Skip to main content

The microbiology of vegetable fermentations

  • Chapter
Microbiology of Fermented Foods

Abstract

The origin of the preservation of vegetables by fermentation is lost in antiquity. Worldwide, most vegetables are still fermented on a small scale, either in the home, or by entrepreneurs. The current exceptions to this are sauerkraut, cucumbers, and olives. These are of significant commercial importance and will be the focus of this chapter. There is increasing interest in a wide variety of other fermented vegetables and fermented vegetable juices, especially in the European market (Table 2.1); however, most of these are currently produced commercially on a small scale (Buchenhüskes et al.,1990). Korean kimchi, traditionally prepared in the home, has also been recently adapted to commercial production (Cheigh & Park, 1994; Fleming et al., 1995a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. (1986) Inhibition of Staphylococcus aureus and spheroplasts of gram-negative bacteria by an antagonistic compound produced by a strain of Lactobacillus plantarum. International Journal of Food Microbiology,3, 149–60.

    Article  Google Scholar 

  • Atrih, A., Rekhif, N., Michel, M. & Lefebvre, G. (1993) Detection and characterization of a bacteriocin produced by Lactobacillus plantarum C19. Canadian Journal of Microbiology,39, 1173–9.

    Article  CAS  Google Scholar 

  • Breidt, F. & Fleming, H.P. (1992) Competitive growth of genetically marked malolacticdeficient Lactobacillus plantarum in cucumber fermentations. Applied and Environmental Microbiology, 58, 3845–9.

    CAS  Google Scholar 

  • Breidt, F., Crowley, K.A. & Fleming H.P. (1993) Isolation and characterization of nisinresistant Leuconostoc mesenteroides for use in cabbage fermentations. Applied and Environmental Microbiology, 59, 3778–83.

    CAS  Google Scholar 

  • Breidt, F., Crowley, K.A. & Fleming, H.P. (1995) Controlling cabbage fermentations with nisin and nisin-resistant Leuconostoc mesenteroides. Food Microbiology,12, 109–16.

    Article  Google Scholar 

  • Brunkow, O.R., Peterson, W.H. & Fred, E.B. (1925) A study of the influence of inoculation upon the fermentation of sauerkraut. Journal of Agricultural Research,30, 955–60.

    Google Scholar 

  • Buchenhüskes, H.J. (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiological Review, 12, 253–72.

    Google Scholar 

  • Buchenhüskes, H.J., Schneider, M. & Hammes, W.P. (1986) Lactic acid fermentation of vegetables with special regard to the production of sauerkraut. Chemie, Mikrobiologie, Technologie der Lebensmittel,10, 42–53.

    Google Scholar 

  • Buchenhüskes, H.J., Aabye Jensen, H., Andersson, R., Garrido-Fernández, A. & Rodrigo, M. (1990) Fermented vegetables, in Processing and Quality of Foods. Vol. 2. Food Biotechnology: Avenues to Health and Nutritious Products (eds P. Zeuthen, J.C. Cheftel, C. Eriksson, T.R. Gormley, P. Linko & K. Paulus), Elsevier Applied Science, London and New York, pp. 162–87.

    Google Scholar 

  • Buescher, R.W., Hudson, J.M. & Adams, J.R. (1981) Utilization of calcium to reduce pectinolytic softening of cucumber pickles in low salt conditions. Lebensmittel Wissenshaft Technologie, 14, 65–9.

    CAS  Google Scholar 

  • Cheigh, H.S. & Park, K.Y. (1994) Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Critical Reviews in Food Science and Nutrition, 34(2), 175–203.

    Article  CAS  Google Scholar 

  • Choi, S.Y., Lee, I.S., Yoo, J.Y., Chung, K.S. & Koo, Y.J. (1990) Inhibitory effect of nisin upon kimchi fermentation. Korean Journal of Applied Microbiology and Biotechnology,18, 620–3.

    Google Scholar 

  • Ciafardini, G., Marsilio, V., Lanza, B. & Possi, N. (1994) Hydrolysis of oleuropein by Lactobacillus plantarum strains associated with olive fermentation. Applied and Environmental Microbiology, 60, 4142–7.

    CAS  Google Scholar 

  • Costilow, R.N., Bedford, C.L., Mingus, D. & Black, D. (1977) Purging of natural salt stock pickle fermentations to reduce bloater damage. Journal of Food Science, 42, 234–40.

    Article  CAS  Google Scholar 

  • Cruess, W.V. (1930) Pickling green olives. California Agriculture Experimental Station Bulletin 498.

    Google Scholar 

  • Cruess, W.V. (1937) Use of starters for green olive fermentations. Fruit Production Journal, 17, 1–12.

    Google Scholar 

  • Cruess, W.V. (1958) Pickling and canning of ripe olives, in Commercial Fruits and Vegetable Products, 4th edn, McGraw-Hill, New York, pp. 206–20.

    Google Scholar 

  • Daeschel, M.A. & Klaenhammer, T.R. (1985) Association of a 13.6 megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Applied and Environmental Microbiology, 45, 1538–41.

    Google Scholar 

  • Daeschel, M.A., McFeeters, R.F., Fleming, H.P., Klaenhammer, T.R. & Sanozky, R.B. (1984) Mutation and selection of Lactobacillus plantarum strains that do not produce carbon dioxide from malate. Applied and Environmental Microbiology, 47, 419–20.

    CAS  Google Scholar 

  • Daeschel, M.A., Andersson, R.E. & Fleming, H.P. (1987) Microbial ecology of fermenting plant materials. FEMS Microbiological Review, 46, 357–67.

    Article  Google Scholar 

  • Daeschel, M.A., McKenney, M.C. & McDonald, L.C. (1990) Bacteriocidal activity of Lactobacillus plantarum C-11. Food Microbiology, 7, 91–8.

    Article  CAS  Google Scholar 

  • Duran, M.C., Garcia, P., Brenes, M. & Garrido, A. (1994a) Lactobacillus plantarum survival in aerobic, directly brined olives. Journal of Food Science, 59, 1197–201.

    Article  CAS  Google Scholar 

  • Duran, M.C., Garcia, P., Brenes, M. & Garrido, A. (1994b) Induced lactic acid fermentation during the preservation stage of ripe olives from Hojiblanca cultivar. Journal of Applied Bacteriology,76, 377–82.

    CAS  Google Scholar 

  • Etchells, J.L. & Bell, T.A. (1950) Film yeasts on commercial cucumber brines. Food Technology, 4, 77–83.

    CAS  Google Scholar 

  • Etchells, J. & Jones, I.D. (1942) Pasteurization of pickle products. Fruit Production Journal, 21, 330–2.

    Google Scholar 

  • Etchells, J.L., Bell, T.Z., Monroe, R.J., Masley, P.M. & Demain, A.L. (1958) Populations and softening enzyme activity of filamentous fungi on flowers, ovaries, and fruit of pickling cucumbers. Applied Microbiology, 6, 427–40.

    CAS  Google Scholar 

  • Etchells, J.L., Borg, A.F. & Bell, T.A. (1961) Influence of sorbic acid on populations and species of yeasts occurring in cucumber fermentations. Applied Microbiology, 9, 139–44.

    CAS  Google Scholar 

  • Etchells, J.L., Costillow, R.N., Anderson, T.E. & Bell, T.A. (1964) Pure culture fermentation of brined cucumbers. Applied Microbiology,12, 523–35.

    CAS  Google Scholar 

  • Etchells, J.L., Borg, A.F., Kittel, I.D., Bell T.A. & Fleming, H.P. (1966) Pure culture fermentation of green olives. Applied Microbiology, 14, 1027–40.

    CAS  Google Scholar 

  • Etchells, J.L., Bell, T.A., Fleming, H.P., Kelling, R.E. & Thompson, R.L. (1973) Suggested procedure for the controlled fermentation of commercially brined pickling cucumbers — the use of starter cultures and reduction of carbon dioxide accumulation. Pickle Pack Science, 3, 4–14.

    Google Scholar 

  • Ferguson, L., Sibbett, G.S. & Martin, G.C. (1994) Olive Production Manual,University of California, Division of Agriculture and Natural Resources, Oakland, CA, Publication 3353.

    Google Scholar 

  • Fleming, H.P., Walter, W.M. & Etchells, J.L. (1969) Isolation of a bacterial inhibitor in green olives. Applied Microbiology,18, 850–60.

    Google Scholar 

  • Fleming, H.P., Walter, W.M. & Etchells, J.L. (1973) Antimicrobial properties of oleuropein and products of its hydrolysis. Applied Microbiology,26, 777–82.

    CAS  Google Scholar 

  • Fleming, H.P., Etchells, J.L. & Costilow, R.N. (1975) Microbial inhibition by an isolate of Pediococcus from cucumber brines. Applied Microbiology, 30, 1040–2.

    CAS  Google Scholar 

  • Fleming, H.P., McFeeters, R.F. & Thompson, R.L. (1987) Effects of sodium chloride concentration on firmness retention of cucumbers fermented and stored with calcium chloride. Journal of Food Science, 52, 653–7.

    Article  Google Scholar 

  • Fleming, H.P., McFeeters, R.F., Daeschel, M.A., Humphries, E.G. & Thompson, R.L. (1988a) Fermentation of cucumbers in anaerobic tanks. Journal of Food Science, 53, 127–33.

    Article  Google Scholar 

  • Fleming, H.P., McFeeters, R.F. & Humphries, E.G. (1988b). A fermentor for study of sauerkraut fermentation. Biotechnology and Bioengineering, 31, 189–97.

    Article  CAS  Google Scholar 

  • Fleming, H.P., Daeschel, M.A., McFeeters, R.F. & Pierson, M.D. (1989) Butyric acid spoilage of fermented cucumbers. Journal of Food Science, 54, 636–9.

    Article  CAS  Google Scholar 

  • Fleming, H.P., Kyung, K.H. & Breidt, F. (1995a) Vegetable fermentations, in Biotechnology, 2nd edn, Vol. 9 (eds H.J. Rehm & G. Reed), VCH, New York, pp. 629–61.

    Chapter  Google Scholar 

  • Fleming, H.P., McDonald, L.C., McFeeters, R.F., Thompson, R.L. & Humphries, E.G. (1995b) Fermentation of cucumbers without sodium chloride. Journal of Food Science, 60, 312–15, 319.

    Article  CAS  Google Scholar 

  • Gangopadhyay, H. & Mukherjee, S. (1971) Effect of different salt concentrations on the microflora and physico-chemical changes in sauerkraut fermentation. Journal of Food Science and Technology, 8, 127–31.

    CAS  Google Scholar 

  • Garrido-Fernández, A., García García, P. & Brenes Balbuena, M. (1995) Olive fermentations, in Biotechnology, 2nd edn, Vol. 9 (eds H.J. Rehm & G. Reed), VCH, New York, pp. 593–627.

    Chapter  Google Scholar 

  • Gates, K. & Costilow, R.N. (1981) Factors influencing softening of salt-stock pickles in air-purged fermentations. Journal of Food Science, 46, 274–7.

    Article  CAS  Google Scholar 

  • Gililland, J.R. & Vaughn, R.H. (1943) Characteristics of butyric acid bacteria from olives. Journal of Bacteriology,46, 315–22.

    CAS  Google Scholar 

  • Guillou, A.A., Floros, J.D. & Cousin, M.A. (1992) Calcium chloride and potassium sorbate reduce sodium chloride used during natural cucumber fermentation and storage. Journal of Food Science, 57, 1364–8.

    Article  CAS  Google Scholar 

  • Harris, L.J., Fleming, H.P. & Klaenhammer, T.R. (1992a) Characterization of two nisinproducing Lactococcus lactis subsp. lactis strains isolated from a commercial sauerkraut fermentation. Applied and Environmental Microbiology, 58, 1477–83.

    CAS  Google Scholar 

  • Harris, L.J., Fleming, H.P. & Klaenhammer, T.R. (1992b) Novel paired starter culture system for sauerkraut, consisting of a nisin-resistant Leuconostoc mesenteroides strain and a nisinproducing Lactococcus lactis strain. Applied and Environmental Microbiology, 58, 1484–9.

    CAS  Google Scholar 

  • Jiménez-Diaz, R., Rios-Sanchez, R.M., Desmazeaud, M., Ruiz-Barba, J.L. & Piard, J.-C. (1993) Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Applied and Environmental Microbiology, 59, 1416–24.

    Google Scholar 

  • Juven, B., Henis, Y. & Jacoby, B. (1971) Studies on the mechanism of the antimicrobial action of oleuropein. Journal of Applied Bacteriology, 35, 559–67.

    Google Scholar 

  • Kandler, O. (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49, 209–24.

    Article  CAS  Google Scholar 

  • Kandler, O. & Weiss, N. (1986) Regular, nonsporing gram-positive rods, in Bergey’s Manual of Systematic Bacteriology, Vol. 2 (eds N.R. Krieg & J.G. Holt), Williams and Wilkins Co., Baltimore, pp. 1208–34.

    Google Scholar 

  • Kawatomari, T. & Vaughn, R.H. (1956) Species of Clostridium associated with zapatera spoilage of olives. Food Research, 21, 481–90.

    Google Scholar 

  • Keipper, C.H., Peterson, W.H., Fred, E.B. & Vaughn, W.E. (1932) Sauerkraut from pretreated cabbage. Industrial and Engineering Chemistry, 24, 884–98.

    Article  CAS  Google Scholar 

  • Klaenhammer, T.R. (1988) Bacteriocins of lactic acid bacteria. Biochimie, 70, 337–49.

    Article  CAS  Google Scholar 

  • Kyung, K.H. & Fleming, H.P. (1994a) Antibacterial activity of cabbage juice against lactic acid bacteria. Journal of Food Science, 59, 125–9.

    Article  Google Scholar 

  • Kyung, K.H. & Fleming, H.P. (1994b) S-methyl-L-cysteine sulfoxide as the precursor of methyl methanethiolsufinate, the principal antibacterial compound in cabbage. Journal of Food Science, 59, 350–5.

    Article  CAS  Google Scholar 

  • Lopez, A., Schwartz, M.G., Pratt, D.E. & Powers, J.J. (1954) Nutritional supplementation of lactic acid flora of sauerkraut. Food Research, 19, 564–74.

    CAS  Google Scholar 

  • Lücke, F.-K., Brümmer, J.-M., Buchenhüskes, H.J., Garrido-Fernández, A., Rodrigo, M. & Smith, J.E. (1990) Starter culture development, in Processing and Quality of Foods, Vol. 2. Food Biotechnology: Avenues to Health and Nutritious Products (eds P. Zeuthen, J.C. Cheftel, C. Eriksson, T.R. Gormley, P. Linko & K. Paulus), Elsevier Applied Science, London, New York.

    Google Scholar 

  • Marquina, D., Peres, C., Caldas, F.V., Marques, J.F., Peinado, J.M. & Spencer-Martins, I. (1992) Characterization of the yeast population in olive brines. Letters in Applied Microbiology, 14, 279–83.

    Article  Google Scholar 

  • Marten, E.Q., Peterson, W.H., Fred, E.B. & Vaughn, W.E. (1929) Relation of temperature of fermentation to quality of sauerkraut. Journal of Agricultural Research,39, 285–92.

    Google Scholar 

  • McCombs, C.L., Sox, H.N. & Lower, R.L. (1976) Sugar and dry matter content of cucumber fruits. HortScience, 11, 245–7.

    Google Scholar 

  • McDonald, L.C., Fleming, H.P. & Hassan, H.M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Applied and Environmental Microbiology,56, 2120–4.

    CAS  Google Scholar 

  • McDonald, L.C., Shieh, D.H., Fleming, H.P., McFeeters, R.F. & Thompson, R.L. (1993) Evaluation of malolactic-deficient strains of Lactobacillus plantarum for use in cucumber fermentations. Food Microbiology, 10, 489–99.

    Article  CAS  Google Scholar 

  • McFeeters, R.F., Fleming, H.P. & Thompson, R.L. (1982) Malic and citric acids in pickling cucumbers. Journal of Food Science, 47, 1859–61, 1865.

    Article  CAS  Google Scholar 

  • McFeeters, R.F., Fleming, H.P. & Daeschel, M.A. (1984) Malic acid degradation and brined cucumber bloating. Journal of Food Science, 49, 999–1002.

    Article  CAS  Google Scholar 

  • Monroe, R.J., Etchells, J.L., Pacilio, J.C., Borg, A.F., Wallace, D.H., Rogers, M.P., Turney, L.J. & Schoene, E.S. (1969) Influence of various acidities and pasteurizing temperatures on the keeping quality of fresh-pack dill pickles. Food Technology, 23, 71–7.

    CAS  Google Scholar 

  • Montaño, A., deCastro, A., Rejano, L. & Sánchez, A.H. (1992) Analysis of zapatera olives by gas and high-performance liquid chromatography. Journal of Chromatography, 594, 259–67.

    Article  Google Scholar 

  • Montaño, A., Sánchez, A.H. & deCastro, A. (1993) Controlled fermentation of Spanish-type green olives. Journal of Food Science, 58, 842–4, 852.

    Google Scholar 

  • Montaño, A., deCastro, A., Rejano, L. & Brenes, M. (1996) 4-ydroxycyclohexanecarboxylic acid as a substrate for cyclohexanecarboxylic acid production during the ‘zapatera’ spoilage of Spanish-style green table olives. Journal of Food Protection, 59, 657–62.

    Google Scholar 

  • Mundt, J.O. (1970) Lactic acid bacteria associated with raw plant food material. Journal of Milk and Food Technology,33, 550–3.

    Google Scholar 

  • Mundt, J.O. & Hammer, J.L. (1968) Lactobacilli on plants. Applied Microbiology, 16, 1326–30.

    CAS  Google Scholar 

  • Mundt, J.O., Graham, W.F. & McCarty, I.E. (1967) Spherical lactic acid-producing bacteria of southern-grown raw and processed vegetables. Applied Microbiology, 15, 1303–8.

    CAS  Google Scholar 

  • Narbors, W.T. & Salunkhi, D.K. (1969) Pre-fermentation inoculations with Leuconostoc mesenteroides and Lactobacillus plantarum on physico-chemical properties of fresh and dehydrated sauerkraut. Food Technology, 23, 67–71.

    Google Scholar 

  • Parmele, H.B., Fred, E.B., Peterson, W.H., McConkie, J.E. & Vaughn, W.E. (1927) Relation of temperature to rate and type of fermentation and to quality of commercial sauerkraut. Journal of Agricultural Research, 35, 1021–38.

    CAS  Google Scholar 

  • Passos, F.V., Fleming, H.P., O11is, D.F., Hassan, H.M. & Felder, R.M. (1993a) Modeling the specific growth rate of Lactobacillus plantarum in cucumber extract. Applied Microbiology and Biotechnology,40, 143–50.

    Article  CAS  Google Scholar 

  • Passos, F.V., Ollis, D.F., Fleming, H.P., Hassan, H.M. & Felder, R.M. (1993b) Modeling the cucumber fermentation: growth of Lactobacillus plantarum. Journal of Industrial Microbiology, 12, 341–5.

    Article  CAS  Google Scholar 

  • Passos, F.V., Fleming, H.P., Ollis, D.F., Felder, R.M. & McFeeters, R.F. (1994) Kinetics and modeling of lactic acid production by Lactobacillus plantarum. Applied and Environmental Microbiology, 60, 2627–36.

    CAS  Google Scholar 

  • Pederson, C.S. (1930a) Floral changes in the fermentation of sauerkraut. New York State Agricultural Experiment Station Technical Bulletin 168, Geneva, New York.

    Google Scholar 

  • Pederson, C.S. (1930b) The effect of pure culture inoculation on the quality and chemical composition of sauerkraut. New York State Agricultural Experiment Station Technical Bulletin 169, Geneva, New York.

    Google Scholar 

  • Pederson, C.S. (1960) Sauerkraut, in Advances in Food Research, Vol. 10 (eds C.O. Chichester, E.M. Mrak & G.F. Stewart), Academic Press, New York.

    Google Scholar 

  • Pederson, C.S. & Albury, M.N. (1953) Factors affecting the bacterial flora in fermenting vegetables. Food Research, 18, 290–300.

    Google Scholar 

  • Pederson, C.S. & Albury, M.N. (1961) The effect of pure culture inoculation on fermentation of cucumbers. Food Technology, 15, 351–4.

    Google Scholar 

  • Pederson, C.S. & Albury, M.N. (1969) The sauerkraut fermentation. New York State Agricultural Experiment Station Technical Bulletin 824, Geneva, New York.

    Google Scholar 

  • Pederson, C.S. & Kelly, C.D. (1938) Development of pink color in sauerkraut. Food Research, 3, 583–8.

    CAS  Google Scholar 

  • Potts, E.A. & Fleming, H.P. (1982) Prevention of mold-induced softening in air-purged, brined cucumbers by acidification. Journal of Food Science,47, 1723–7.

    Article  Google Scholar 

  • Puspito, H. and Fleet, F.H. (1985) Microbiology of sayur asin fermentation. Applied Microbiology and Biotechnology,22, 442–5.

    Article  CAS  Google Scholar 

  • Ruiz-Barba, J.L. & Jiménez-Díaz, R. (1995) Availability of essential B-group vitamins to Lactobacillus plantarum in green olive fermentation brines. Applied and Environmental Microbiology, 61, 1294–7.

    CAS  Google Scholar 

  • Ruiz-Barba, J.L., Garrido-Fernandez, A. & Jiménez-Dfaz, R. (1991) Bactericidal action of oleuropein extracted from green olives against Lactobacillus plantarum. Letters in Applied Microbiology, 12, 65–8.

    Article  CAS  Google Scholar 

  • Ruiz-Barba, J.L., Cathcart, D.P., Warner, P.J. & Jiménez-Dfaz, R. (1994) Use of Lactobacillus plantarum LPCO10, a bacteriocin producer, as a starter culture in Spanish-style green olive fermentations. Applied and Environmental Microbiology, 60, 2059–64.

    CAS  Google Scholar 

  • Schneider, M. (1988) Zur mikrobiologie von sauerkraut bei der vergärung in verkaufsfertigen kleinbehältern. Dissertation Hohenheim University, Stuttgart.

    Google Scholar 

  • Stamer, J.R. (1968) Fermentation of vegetables by lactic acid bacteria, in Proceedings, Frontiers in Food Research, New York State Agricultural Experiment Station, Cornell University, Geneva, New York, pp. 46–52.

    Google Scholar 

  • Stamer, J.R. (1983) Lactic acid fermentation of cabbage and cucumbers, in Biotechnology (eds H.J. Rehm & G. Reed), Vol. 5, Verlag Chemie, Weinheim, pp. 365–78.

    Google Scholar 

  • Stamer, J.R. Stoyla, B.O. & Dunckel, B.A. (1971) Growth rates and fermentation patterns of lactic acid bacteria associated with the sauerkraut fermentation. Journal of Milk and Food Technology, 34, 521–5.

    CAS  Google Scholar 

  • Trail, A.C., Fleming, H.P., Young, C.T. & McFeeters, R.F. (1996) Chemical and sensory characterization of commercial sauerkraut. Journal of Food Quality, 19, 15–30.

    Article  Google Scholar 

  • Uhlman, L., Schillinger, U., Rupnow, J.R. & Holzapfel, W.H. (1992) Identification and characterization of two bacteriocin-producing strains of Lactococcus lactis isolated from vegetables. International Journal of Food Microbiology, 16, 141–51.

    Article  CAS  Google Scholar 

  • Vaughn, R.H. (1985) The microbiology of vegetable fermentations, in Microbiology of Fermented Foods, Vol. 1 (ed. B.J.B. Wood), Elsevier Applied Science Publishers, London, pp. 49–109.

    Google Scholar 

  • WHO (World Health Organization) (1974) Toxicological evaluation of some food additives, including anticaking agents, antimicrobials, antioxidants, emulsifiers, and thickening agents, WHO Food Additives Series, 5, 461–4.

    Google Scholar 

  • Yago, M.R. Vila, Feria, A. & Rodrigo, M. (1985) Nota. Influencia de la temperatura y de la inoculacion con Lactobacillus plantarum sobre el processo de fermentacion para obtencion de col acida. Revista de Agroquimica y Tecnologia de Alimentos, 25, 295–304.

    Google Scholar 

  • Yildiz, F. & Westhoff, D. (1981) Associative growth of lactic acid bacteria in cabbage juice. Journal of Food Science,43, 962–3.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Thomson Science

About this chapter

Cite this chapter

Harris, L.J. (1998). The microbiology of vegetable fermentations. In: Wood, B.J.B. (eds) Microbiology of Fermented Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0309-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0309-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7990-4

  • Online ISBN: 978-1-4613-0309-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics