Skip to main content

Quarks, Hadron Spectroscopy and Beyond

  • Chapter
  • 61 Accesses

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 39))

Abstract

From the marvellous experimental discoveries 1) and theoretical breakthroughs 2) of the last few years has emerged a relatively coherent picture of the world of elementary particles. The “popular mythology” to which most physicists would adhere today can be summarized as follows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Footnotes

  1. For a review see the lectures by J. Ellis, L. Lederman, C. Llewellyn-Smith, J. Steinberger and B. Wiik, these Proceedings and references quoted therein.

    Google Scholar 

  2. C.N. Yang and R.J. Hills, Phys. Rev. 96, 191 (1954). G. ’t Hooft, Nuclear Phys. B35, 167 (1971 S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2, 1285 (1970).

    Article  ADS  Google Scholar 

  3. We assume that the heavy lepton T- is accompanied by its own neutrino. For a discussion of this point see the lectures by J. Ellis and B. Wiik in these Proceedings. The discovery of the T- is due to M. Perl et al., Phys. Rev. Letters 35, 1489 (1975)

    Article  ADS  Google Scholar 

  4. We assume of course that the new quark which builds up the Y(9.6) appears in three colours. For the discovery of the Y(9.6) see the lectures by L. Lederman in these Proceedings.

    Google Scholar 

  5. H. Fritzsch, M. Gell-Mann, and H. Leutwyler, Phys. Lett. B47, 365 (1973). D. J. Gross and F. Wilczek, Phys. Rev. D8, 3497 (1973). S. Weinberg, Phys. Rev. Letters 31, 494 (1973).

    Google Scholar 

  6. For a review of the problem and possible solutions see, e.G., F. Englert, lectures in these Proceedings; D. Gross, lectures in these Proceedings.

    Google Scholar 

  7. S. Weinberg, Phys. Rev. Letters 19 1264 (1967). A. Salam, Proc. 8th Nobel Symposium, Stockholm 1966 (ed. N. Svartholm).

    Article  ADS  Google Scholar 

  8. R. Brout and F. Englert, Phys. Rev. Letters 13, 321 (1964). P.W. Higgs, Phys. Rev. Letters 12, 132 (1964). G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Phys. Rev. Letters 13, 585 (1964)

    Article  ADS  Google Scholar 

  9. I ignore the so called “dynamical” symmetry breaking mechanism where the elementary scalar particle of reference 8) is replaced by a bound state. To the best of my knowledge no coherent formulation of this appealing idea exists as yet.

    Google Scholar 

  10. J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974); B78, 1 (1974); Phys. Letters 49B, 52 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  11. For a recent review, see e.G. P. Fayet et S. Ferrara, Phys. Reports 32C, 249 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  12. The problem of incorporating a U(n) internal symmetry may have been solved by M. Kaku, P.K. Townsend and P. Van Nieuwenhuizen Phys. Rev. Letters 39, 1109 (1977).

    Article  ADS  Google Scholar 

  13. The only theoretical relation between leptons and quarks, at present, is through the so-calles “anomaly” of S.L. Adler, Phys. Rev. 177, 2426 (1969). J.S. Bell and R. Jackiw, Nuovo Cimento 51A, 47 (1969).

    Article  ADS  Google Scholar 

  14. For recent reviews see e.G. H. Fritzsch Lectures given at the International Summer Institute for Theoretical Physics, Bielefeld, Germany (1976), to be published. M.S. Chanowitz, J. Ellis and M.K. Gaillard, CERN preprint TH 2312 (1977) and references quoted therein.

    Google Scholar 

  15. See e.G. K. Igi FNAL preprint (1977).

    Google Scholar 

  16. J.Goldstone, Nuovo Cimento 19 15 (1961).

    Article  MathSciNet  Google Scholar 

  17. S. Weinberg, Phys. Rev. D7, 2887 (1973).

    Article  ADS  Google Scholar 

  18. For an extremely lucid discussion see R.J. Crewther, CERN preprint TH 2350 (1977).

    Google Scholar 

  19. G. Zweig, unpublished. J. Iizuka, Supplement to Progress of Theoret. Phys. 37–38, 21 (1966). S. Okubo, Phys. Lett. 4, 14 (1963).

    Google Scholar 

  20. See e. g. the lectures by J. Ellis, these Proceedings where references can be found.

    Google Scholar 

  21. See e. g. B.W. Lee in Proceedings of the International Symposium on Lepton and Photon Interactions at High Energies, W.T. Kirk Editor, Stanford (1975), and references quoted therein.

    Google Scholar 

  22. P. Baird et al., Nature 264, 528 (1976). P. Sandars, Proceedings of the International Symposium on Lepton and Photon Interactions at High Energies, Hamburg 1977. See also V. Telegdi, lectures in these Proceedings.

    Google Scholar 

  23. B.C. Barish et al., Phys. Rev. Letters 38, 577 (1977). A. Benvenuti et al., Phys. Rev. Letters 38, 1110 (1977). See also J. Steinberger, lectures in these Proceedings.

    Article  ADS  Google Scholar 

  24. G. Zweig, CERN preprints TH 401 and 412 (1964) unpublished. M. Gell-Mann, Phys. Letters 8, 214 (1964). R.H. Dalitz, Les Houches Lectures (1965) ( Gordon and Breach, N.Y. 1965 ).

    Google Scholar 

  25. For a review see e. g. J.L. Rosner, Physics Reports 11C (1974) and references quoted therein.

    Google Scholar 

  26. O.W. Greenberg, Phys. Rev. Letters 13, 598 (1964). M.Y. Han and Y. Nambu, Phys. Rev. 139 B 1006 (1963). M. Gell-Mann, Quarks CERN preprint TH 1543 (1972).

    Google Scholar 

  27. H.J. Melosh, Phys. Rev. D9 1095 (1974). See also reference 25).

    ADS  Google Scholar 

  28. See e. g. the lectures by C. Llewellyn Smith, these Proceedings.

    Google Scholar 

  29. J.J. Aubert et al., Phys. Rev. Letters 33, 1404 (1974). J.E. Augustin et al., Phys. Rev. Letters 33, 1406 (1977).

    Article  ADS  Google Scholar 

  30. See e. g. the lectures by B. Wiik, these Proceedings.

    Google Scholar 

  31. H. Harari, Phys. Letters 60B, 172 (1976).

    Article  ADS  Google Scholar 

  32. E. Eichten et al., Phys. Rev. Letters 34, 369 (1975) T. Applequist et al., Phys. Rev. Letters 34, 365 (1975).

    Article  ADS  Google Scholar 

  33. See e. g. J.L. Rosner, Physics Reports 11C (1974). A.J.G. Hey and D. Morgan, Rutherford Report RL-77-060/A (1977). K. Lanius in Proceedings of the XVIIIth International Conference on High Energy Physics Tbilisi (1976).

    Google Scholar 

  34. G.F. Chew, LBL-5391 report (1976).

    Google Scholar 

  35. D. Horn and J.E. Mandula, Caltech preprint (1977). M. Bander, G.L. Shaw, P. Thomas and S. Meshkov, Phys. Rev. Letters 36, 695 (1976).

    Article  ADS  Google Scholar 

  36. See e. g. J.L. Rosner, Physics Reports 11C (1974).

    Google Scholar 

  37. R.H. Dalitz, Oxford Conference on Baryon Resonances (1976). D. Faiman, J. Rosner and J. Weyers, Nuclear Phys. B57, 45 (1973).

    Article  ADS  Google Scholar 

  38. R.H. Dalitz, Les Houches Lectures (1965) (Gordon and Breach, N.Y. 1965). H. Jones, R.H. Dalitz and R.R. Horgan, Nuclear Phys. B129, 45 (1977).

    Article  ADS  Google Scholar 

  39. M.K. Gaillard, B.W. Lee and J.L. Rosner, Rev. of Mod. Phys. 47, 277 (1975).

    Article  ADS  Google Scholar 

  40. E.G. Gazzoli et al., Phys. Rev. Letters 34, 1125 (1975). See also the lectures by J. Ellis for further references.

    Article  ADS  Google Scholar 

  41. See e. g. A.J.G. Hey and D. Morgan reference 33).

    Google Scholar 

  42. W.A. Bardeen, H. Fritzsch and M. Gell-Mann in “Scale and Donformal Symmetry in Hadron Physics”, J. Wiley and Sons, New York (1973).

    Google Scholar 

  43. It is worth pointing out that we have no information concerning the spin structure of the neutral stuff !

    Google Scholar 

  44. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf Phys. Rev. D9, 3471 (1974). A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, Phys. Rev. D10, 2599 (1974). A. Chodos, R.L. Jaffe, K. Johnson, J.Kiskis, Phys. Rev. D12, 2060 11975). P. Gnädig, P. Hasenfratz, J. Kuti, A.S. Szalay, Phys. Lett. Letters 64B, 62 (1976).

    Article  ADS  Google Scholar 

  45. G. Preparata and N. Craigie, Nuclear Physics B102, 466 (1976). N. Craigie and G. Preparata, Nucl. Phys. B102, 497 (1976).

    Google Scholar 

  46. P.G.O. Freund and Y. Nambu, Phys. Rev. Letters 34, 1645 (1975). R.L. Jaffe, K. Johnson, Phys. Letters 60B, 201 (1976).

    Article  ADS  Google Scholar 

  47. For a derivation of this formula, based on duality see e. g. M. Ademollo, G. Veneziano, S. Weinberg, Phys. Rev. Letters 22, 83 (1969). R. Brout, F. Englert and C. Truffin, Phys. Letters 29B, 590, 686 (1969).

    Article  ADS  Google Scholar 

  48. See e. g. V. Barger in Proceedings of the XVIIth International Conference on High Energy Physics, London (1974).

    Google Scholar 

  49. H. Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  50. See e. g. U. Karshon et al. Weizmann Institute report WIS 73/ 44 (1974).

    Google Scholar 

  51. See e. g. F. Gilman, M. Kugler and S. Meshkov, Phys. Rev. D9 715 (1974). A.J.G. Hey, J.L. Rosner and J. Weyers, Nucl. Phys. 44B, 263 (1973). and references quoted by J.L. Rosner 25).

    Google Scholar 

  52. A. Love and D.V. Nanopoulos, Phys. Lett. 45B 507 (1973), F. J. Gilman and I. Karliner, Phys. Rev. D10, 2194 (1974), A.J.G. Hey and J. Weyers, Phys. Letters 40B, 69 (1974).

    Article  ADS  Google Scholar 

  53. H.J. Lipkin, Phys. Reports 8C (1973) pointed out that these parametrizations correspond to the most general single quark transition operator with appropriate quantum numbers.

    Google Scholar 

  54. See e. g. D. Faiman, J.L. Rosner, Phys. Letters 45B, 357 (1973).

    Article  ADS  Google Scholar 

  55. D. Faiman and D.E. Plane, Nuclear Phys. B50, 379 (1972)

    Article  ADS  Google Scholar 

  56. A.J.G. Hey, P.J. Litchfield and R.J. Cashmore, Nucl. Phys. B95, 516 (1975) and Nucl. Phys. B98, 237 (1975).

    Article  ADS  Google Scholar 

  57. G. Feldman, SLAC PUB (1977).

    Google Scholar 

  58. H. Harari in Proceedings of the International Symposium on Lepton and Photon Interaction at High Energies, W.T. Kirk Editor, Stanford (1975).

    Google Scholar 

  59. R.P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. M. Gell-mann and M. Levy, Nuovo Cimento 16,705 (1960). Y. Nambu, Phys. Rev. Letters 4, 380 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  62. S.L. Adler, Phys. Rev. Letters 14, 1051 (1965). W.I. Weisberger, Phys. Rev. Letters 14, 1047 (1965).

    Article  ADS  MATH  Google Scholar 

  63. S. Weinberg, Phys. Rev. D11, 3583 (1975).

    ADS  Google Scholar 

  64. G.’t Hooft, Phys. Rev. D14, 3432 (1976). See, however, reference 18).

    ADS  Google Scholar 

  65. M. Gell-Mann, R. Oakes and B. Renner, Phys. Rev. 175, 2195 (1968). R. Carlitz, D. Heckathorn, J. Kaur and W.K. Tung, Phys. Rev. D11, 1234 (1975).

    ADS  Google Scholar 

  66. N. Fuchs, Purdue University Preprint (1976).

    Google Scholar 

  67. See e. g. D.C. Moir, R.J. Jacob and G.E. Hite, Nucl. Phys. B 103, 477 (1976). P. Gensini, SLAC PUB, 1944–1945–1967 (1977).

    Article  ADS  Google Scholar 

  68. J.F. Gunion, P.C. Mc Namee and M.D. Scadron, SLAC-PUB 1847 (1976).

    Google Scholar 

  69. J. Jersak and J. Stern, Nucl. Phys. B7, 413 (1968), K. Bardakei and M.B. Halpern, Phys. Rev. 176, 1686 (1968).

    Article  ADS  Google Scholar 

  70. See e. g. H. Leutwyler Springer Tracts in Modern Physics 50, 29 (1969). H. Sazdjian and J. Stern, Nucl. Phys. B94, 163 (1975). J. Kogut and D. Soper, Phys. Rev. D1 2901 (1970).

    Article  ADS  Google Scholar 

  71. M. Gell-Mann in Strong and Weak Interactions - Present Problems Academic Press, Inc. New York (1966). K. Bardakei and G. Segré, Phys. Rev. 153 (1967). S. Fubini and G. Furlan, Physics, 1, 299 (1965).

    Google Scholar 

  72. R. Dashen and N. Gell-Mann, Phys. Letters 17, 142 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  73. See e. g. J.S. Bell, Acta Phys. Austriaca, Suppl. 13 395 (1974). and references quoted therein.

    Google Scholar 

  74. H. Leutwyler, Phys. Letters 48B, 431 (1974).

    Article  ADS  Google Scholar 

  75. See e. g. T. Das et al., Phys. Rev. Letters 18, 759 (1967). S.L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224 (1968).

    Article  ADS  Google Scholar 

  76. R. Dashen, Phys. Rev. 183, 1245 (1969). See also P. Langacker and H. Pagels, Phys. Rev. D8, 4620 (1973).

    ADS  Google Scholar 

  77. G. Segrè and J. Weyers, Phys. Letters 62B, 91 (1976).

    Article  ADS  Google Scholar 

  78. S. Weinberg, Phys. Rev. Letters: see also Ref. 17).

    Google Scholar 

  79. J. Kuti, Lectures given at the CERN-JINR School of Physics (1977).

    Google Scholar 

  80. P.N. Bogoliukov, Ann. Inst. Poincaré 8, 163 (1967).

    Google Scholar 

  81. C. Rebbi, Phys. Rev. D14, 2362 (1976).

    ADS  MathSciNet  Google Scholar 

  82. R.L. Jaffe, Oxford Conference on Baryon Resonances (1976). K. Johnson, Scottish Universities, Summer School (1976). and references quoted therein.

    Google Scholar 

  83. By this we mean a resonance with JPC unaccessible to a \(\bar Q\) Q system.

    Google Scholar 

  84. See e. g. J. Kuti, reference 79 and A.J.G. Hey, Phenomenological Aspects of the MIT Bag (Southampton 1977 ).

    Google Scholar 

  85. T. Applequist et al., Phys. Rev. Letters 34, 365 (1975). T.A. De Grand, R.L. Jaffe, K. Johnson and J. Kiskis, Phys. Rev. D12, 2060 (1975).

    ADS  Google Scholar 

  86. T.A. De Grand, Ann. Phys. 101, 496 (1976). A.J.G. Hey, B.R. Holstein and D.P. Sidhu (Southampton 1977 ).

    Article  ADS  Google Scholar 

  87. J. Pati and A. Salam, Phys. Rev. D8, 1240 (1973). H. Georgi and S.L. Glashow, Phys. Rev. Letters 32, 438 (1974). H. Fritzsch and P. Minkowski, Ann. Phys. 93, 222 (1975). F. Gürsey and P. Sikine, Phys. Letters 60B, 177 (1976) and Phys. Rev. Letters 36, 775 (1976). M. Abud, F. Buccella, H. Ruegg and C.A. Savoy, Phys. Letters 67B, 313 (1977). M. Yoshimura, preprint (1977). K. Inoue et al., preprint (1977).

    Article  ADS  Google Scholar 

  88. J. Steinberger, lectures in these Proceedings. For SU(2)L \( \otimes\) SU(2)R see e. g. H. Fritzsch and P. Minkowski, Nucl. Phys. B103, 61 (1976). R.N. Mohapatra and J.C. Pati, Phys. Rev. D11, 566, 2558 (1975). A. de Rujula, H. Georgi and S.L. Glashow, HUTP-77/A029 (1977).

    Article  ADS  Google Scholar 

  89. For SU(3) \( \otimes\)U(1) see e. g. G. Segré and J. Weyers, Phys. Letters 63B, 99 (1977). B.W. Lee and S. Weinberg, Phys. Rev. Letters 38, 1237 (1977). P. Langacker and G. Segré, Phys. Rev. Letters 39, 259 (1977), and references quoted therein.

    Google Scholar 

  90. M. Kobayashi and K. Maskawa, Progress of Theoret. Phys. 49, 652 (1973).

    Google Scholar 

  91. See e. g. P. Langacker, Phys. Rev. D15, 2386 (1977).

    ADS  Google Scholar 

  92. V. Telegdi, Lectures in these Proceedings.

    Google Scholar 

  93. C. Leroy and J. Pestieau, Louvain Preprint (1977).

    Google Scholar 

  94. See e. g. A. Duncan, P. Schattner, Phys. Rev. D7, 1861 (1973). D.Z. Freedam, W. Kummer, Phys. Rev. D7, 1829 (1973). The reason is of course clear: the mass of the Z° simply plays the role of the cut-off in the Feynman-Speisman calculation. (Phys. Rev. 94, 500 (1954).

    ADS  Google Scholar 

  95. S.Y. Pi, Phys. Rev. D7, 3750 (1973). J. Lieberman, Phys. Rev. D9, 1749 (1974).

    ADS  Google Scholar 

  96. M. de Crombrugghe, H. Haut, J. Weyers, Phys. Letters 71B, 400 (1977).

    Article  ADS  Google Scholar 

  97. S. Weinberg, quoted by H. Fritzsch, next paper. H. Fritzsch, Phys. Letters 70B, 436 (1977). A. de Rujula, H. Georgi, S.L. Glashow HUTP 77/A029 (1977).

    Article  ADS  Google Scholar 

  98. The usual procedure to guarantee the proton’s stability is through superheavy bosons. This is probably not a self consistent procedure (see ref. 99). An interesting alternative is to make the proton absolutely stable by a global U(1) symmetry. See P. Langacker, G. Segré and A. Weldon, UPR-0082 T, (1977) and references quoted therein.

    Google Scholar 

  99. Mass ratios of the gauge bosons cannot be made arbitrarily large as shown by E. Gildener, Phys. Rev. D14, 1667 (1976).

    Google Scholar 

  100. e. g. M. Hamermesh, “Group Theory and its Applications to Physical Problems” (Addison-Wesley, 1962 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weyers, J. (1979). Quarks, Hadron Spectroscopy and Beyond. In: Lévy, M., Basdevant, JL., Speiser, D., Weyers, J., Gastmans, R., Zinn-Justin, J. (eds) Hadron Structure and Lepton-Hadron Interactions. NATO Advanced Study Institutes Series, vol 39. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2883-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2883-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2885-8

  • Online ISBN: 978-1-4613-2883-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics