, pp. 135–188.

    Google Scholar 

  20. Kass RS: Nisoldipine: A new, more selective calcium current blocker in cardiac Purkinje fibers. J. Pharmacol. Exptl. Ther. (223): 446–456, 1982.

    CAS  Google Scholar 

  21. Lee KS and Tsien RW: Mechanism of calcium channel blockade by verapamil, D600, diltiazem, and nitrendipine in single dialyzed heart cells. Nature (302): 790–794, 1983.

    Article  CAS  PubMed  Google Scholar 

  22. Morad M, Tung L, Greenspan AM: Effect of diltiazem on calcium transport and development of tension in heart muscle. Am. J. Cardiol. (49): 595–601, 1982.

    CAS  PubMed  Google Scholar 

  23. Morad M, Goldman YE, Trentham DR: Rapid photochemical inactivation of Ca2+-antagonists shows that Ca2+ entry directly activates contraction in frog heart. Nature (304): 635–638, 1983.

    Article  CAS  PubMed  Google Scholar 

  24. DePover A, Lee SW, Matlib MA, Whitmer K, Davis BA, Powell T, and Schwartz A: [3H]-Nimodipine specific binding to cardiac myocytes and subcellular fractions. Biochem. Biophys. Res. Comm. (113): 185–191, 1983.

    Article  CAS  PubMed  Google Scholar 

  25. Millard RW, Grupp G, Grupp IL, DiSalvo J, DePover A, and Schwartz A: Chronotropic, inotropic, and vasodilator actions of diltiazem, nifedipine, and verapamil. Circ. Res. (52) Suppl. I: 29–39, 1983.

    CAS  Google Scholar 

  26. Marsh JD, Loh E, Lachance D, Barry WH, and Smith TW: Relationship of binding of a calcium channel blocker to inhibition of contraction in intact cultured embryonic chick ventricular cells. Circ. Res. (53): 539–543, 1983.

    Article  CAS  PubMed  Google Scholar 

  27. Schwartz A and Triggle DJ: Cellular action of calcium channel blocking drugs. Ann. Rev. Med., 1983, (In press).

    Google Scholar 

  28. DePover A, Grupp IL, Grupp G, and Schwartz A: Diltiazem potentiates the negative inotropic action of nimodipine in heart. Biochem. Biophys. Res. Comm. (114): 922–929, 1983.

    Article  CAS  PubMed  Google Scholar 

  29. Gonzolez-Serratos H, Valle-Aguilera R, Lathrop DA, Garcia M: Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling. Nature (298): 292–294, 1982.

    Article  Google Scholar 

  30. Dorrscheidt-Kafer M: The action of D600 on frog skeletal muscle: Facilitation of excitation-contraction coupling. Pflugers Arch. (309): 259–267, 1977.

    Article  Google Scholar 

  31. Reuter H and Seitz N: The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. (London) (195): 451–470, 1968.

    CAS  Google Scholar 

  32. Langer GA, Frank JB, and Brady J: The myocardium. Int. Rev. Physiol. (9): 191–237, 1976.

    CAS  PubMed  Google Scholar 

  33. Winegrad S and Shanes AM: Calcium flux and contractility in guinea pig. J. Gen. Physiol. (45): 371–394, 1962.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Niedergerke R: Movements of Ca in frog heart ventricles at rest and during contractures. J. Physiol. (London) (167): 515–550, 1963.

    CAS  Google Scholar 

  35. Langer GA: Kinetic studies of calcium distribution in ventricular muscle of the dog. Circ. Res. (15): 393–405, 1964.

    Article  PubMed  Google Scholar 

  36. Reeves JP and Sutko JL: Sodium-calcium ion exchange in cardiac membrane vesicles. Proc. Natl. Acad. Sci. (USA) (76): 590–594, 1979.

    Article  CAS  Google Scholar 

  37. Matlib MA and Schwartz A: Selective effects of diltiazem, a benzodiazepine calcium channel blocker, and diazepam, and other benzodiazepines on the Na+/Ca2+ exchange carrier system of heart and brain mitochondria. Life Sci. (32): 2837–2842, 1983.

    Article  CAS  PubMed  Google Scholar 

  38. Fabiato A: Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from sarcoplasmic reticulum of a skinned cardiac cell from adult rat or rabbit ventricles. J. Gen. Physiol. (London) (78): 457–495, 1981.

    Article  CAS  PubMed  Google Scholar 

  39. Entman ML, Allen JC, Bornet DP, Gillette PC, Wallick ET, and Schwartz A: Mechanisms of calcium accumulation and transport in cardiac relaxing system sarcoplasmic reticulum: effect of verapamil, D600, X537A, and X23187. J. Mol. Cell. Cardiol. (4): 681–687, 1971

    Article  Google Scholar 

  40. Wang T, Tsai L-I, Schwartz A: Effects of verapamil, diltiazem, nisoldipine, and felodipine on sarcoplasmic reticulum. Eur. J. Pharmacol. (In press).

    Google Scholar 

  41. Colvin RA, Pearson N, Massineo FC, and Katz AM: Effects of Ca channel blockers on Ca transport and Ca-ATPase in skeletal and cardiac sarcoplasmic reticulum vesicles. J. Cardiovasc. Pharmacol. (4): 935–941, 1982.

    Article  CAS  PubMed  Google Scholar 

  42. Hirata M and Inamitsu T: Effect of diltiazem on the release of calcium from the canine fragmented cardiac sarcoplasmic reticulum. Jpn. J. Pharmacol. (33): 991–997, 1983.

    Article  CAS  PubMed  Google Scholar 

  43. Page E and McCallister LP: Quantitative electron microscopic description of heart muscle cells. Am. J. Cardiol. (31): 172–181, 1973.

    Article  CAS  PubMed  Google Scholar 

  44. Neely JR and Morgan HE: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann. Rev. Physiol. (36): 413–459, 1974.

    Article  CAS  Google Scholar 

  45. Grupp G, Grupp IL, Johnson CL, Matlib MA, Rouslin W, Schwartz A, Wallick ET, Wang T, and Wisler P: Effects of RMI-12330A, a new inhibitor of adenylate cyclase on myocardial function and subcellular activity. Br. J. Pharmacol. (70): 429–442, 1980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Vaghy PL, Matlib MA, Szekeres L, and Schwartz A: Protective effects of verapamil and diltiazem against inorganic phosphate-induced impairment of oxidative phosphorylation of isolated heart mitochondria. Biochem. Pharmacol. (30): 2603–2610, 1981.

    Article  CAS  PubMed  Google Scholar 

  47. Matlib MA, Vaghy PL, Epps DE, and Schwartz A: Action of certain calcium channel blockers and calmodulin antagonists on inorganic phosphate- induced swelling and inhibition of oxidative phosphorylation of heart mitochondria. Biochem. Pharmacol. (32): 2622–2625, 1983.

    Article  CAS  PubMed  Google Scholar 

  48. Brierley GP: The uptake and extrusion of monovalent cations by isolated heart mitochondria. Mol. Cell. Biochem. (10): 41–62, 1976.

    Article  CAS  PubMed  Google Scholar 

  49. Garlic PB, Radda GK, and Seeley PJ: Studies of acidosis in the ischemic heart by phosphorus nuclear magnetic resonance. Biochem. J. (183): 547–554, 1979.

    Google Scholar 

  50. Jennings RB and Ganóte CE: Structural changes in myocardium during acute ischemia. Circ. Res. (34) and 35 (Suppl. III): 156–172, 1974.

    Google Scholar 

  51. Jennings RB and Ganóte CE: Mitochondrial structure and function in acute myocardial ischemic injury. Circ. Res. (38) (Suppl. I): 80–91, 1976.

    Google Scholar 

  52. Crompton M, Moser R, Ludi H, and Carafoli E: The interrelationships between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur. J. Biochem. (82): 25–31, 1978.

    Article  CAS  PubMed  Google Scholar 

  53. Carafoli E: The calcium cycle of mitochondria. FEBS Lett. (104): 1–5, 1979.

    Article  CAS  PubMed  Google Scholar 

  54. Lee CO, Kang DH, Sokol JH, and Lee KS: Relation between intracellular Na+ ion activity and tension of sheep cardiac Purkinje fibers exposed to dihydro-ouabain. Biophys. J. (29): 315–330, 1980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Vaghy PL, Johnson JD, Matlib MA, Wang T, and Schwartz A: Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+-antagonist drugs. J. Biol. Chem. (257): 6000–6002, 1982.

    CAS  PubMed  Google Scholar 

  56. Matlib MA, Lee SW, DePover A, and Schwartz A: A specific inhibitory action of certain benzothiazepines and benzodiazepines on the sodium- calcium exchange process of heart and brain mitochondria. Eur. J. Pharmacol. (89): 327–328, 1983.

    Article  CAS  PubMed  Google Scholar 

  57. Saida K, and Van Breemen C: Mechanism of Ca2+ antagonist-induced vasodilation: Intracellular actions. Circ. Res. (52): 137–142, 1983.

    Article  CAS  PubMed  Google Scholar 

  58. Mras S, and Sperelakis N: Comparison of 3H-bepridil and 3H-verapamil uptake into rabbit aortic rings. J. Cardiovasc. Pharmacol. (4): 777–783, 1982.

    Article  CAS  PubMed  Google Scholar 

  59. Pang D, and Sperelakis N: Nifedipine, diltiazem, bepridil, and verapamil uptakes into cardiac and smooth muscles. Eur. J. Pharmacol. (87): 199–207, 1983.

    Article  CAS  PubMed  Google Scholar 

  60. Nagao T, Matlib MA, Franklin D, Millard RW, and Schwartz A: Effects of diltiazem, a calcium antagonist, on regional myocardial function and mitochondria after coronary occlusion. J. Mol. Cell. Cardiol. (12): 29–43, 1980.

    Article  CAS  PubMed  Google Scholar 

  61. Schwartz A, Wood JM, Allen JC, Bornet EP, Entman ML, Goldstein MA, Sordahl LA, and Suzuki M: Biochemical and morphologic correlates of cardiac ischemia. Am. J. Cardiol. (32): 46–61, 1973.

    Article  CAS  PubMed  Google Scholar 

  62. Wood JM, Hanley HG, Entman ML, Hartley CJ, Swain JA, Busch U, Change CH, Lewis RM, Morgan WJ, and Schwartz A: Biochemical and morphological correlates of acute experimental myocardial ischemia in dog. Circ. Res. (44): 52–61, 1979.

    Article  CAS  PubMed  Google Scholar 

  63. Rouslin W and Millard RW: Mitochondrial inner membrane enzyme defects in porcine myocardial ischemia. Am. J. Physiol. (240): H308–H313, 1981.

    CAS  PubMed  Google Scholar 

  64. Bush LR, Li Y-P, Shlafer M, Jolly SR, and Lucchesi BR: Protective effects of diltiazem during myocardial ischemia in cat hearts. J. Pharmacol. Exptl. Ther. (218): 653–661, 1981.

    CAS  Google Scholar 

  65. Nayler WG, Ferrari R, and Williams A: Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic myocardium. Am. J. Cardiol. (46): 242–248, 1980.

    Article  CAS  PubMed  Google Scholar 

  66. Fujiwara H, Ashraf M, Millard RW, Sato S, Schwartz A: Effects of diltiazem, a calcium channel inhibitor, in retarding cellular damage produced during myocardial ischemia in pigs. A morphometric and ultrastructural analysis. J. Am. Coll. Cardiol., (In press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Matlib, M.A. et al. (1984). Action of Calcium Slow Channel Inhibitors on Cardiac and Vascular Smooth Muscle Membranes. In: Sperelakis, N., Caulfield, J.B. (eds) Calcium Antagonists. Developments in Cardiovascular Medicine, vol 39. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3810-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3810-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3812-3

  • Online ISBN: 978-1-4613-3810-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics