Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 39))

  • 61 Accesses

Abstract

The purpose of these lectures is to review current phenomenology of the weak and electromagnetic interactions from a gauge theoretical prospective. Particular attention will be paid to the recent results presented by experimental lecturers at this school 1–3). Free use will be made of the quark-parton and gauge technology developed by other theoretical lecturers 4,5). It will not often enter explicitly, but where a choice is necessary we will assume that strong interactions are also described by a gauge theory, namely quantum chromodynamics (QCD)6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.M. Lederman, Lectures presented at this School and talk presented at the 1977 International Symposium on Lepton and Photon Interactions at High Energies, Hamburg, 1977.

    Google Scholar 

  2. J. Steinberger, Lectures presented at this School and talks by P. Bloch, K. Kleinknect and K. Tittel, presented at the Hamburg Symposium, loc. cit.

    Google Scholar 

  3. B.H. Wiik, Lectures presented at this school. See also B.H. Wiik and G. Wolf, Electron-positron interactions, Lectures presented at the 1976 Les Houches Summer School, DESY preprint 77/01(1977) and many talks presented at the Hamburg Symposium, loc. cit.

    Google Scholar 

  4. M. Lévy, Lectures presented at this School. J. Weyers, Lectures presented at this School.

    Google Scholar 

  5. C.H. Llewellyn Smith, Lectures presented at this School. See also J. Ellis, Deep hadronic structure, Lectures presented at the 1976 Les Houches Summer School, CERN preprint (1977).

    Google Scholar 

  6. H.D. Politzer, Phys. Reports 14C, 129 (1974). W. Marciano and H. Pagels, Quantum chromodynamics — a review, Rockefeller preprint C00-2232B-130 (1977).

    Article  ADS  Google Scholar 

  7. A. de Rujula, The current weak current, Lectures presented at the 1976 Les Houches Summer School, Harvard preprint HUTP-77/ A006 (1977). H. Fritzsch, The world of flavour and colour, Lectures presented at the 1977 Varenna Summer School, CERN preprint TH 2359 (1977).

    Google Scholar 

  8. Y. Hara, Phys. Rev. 134, B701 (1964) Z. Maki and Y.Ohnuki, Progr. Theor. Phys. 32, 144 (1964). D. Amati, H. Bacry, J. Nuyts and J. Prentki, Phys. Letters 11, 190 (1964) and Nuovo Cimento 34, 1732 (1964). B. J. Bjorken and S.L. Glashow, Phys. Letters 11, 255 (1964).

    Article  ADS  Google Scholar 

  9. S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2, 1285 (1970).

    ADS  Google Scholar 

  10. F. Hasert et la., Phys. Letters, 46B, 121, 138 (1973).

    Article  ADS  Google Scholar 

  11. E.S. Abers and B.W. Lee, Phys. Reports 9C, 1 (1973). J. Iliopoulos, An Introduction to gauge theories, CERN 76–11 (1976).

    Google Scholar 

  12. M. Veltman, Lectures presented at the 17th Cracow School of Theoretical Physics, Zakopane, Poland, 1977.

    Google Scholar 

  13. G.’t Hooft, Nuclear Phys. B35, 167 (1971).

    Article  ADS  Google Scholar 

  14. S.L. Glashow, Nuclear Phys. 22, 579 (1971).

    Article  ADS  Google Scholar 

  15. S. Weinberg, Phys. Rev. Letters, 19, 1264 (1967). A. Salam, Proc. 8th Nobel Symposium, Stockholm 1968 (ed. N. Svartholm) ( Almqvist and Wiksells, Stockholm, 1968 ) p. 367.

    Google Scholar 

  16. E.A. Paschos, Phys. Rev. D 15, 1966 (1977). S.L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977)

    Article  ADS  Google Scholar 

  17. M. Kobayashi and K. Maskawa, Progr. Theor. Phys. 49, 652 (1973). See also L. Maiani, Phys. Letters 62B, 183 (1976).

    Article  ADS  Google Scholar 

  18. C.G. Callan, R.F. Dashen and D.J. Gross, Phys. Letters 63B, 334 (1976). R.D. Peccei and H.R. Quinn, Stanford University Preprint ITP- 572 (1977).

    Article  ADS  Google Scholar 

  19. T.D. Lee, Phys. Reports 9C, 148 (1974). S. Weinberg, Phys. Rev. Letters 37, 657 (1976).

    Article  ADS  Google Scholar 

  20. A.I. Vainshtein and I.B. Khriplovich, JETP Letters 18, 141 (1973). M.K. Gaillard and B.W. Lee, Phys. Rev. D 18, 897 (1974).

    Google Scholar 

  21. See, for example, M.K. Gaillard, B.W. Lee and R.E. Shrock, Phys. Rev. D 13, 2674 (1976).

    ADS  Google Scholar 

  22. J.J. Aubert et al., Phys. Rev. Letters 33, 1404 (1974). J.E. Augustin et al., Phys. Rev. Letters 33, 1406 (1974).

    Article  ADS  Google Scholar 

  23. G. Goldhaber et al., Phys. Rev. Letters 37 255 (1976). I. Peruzzi et al., Phys. Rev. Letters 37, 569 (1976).

    Article  ADS  Google Scholar 

  24. E.G. Cazzoli et al., Phys. Rev. Letters 34, 1125 (1975). G. Blietschau et al., Phys. Letters 60B, 207 (1975). J. Von Krogh et al., Phys. Rev. Letters 36, 710 (1976).

    Article  ADS  Google Scholar 

  25. J.E. Wiss et al., Phys. Rev. Letters 37, 1531 (1976).

    Article  ADS  Google Scholar 

  26. W. Braunschweig et al., Phys. Letters 63B, 471 (1976). J. Burmester et al., Phys. Letters 64B, 369 (1976).

    Article  ADS  Google Scholar 

  27. M.K. Gaillard, B.W. Lee and J.L. Rosner, Rev. Mod. Phys. 47, 277 (1975).

    Article  ADS  Google Scholar 

  28. K. Wilson, Phys. Rev. 179, 1499 (1969). M.K. Gaillard and B.W. Lee, Phys. Rev. Letters 33, 108 (1974). G. Altarelli and L. Maiani, Phys. Letters 52B, 351 (1974).

    Article  ADS  Google Scholar 

  29. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Nuclear Phys. B100, 313 (1975).

    Article  ADS  Google Scholar 

  30. E.H.S. Burhop et al., Phys. Letters 65B, 299 (1976).

    Article  ADS  Google Scholar 

  31. M. Holder et al., Phys. Letters 69B, 377 (1977). Dimuon events in neutrino collisions were discovered by A. Benvenuti et al., Phys. Rev. Letters 34, 419 (1975).

    Article  ADS  Google Scholar 

  32. B.C. Barish et al., Caltech preprint CALT 68–606 (1976). D.C. Cundy, Talk presented at the Neutrino 1977 Conference, Elbrus, USSR, 1977.

    Google Scholar 

  33. C. Baltay et al., Phys. Rev. Letters 39, 62 (1977).

    Article  ADS  Google Scholar 

  34. J. Burmester et al., Ref. 26. See also R. Brandelik et al., Phys. Letters 67B, 363 (1977). J. Burmester et al., Phys. Letters 67B 367 (1977).

    Article  ADS  Google Scholar 

  35. M.L. Perl et al., Phys. Rev. Letters 35, 1489 (1975).

    Article  ADS  Google Scholar 

  36. B.C. Barish et al., Phys. Rev. Letters 38, 577 (1977). A. Benvenuti et al., Phys. Rev. Letters 38, 1110 (1977).

    Article  ADS  Google Scholar 

  37. S. Herb et al., Phys. Rev. Letters 39, 252 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  38. C. Bouchiat, J. Iliopoulos and Ph. Pleyer, Phys. Letters 38B, 519 (1972). D.C. Gross and R. Jackiw, Phys. Rev. D 6, 477 (1972).

    Article  ADS  Google Scholar 

  39. B. Aubert et al., Phys. Rev. Letters 33, 984 (1974). A. Benvenuti et al., Phys. Rev. Letters 36, 1478 (1976). A. Benvenuti et al., Phys. Rev. Letters 37, 189 (1976). B.C. Barish et al., Phys. Rev. Letters, 38 314 (1977).

    Article  ADS  Google Scholar 

  40. M. Holder et al., Phys. Rev. Letters 39, 433 (1977).

    Article  ADS  Google Scholar 

  41. See, for example, P. Ramond, Nuclear Phys. B110, 214 (1976). F. Gursey and P. Sikivie, Phys. Rev. Letters 36, 775 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Baird et al., Nature 264, 528 (1976). P. Sandars, Talk presented at the 1977 International Symposium on Lepton and Photon Interactions at High Energies, Hamburg, 1977.

    Google Scholar 

  43. See, for example, H. Fritzsch and P. Minkowski, Ann. Phys. (NY) 93, 193 (1974) and Nuclear Phys. B103, 61 (1976). Also G.G. Ross and T. Weiler, private communication.

    Article  ADS  Google Scholar 

  44. R.N. Mohapatra and J.C. Pati, Phys. Rev. D 566, 2558 (1975). G. Senjavonic and R.N. Mohapatra, Phys. Rev. D 1502 (1975). A de Rujula, H. Georgi and S.L. Glashow, Harvard preprint HUTP- 77/A002 (1977).

    Google Scholar 

  45. See, for example, H. Fritzsch and P. Minkowski, Phys. Letters 63B, 99 (1976).

    Article  ADS  Google Scholar 

  46. G. Segré and J. Weyers, Phys. Letters 65B, 243 (1976) and references therein.

    Article  ADS  Google Scholar 

  47. J.D. Bjorken and K. Lane (unpublished).

    Google Scholar 

  48. T.C. Yang, DESY preprint 77 /39 (1977).

    Google Scholar 

  49. Y.-S. Tsai, Phys. Rev. D 4, 2821 (1971).

    Article  ADS  Google Scholar 

  50. C.H. Llewellun Smith, Phys. Letters 46B, 233 (1973). J.S. Bell, Nuclear Phys. B60, 427 (1973). J.M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. Letters 30, 1268 (1973) and Phys. Rev. D 10, 1145 (1974).

    Article  Google Scholar 

  51. See, for example, H. Georgi and S.L. Glashow, Phys. Rev. Letters 28, 1494 (1972).

    Article  ADS  Google Scholar 

  52. See for example, H. Fritzsch, M. Gell-Mann and P. Minkowski, Phys. Letters 59B, 256 (1976).

    ADS  Google Scholar 

  53. C.H. Llewellyn Smith, Oxford preprint OUTP 76–33 (1976) is a nice review.

    Google Scholar 

  54. J. Prentki and B. Zumino, Nuclear Phys. B47, 99 (1972).

    Article  ADS  Google Scholar 

  55. See, for example, J. Schechter and Y. Ueda, Phys. Rev. D 8, 484 (1973).

    Article  ADS  Google Scholar 

  56. D. Horn and G.G. Ross, Phys. Letters 67B, 460 (1977). G. Altarelli, N. Cabibbo, L. Maiani and R. Petronzio, Phys. Letters 67B, 463 (1977).

    Article  ADS  Google Scholar 

  57. For a sampler of models, see J.D. Bjorken and C.H. Llewellyn Smith, Phys. Rev. D 7, 887 (1973).

    ADS  Google Scholar 

  58. H.B. Thacker and J.J. Sakurai, Phys. Letters 36B, 103 (1971); see also the calculations in Ref. 57.

    Article  ADS  Google Scholar 

  59. A. Ali and T.C. Yang, Phys. Letters 65B, 275 (1977). A. Buras and J. Ellis, Nuclear Phys. B111, 431 (1976). G. Köpp, L.N. Sehgal and P.M. Zerwas, Nuclear Phys. B123, 61, 77 (1977).

    Article  ADS  Google Scholar 

  60. F.A.Wilczek and A. Zee, Nuclear Phys. B106, 461 (1976).

    ADS  Google Scholar 

  61. M. Cavalli-Sforza et al., Phys. Rev. Letters 36, 558 (1976). N.L. Perl et al., Phys. Letters 63B, 466 (1976). G.J. Feldman et al., Phys. Rev. Letters 38, 117 (1977). J. Burmester et al., Phys. Letters 68B, 297 (1977). J. Burmester et al., Phys. Letters 68B, 301 (1977). R. Brandelik et al., DESY preprint 77/36 (1977). A. Barbaro-Galtieri et al., Berkeley preprint LBL-458 (1977). N.L. Perl et al., preprint SLAC-PUB-1997/LBL-6731 (1977).

    Article  ADS  Google Scholar 

  62. However, the events of B.C. Barish et al., Ref. 36, and of the CDHS collaboration, N. Holder et al., Observation of trimuon events produced in neutrino and antineutrino interactions, submitted to Phys. Letters B, do not cry out for a heavy lepton explanation, and are consistent with a more conventional hadronic source.

    Google Scholar 

  63. A. Benvenuti et al., Phys. Rev. Letters 38, 1183 (1977). V. Barger et al., Phys. Rev. Letters 38, 1190 (1977).

    Article  ADS  Google Scholar 

  64. A. Benvenuti et al., Phys. Rev. Letters 35, 1199 (1975). M. Holder et al., Like-sign dimuon events produced in narrow band neutrino and antineutrino beams, submitted to Phys. Letters B.

    Article  ADS  Google Scholar 

  65. See, for example, V. Barger, D.V. Nanopoulos and R.J.N. Phillips, Wisconsin preprint CGO-597 (1977).

    Google Scholar 

  66. B.W. Lee and S. Weinberg, Phys. Rev. Letters 30, 1237 (1977). P. Langacker and G. Segré, Phys. Rev. Letters 39, 259 (1977).

    Article  ADS  Google Scholar 

  67. H. Harari, Proc. 1975 Internat. Symposium on Lepton and Photon Interactions at High Energies, Stanford 1975 (ed. W.T. Kirk) (SLAC, Stanford, 1975), p. 317.

    Google Scholar 

  68. S.L. Adler, Phys. Rev. 177, 2426 (1969). J.S. Bell and R. Jackiw, Nuovo Cimento 51A, 47 (1969). S.L. Adler, in Lectures on elementary particles and quantum field theory, 1970 Brandeis Summer Institute (eds. S. Deser, n. Grisaru and H. Pendleton) (MIT Press, Cambridge, 1971). R. Jackiw, Field theoretic investigations, in Lectures in current algebra and its applications, by S.B. Treiman, R. Jackiw and D.J. Gross (Princeton University Press, N.J., 1972 ) p. 97.

    Google Scholar 

  69. The word “anomaly” has been put in quotation marks because it has belatedly been realized that such extra terms in the divergence equations reflect fundamental classical features of differential operators on manifolds, which are expressed by the Atiyah-Singer and related theorems. See, for example, S.W. Hawking, Phys. Letters 60A, 81 (1977). N.K. Nielsen and B. Schroer, CERN preprint TH 2317 (1977); R. Jackiw and C. Rebbi, HIT preprint CTP-619 (1977); Since the “anomalies” are now known to be rather canonical, perhaps we should find a new word for them.

    Article  ADS  MathSciNet  Google Scholar 

  70. A. de Rujula, H. Georgi and S.L. Glashow, Phys. Rev. Letters 35, 69 (1975). F.A. Wilczek, A. Zee, R.L. Kingsley and S.B. Treiman, Phys. Rev. D 12, 2768 (1975). H. Fritzsch, M. Gell-Mann and P. Minkowski, Ref. 52. S. Pakvasa, W.A. Simmons and S.F. Tuan, Phys. Rev. Letters 35, 702 (1975).

    Article  ADS  Google Scholar 

  71. This point of view is not universal. In particular, J.D. Bjorken stresses that the observable effects of “anomalies” at present energies are negligible. The issue is rather one of principle.

    Google Scholar 

  72. A.J. Buras and K.F. Gaemers, CERN preprint TH. 2368 (1977). See also A.J. Buras, Nuclear Phys. B125, 125 (1977) and references therein.

    Article  ADS  Google Scholar 

  73. B.W. Lee, S. Pakvasa, R.E. Shrock and H. Sugawara, Phys. Rev. Letters 38, 977, 1230 (E) (1977). H. Fritzsch, Phys. Letters 67B, 451 (1977).

    Article  ADS  Google Scholar 

  74. T.P. Cheng and L.F. Li, Phys. Rev. Letters 38, 381 (1977).

    Article  ADS  Google Scholar 

  75. F.A. Wilczek and A. Zee, Phys. Rev. Letters 38, 531 (1977).

    Article  ADS  Google Scholar 

  76. J.D. Bjorken and S. Weinberg, Phys. Rev. Letters 38, 622 (1977).

    Article  ADS  Google Scholar 

  77. M.A. Bouchiat and C.C. Bouchiat, Phys. Letters 48B, 111 (1974) and references therein.

    Article  ADS  Google Scholar 

  78. This work was reported in Ref. 42. I.B. Khriplovich, Proc. 18th Internat. Conf. on High-Energy Physics, Tbilisi, USSR, 1976 (JINR, Dubna, 1977) p. B180, discusses previous calculations.

    Google Scholar 

  79. For a recent flurry of activity, see A. De Rujula, H. Georgi and S.L. Glashow, Harvard preprint HUTP-77/A028 (1977); F.A. Wilczek and A. Zee, Discrete flavour symmetries and a formula for the Cabibbo angle, Princeton preprint (1977); H. Fritzsch, CERN preprint TH. 2358 (1977).

    Google Scholar 

  80. M.S. Chanowitz, J. Ellis and N.K. Gaillard, CERN preprint TH 2312 (1977).

    Google Scholar 

  81. H. Georgi and S.L. Glashow, Phys. Rev. Letters 32, 438(1974).

    Article  ADS  Google Scholar 

  82. H. Fritzsch and P. Minkowski, Ref. 43. H. Georgi, Particles and fields 1974, APS/DPF Williamsburg meeting (ed. C.E. Carlson) (AIP, New York, 1975), p. 575. S.L. Glashow, Harvard preprint HUTP-77/A005 (1977).

    Google Scholar 

  83. E. Ma, Phys. Letters 65B, 468 (1976). See also B.W. Lee and S. Weinberg, Ref. 66.

    Article  ADS  Google Scholar 

  84. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Nuclear Phys. B106, 292 (1976).

    ADS  Google Scholar 

  85. A.D. Linde, JETP Letters 23, 64 (1976). S. Weinberg, Phys. Rev. Letters 36, 294 (1976).

    Article  ADS  Google Scholar 

  86. M. Veltman, Second threshold in weak interactions, Utrecht preprint (1977). B.W. Lee, C. Quigg and H.B. Thacker, Phys. Rev. Letters 38. 883 (1977). C.E. Vayonakis, New threshold of weak interactions, Athens preprint (1977).

    Article  ADS  Google Scholar 

  87. Alternatives to the approach mentioned here include, for example, the possibility that hadrons are weak gauge solitons — see, for example, E. Corrigan, D.I. Olive, D.B. Fairlie and J. Nuyts, Nuclear Phys. B106, 475 (1976); and the use of supersymmetry and/or supergravity — see, for example B. Zumino, CERN preprint TH. 2356 (1977).

    ADS  MathSciNet  Google Scholar 

  88. Strictly speaking, it is not necessary that the strong interactions remain asymptotically free at very high Q2. The differences between the gauge boson contributions to the 3 functions control the way that different group couplings approach one another, with fermions cancelling because they form a grand multiplet — see Eq. (3.38).

    Google Scholar 

  89. H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Letters 33 451 (1974).

    Article  ADS  Google Scholar 

  90. A.J. Buras, J. Ellis, M.K. Gaillard and D.V. Nanopoulos are studying these questions in greater detail.

    Google Scholar 

  91. Reference 90 finds that the proton lifetime is 0(104) longer than the dimensional estimate t(proton) ~ M5/m4pwhich was made in Ref. 89 and used uncritically in Ref. 80.

    Google Scholar 

  92. F. Reines and M.F. Crouch, Phys. Rev. Letters 32, 493 (1974). Their method was only sensitive to proton decays which produce a muon. In the model discussed here, a large fraction of final states probably do contain a muon — see Ref. 90.

    Article  ADS  Google Scholar 

  93. J. Ellis, M.K. Gaillard, D.V. Nanopoulos and S. Rudaz, CERN preprint TH. 2346 (1977).

    Google Scholar 

  94. H. Harari, Phys. Letters 57B, 265 (1975) and Ann. Phys. (NY) 94, 391 (1975). S. Pakvasa and H. Sugawara, Phys. Rev. D 14, 305 (1976).

    ADS  Google Scholar 

  95. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Nuclear Phys. B109, 213 (1976).

    Article  ADS  Google Scholar 

  96. J. Bailey et al., Phys. Letters 68B, 191 (1977).

    Article  ADS  Google Scholar 

  97. F. Halzen and S. Matsuda, CERN preprint TH. 2354 (1977).

    Google Scholar 

  98. T. Appelquist and H.D. Politzer, Phys. Rev. Letters 34, 43 (1975) and Phys. Rev. D 12 1404 (1975).

    Article  ADS  Google Scholar 

  99. E. Eichten and K. Gottfried, Phys. Letters 66B, 286 (1977).

    Article  ADS  Google Scholar 

  100. J.G. Branson et al., Phys. Rev. Letters 38, 580, 791 (E) (1977).

    Article  ADS  Google Scholar 

  101. M.J. Corden et al., Phys. Letters 68B, 96 (1977).

    Article  ADS  Google Scholar 

  102. C.E. Carlson and R. Suaya, Phys. Rev. D 15, 1416 (1977). S.D. Ellis, M.B. Einhorn and C. Quigg, Phys. Rev. Letters 36, 1263 (1976). Gluon-gluon collisions cannot give J/ψ or ψ’ directly because of charge conjugation, but the hard reaction could be accompanied by the exchange of a soft gluon which fixes up the quantum numbers so that GG →J/ψ need not proceed through Pc/x intermediate states.

    Article  ADS  Google Scholar 

  103. H. Fritzsch, Phys. Letters 67B, 217 (1977).

    Article  ADS  Google Scholar 

  104. H.D. Snyder et al., Phys. Rev. Letters 36, 1415 (1976).

    Article  ADS  Google Scholar 

  105. B.W. Lee, Phys. Rev. D 15, 3394 (1977) gives references. See also refs. 43, 44, 70.

    ADS  Google Scholar 

  106. K. Kleinknecht, Proc. 17th Internat. Conf. on High Energy Physics, London 1974 (ed. J.R. Smith) ( Rutherford Laboratory Chilton, Didcot, 1974 ), p. 111–23.

    Google Scholar 

  107. A. Pais and J.B. Treiman, Phys. Rev. D 12, 2744 (1975).

    ADS  Google Scholar 

  108. N.F. Ramsey, private communication to B.W. Lee, quoted in Ref. 105. The latest published number is 10-23 cm. W.B. Dress, P.D. Miller and N.F. Ramsey, Phys. Rev. D 7, 3147 (1973).

    ADS  Google Scholar 

  109. See also, H. Harari, Ref. 94, in a model where the t and b quarks had much lower masses than are discussed nowadays.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ellis, J. (1979). Charm, Apres-Charm, and Beyond. In: Lévy, M., Basdevant, JL., Speiser, D., Weyers, J., Gastmans, R., Zinn-Justin, J. (eds) Hadron Structure and Lepton-Hadron Interactions. NATO Advanced Study Institutes Series, vol 39. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2883-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2883-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2885-8

  • Online ISBN: 978-1-4613-2883-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics