Skip to main content

Applications of Set Covering, Set Packing and Set Partitioning Models: A Survey

  • Chapter

Abstract

Set covering, set packing and set partitioning models are a special class of linear integer programs. These models and their variants have been used to formulate a variety of practical problems in such areas as capital budgeting, crew scheduling, cutting stock, facilities location, graphs and networks, manufacturing, personnel scheduling, vehicle routing and timetable scheduling among others. Based on the special structure of these models, efficient computational techniques have been developed to solve large size problems making it possible to solve many real world applications. This paper is a survey of the applications of the set covering, set packing, set partitioning models and their variants, including generalizations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Theory

  • Albers, S., “Implicit Enumeration Algorithms for the Set Partitioning Problem”, OR Spektrum, Vol. 2, pp. 23–32 (1980).

    Article  MATH  Google Scholar 

  • Anily, S., and Federguren, A., “Structured Partitioning Problems”, Operations Research, Vol. 39, pp. 130–149 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  • Avis, D., “A Note on Some Computationally Difficult Set Covering Problems”, Mathematical Programming, Vol. 18, pp. 138–145 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  • Baker, E., “Efficient Heuristic Algorithms for the Weighted Set Covering Problem”, Computers and Operations Research, Vol. 8, pp. 303–310 (1981).

    Article  Google Scholar 

  • Balas, E., and Ng, S.M., “On the Set Covering Polytope: 1. All the Facets With Coefficients in 0, 1,2”, Mathematical Programming, Vol. 43, pp. 57–69 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Balas, E., “A Sharp Bound on the Ratio Between Optimal Integer and Fractional Covers”, Mathematics of Operations Research, Vol. 9, pp. 1–5 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  • Balas, E., and Ho, A., “Set Covering Algorithms Using Cutting Planes Heuristics and Subgradient Optimization: A Computational Study”, Mathematical Programming Study, Vol. 12, pp. 37–60 (1980).

    MATH  MathSciNet  Google Scholar 

  • Balas, E., “Cutting Planes from Conditional Bounds: A New Approach to Set Covering” Mathematical Programming Study, Vol. 12, pp. 19–36 (1980).

    MATH  MathSciNet  Google Scholar 

  • Balas, E., and Padberg, M.W., “Set Partitioning: A Survey”, Combinatorial Optimization (Edited by N. Christofides, A. Mingozzi, P. Toth and C. Sandi), John Wiley and Sons, New York, pp. 151–210 (1979).

    Google Scholar 

  • Balas, E., “Set Covering with Cutting Planes for Conditional Bounds”, Ninth International Symposium on Mathematical Programming (1976).

    Google Scholar 

  • Balas, E., and Padberg, M.W., “Set Partitioning: A Survey”, SIAM Review, Vol. 18, pp. 710–760 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  • Balas, E., and Padberg, M.W., “On Set Covering Problem II: An Algorithm for Set Partitioning”, Operations Research, Vol. 22, 1, pp. 74–90 (1975a).

    Article  MathSciNet  Google Scholar 

  • Balas, E., and Padberg, M.W., “Set Partitioning”, Combinatorial Programming. Methods and Applications (Edited by B. Roy), Reidel Publishing Co., pp. 205–258 (1975b).

    Google Scholar 

  • Balas, E., and Padberg, M.W., “On the Set-Covering Problem”, Operations Research, Vol. 20, pp. 1152–1161 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  • Beasley, J.E., “An Algorithm for Set Covering Problem”, European Journal of Operational Research, Vol. 31, pp. 85–93 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  • Bellmore, M., and Ratliff, H.D., “Set Covering and Involutory Basis”, Management Science, Vol. 18, pp. 194–206 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  • Benvensite, R., “A Note on the Set Covering Problem”, Journal of the Operational Research Society, Vol. 33, pp. 261–265 (1982).

    Google Scholar 

  • Berge, C., “Balanced Matrices”, Mathematical Programming, Vol. 2, pp. 19–31 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  • Chan, T.J., and Yano, C.A., “A Multiplier Adjustment Approach for the Set Partitioning Problem”, Operations Research, Vol. 40, pp. S40–S47 (1992).

    Article  MathSciNet  Google Scholar 

  • Chaudry, S.S., Moon, I.D., and McCormick, S.T., “Conditional Covering: Greedy Heuristics and Computational Results”, Computers and Operations Research, Vol. 14, pp. 11–18 (1987).

    Article  MathSciNet  Google Scholar 

  • Christofides, N., and Paixo, J., “State Space Relaxation for the Set Covering Problem” Faculdade, de ciencias Lisboa, Portugal (1986).

    Google Scholar 

  • Christofides, N., and Korman, S., “A Computational Survey of Methods for the Set Covering Problem”, Management Science, Vol. 21, pp. 591–599 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  • Chvatal, V., “A Greedy-Heuristic for the Set Covering Problem”, Mathematics of Operations Research, Vol. 4, pp. 233–235 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  • Coffman, E.G., Jr., and Lueker, G.S., “Probabilistic Analysis of Packing and Partitioning Algorithms”, John Wiley (1991).

    Google Scholar 

  • Conforti, M., Corneil, D.G., and Mahjoub, A.R., “K-Covers 1: Complexity and Polytope”, Discrete Mathematics, Vol. 58, pp. 121–142 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  • Cornvejols, G., and Sassano, A., “On the (0,1) Facets of the Set Covering Polytope”, Mathematical Programming, Vol. 43, pp. 45–55 (1989).

    Article  MathSciNet  Google Scholar 

  • Crama, Y., Hammer, P., and Ibaraki, T., “Packing, Covering and Partitioning Problems with Strongly Unimodular Constraint Matrices”, Mathematics of Operaions Research, Vol. 15, pp. 258–269 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  • El-Darzi, E., “Methods for Solving the Set Covering and Set Partitioning Problems using Graph Theoretic (Relaxations) Algorithms”, PhD Thesis, Brunel University, Uxbridge (UK) (1988).

    Google Scholar 

  • EI-Darzi, E., and Mitra, G., “A Tree Search for the Solution of Set Problems Using Alternative Relaxations”, TR/03/88, Department of Mathematics and Statistics, Brunel University, Uxbridge (UK) (1988a).

    Google Scholar 

  • El-Darzi, E., and Mitra, G., “Set Covering and Set Partitioning: A Collection of Test Problems”, TR/01/88, Department of Mathematics and Statistics, Brunel University, Uxbridge (UK) (1988b).

    Google Scholar 

  • Etcheberry, J., “The Set Covering Problem: A New Implicit Enumeration Algorithm”, Operations Research, Vol. 25, pp. 760–772 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, M.L., and Kedia, P., “Optimal Solution of Set Covering/Partitioning Problems Using Dual Heuristics”, Management Science, Vol. 36, pp. 674–688 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, M.L., and Kedia, P., “A Dual Algorithm for Large Scale Set Partitioning”, Paper No. 894, Purdue University, West Lafayette, Indiana (1986).

    Google Scholar 

  • Fisher, M.L., and Wolsey, L., “On the Greedy Heuristic for Continuous Covering and Packing Problems”, SIAM Journal On Algebraic and Discrete Methods, Vol. 3, pp. 584–591 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  • Fowler, R.J., Paterson, M.S., and Tanimoto, S.L., “Optimal Packing and Covering in the Plane are NP- Complete”, Information Processing Letters, Vol. 12, pp. 133–137 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • Fox, G.W., and Scudder, G.D., “A Simple Strategy for Solving a Class of 01 Integer Programming Models”, Computers and Operations Research, Vol. 13, pp. 707–712 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  • Fulkerson, D.R., Hoffman, A.J., and Oppenheim, R., “On Balanced Matrices”, Mathematical Programming Study, Vol. 1, pp. 120–132 (1974).

    MathSciNet  Google Scholar 

  • Garfinkel, R., and Nemhauser, G.L., “Optimal Set Covering: A Survey”, Perspectives on Optimization., (Edited by A.M. Geoffrion), Addison-Wesley, pp. 164–183 (1972).

    Google Scholar 

  • Garfinkel, R.S., and Nemhauser, G.L., “The Set Partitioning Problem: Set Covering with Equality Constraints”, Operations Research, Vol. 17, pp. 848–856 (1969).

    Article  MATH  Google Scholar 

  • Hammer, P.L., and Simeone, B., “Order Relations of Variables in 0–1 Programming”, Annals of Discrete Mathematics, Vol. 31, pp. 83–112 (1987)

    MathSciNet  Google Scholar 

  • Hammer, P.L., Johnson, F.L., and Peled, U.N., “Regular 0–1 Programs”, Cahiers du Centre d’Etudes de Recherche Operationnelle, Vol. 16, pp. 267–276 (1974).

    MATH  MathSciNet  Google Scholar 

  • Ho, A., “Worst Case of a Class of Set Covering Heuristic”, Mathematical Programming, Vol. 23, pp. 170–181 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  • Hochbaum, D., “Approximation Algorithms for the Weighted Set Covering and Node Cover Problems”, GSIA, Carnegie-Mellon University (1980).

    Google Scholar 

  • Hwang, F.K., Sum, J., and Yao, E.Y., “Optimal Set Partitioning”, SIAM Journal On Algebraic Discrete Methods, Vol. 6, pp. 163–170 (1985).

    Article  MATH  Google Scholar 

  • John, D.G., and Kochenberger, G.A., “Using Surrogate Constraints in a Lagrangian Relaxation Approach to Set Covering Problems” Journal of Operational Research Society, Vol. 39, pp. 681–685 (1988).

    MATH  Google Scholar 

  • Johnson, D., “Approximation Algorithms for Combinatorial Problems”, Journal of Computer and System Scinces, Vol. 9, pp. 256–278 (1974).

    Article  MATH  Google Scholar 

  • Lawler, E.L., “Covering Problems: Duality Relations and a New Method of Solutions”, SIAM Journal of Applied Mathematics, Vol. 14, pp. 1115–1132 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  • Leigh, W., Ali, D., Ezell, C., and Noemi, P., “A Branch and Bound Algorithm for Implementing Set Covering Model Expert System”, Computers and Operations Research, Vol. 11, pp. 464–467 (1988).

    Google Scholar 

  • Lemke, C.E., Salkin, H.M., and Spielberg, K., “Set Covering by Single Branch Enumeration with Linear Programming Subproblems”, Operations Research, Vol. 19, pp. 998–1022 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  • Lovasz, L., “On the Ratio of Optimal Integer and Fractional Covers”, Discrete Mathematics, Vol. 13, pp. 383–390 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  • Marsten, R.E., “An Algorithm for Large Set Partitioning Problems”, Management Science, Vol. 20, pp. 774–787 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • Michaud, P., “Exact Implicit Enumeration Method for Solving the Set Partitioning Problem”, IBM Journal of Research and Development, Vol. 16, pp. 573–578 (1972).

    Article  MATH  Google Scholar 

  • Murty, K., “On the Set Representation and Set Covering Problem”, Symposium on the Theory of Scheduling and Its Applications, (Edited by S.E., Elmaghraby), Springer-Verlag (1973).

    Google Scholar 

  • Nemhauser, G.L., Trotter, L.E., and Nauss, R.M., “Set Partitioning and Chain Decomposition”, Management Science, Vol. 20, pp. 1413–1423 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • Padberg, M., “Covering, Packing and Knapsack Problems”, Annals of Discrete Mathematics, Vol. 4, pp. 265–287 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  • Padberg, M., “Perfect Zero-One Matrices”, Mathematical Programming, Vol. 6, pp. 180–196 (1974a).

    Article  MATH  MathSciNet  Google Scholar 

  • Padberg, M., “Characterization of Totally Unimodular, Balanced and Perfect Matrices”, Combinatorial Programming: Methods and Applications, (Edited by B. Roy), D. Reidal Publishing, pp. 275–284 (1974b).

    Google Scholar 

  • Padberg, M., “On the Facial Structure of Set Packing Polyhedra”, Mathematical Programming, Vol. 5, pp. 199–215 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  • Peled, U.N., and Simeone, B., “Polynomial-Time Algorithms for Regular Set-Covering and Threshold Synthesis”, Discrete Applied Mathematics, Vol. 12„ pp. 57–69 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • Pierce, J.F., and Lasky, J.S., “Improved Combinatorial Programming Algorithms for a Class of All Zero-One Integer Programming Problems”, Management Science, Vol. 19, pp. 528–543 (1975).

    Article  MathSciNet  Google Scholar 

  • Pierce, J.F., “Applications of Combinatorial Programming to a Class of All-Zero-One Integer Programming Problems”, Management Science, Vol. 15, pp. 191–209 (1968).

    Article  MathSciNet  Google Scholar 

  • Roth, R., “Computer Solutions to Minimum Cover Problems”, Operations Research, Vol. 17, pp. 455–465 (1969).

    Article  MATH  Google Scholar 

  • Roy, B. “An Algorithm for a General Constrained Set Covering Problem”, Computing and Graph Theory, Academic Press (1972).

    Google Scholar 

  • Ryan, D.M. and Falkner, J.C., “On the Integer Properties of Scheduling Set Partitioning Models”, European Journal of Operational Research, Vol. 35, pp. 442–456 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  • Ryzhkov, A.P., “On Certain Covering Problems”, Engineering Cybernetics, Vol. 2, pp. 543–548 (1973).

    MathSciNet  Google Scholar 

  • Salkin, H.M., “The Set Covering Problem”, Integer Programming, Addison Wesley, pp. 439–481, (1975).

    Google Scholar 

  • Salkin, H.M., and Koncal, R.D., “Set Covering by an All-Integer Algorithm: Computational Experience”, ACM Journal, Vol. 20, pp. 189–193, (1973).

    Article  MATH  Google Scholar 

  • Trubin, V.A., “On a Method of Integer Linear Programming of a Special Kind”, Soviet Math. Dokl., Vol. 10, pp. 1544–1546 (1969).

    MATH  Google Scholar 

  • Vasko, F.J., and Wolfe F.E., “Solving Large Set Covering Problems on a Personal Computer”, Computers and Operations Research, Vol. 15, pp. 115–121 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  • Vasko, F.J., and Wilson, G.R., “Hybrid Heuristics for Minimum Cardinality Set Covering Problems”, Naval Research Logistic Quarterly, Vol. 33, pp. 241–250 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  • Vasko, F.J., and Wilson, G.R., “Using Facility Location Algorithms to Solve Large Set Covering Problems”, Operations Research Letters, Vol. 3, pp. 85–90 (1984a).

    Article  MATH  Google Scholar 

  • Vasko, F.J., and Wilson, G.R., “An Efficient Heuristic for Large Set Covering Problems”, Naval Research Logistics Quarterly, Vol. 31, pp. 163–171 (1984b).

    Article  MATH  Google Scholar 

Graphs

  • Aneja, Y.P., “An Integer Programming Approach to the Steiner Problem in Graphs”, Networks, Vol. 10, pp. 167–178 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  • Aneja, Y.P., and Vemuganti, R.R., “A Row Generation Scheme for Finding Multi-Commodity Minimum Disconnecting Set”, Management Science, Vol. 23, pp. 652–659 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  • Balanski, M.L., “On Maximum Matching, Minimum Covering and Their Connections”, Proceedings of the International Symposium on Mathematical Programming, (Edited by H.W. Kuhn), Princeton University Press, pp. 303–311, (1970).

    Google Scholar 

  • Beasley, J.E., “An SST-Based Algorithm for the Steiner Problem on Graphs”, Networks, Vol. 19, pp. 1–16 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Beasley, J.E., “An Algorithm for the Steiner Problem in Graphs”, Networks, Vol. 14, pp. 147–159 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  • Bellmore, M., and Ratliff, H.D., “Optimal Defence of Multi-Commodity Networks”, Management Science, Vol. 18, pp. 174–185 (1971).

    Article  MathSciNet  Google Scholar 

  • Berge, C., “Graphs and Hypergraphs”, Translated by E. Minieka, North-Holland Publishing Company, Amsterdam-London (1973).

    Google Scholar 

  • Brelaz, D., “New Method to Color the Vertices of a Graph”, Communications of the ACM, Vol.22, pp. 251–256 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  • Brown, J.R., “Chromatic Scheduling and the Chromatic Number Problem”, Management Science, Vol. 19, pp. 456–663 (1972).

    Article  MATH  Google Scholar 

  • Chang, G.J., and Nemhauser, G.L., “Covering, Packing and Generalized Perfection”, SIAM Journal on Algebraic and Discrete Methods, Vol. 6, pp. 109–132 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • Chopra, S., “Comparison of Formulations and Heuristics for Packing Steiner Trees on a Graph”, Technical Report, J.L. Kellogg Graduate School of Management, Northwestern University, Illinois (1992).

    Google Scholar 

  • Chvatal, V., “Determining the Stability Number of a Graph”, SIAM Journal on Computing, Vol. 6, pp. 643–662 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  • Cockayne, E.J., and Melzak, Z.A., “Steiner’s Problem for Set Terminals”, Quarterly of Applied Mathematics, Vol. 26, pp. 213–218 (1969).

    MathSciNet  Google Scholar 

  • Corneil, D.G., and Graham, B., “An Algorithm for Determining the Chromatic Number of a Graph”, SIAM Journal of Computing, Vol. 2, pp. 311–318 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  • Dreyfus, S.E., and Wagner, R.A., “The Steiner Problem in Graphs”, Networks, Vol. 1, pp. 195–207 (1971).

    Article  MathSciNet  Google Scholar 

  • Edmonds, J., “Maximum Matching and a Polyhedron with 0,1 Vertices”, Journal of Research of National Bureau of Standards, Vol. 69b, pp. 125–130 (1965a)

    MathSciNet  Google Scholar 

  • Edmonds, J., “Paths, Trees and Flowers”, Canadian Journal of Mathematics, Vol. 17, pp. 449–467 (1965b).

    Article  MATH  MathSciNet  Google Scholar 

  • Edmonds, J., “Covers and Packing in a Family of Sets”, Bulletin of the American Mathematical Society, Vol. 68, pp. 494–499 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  • Gilbert, E.N., and Pollak, H.O., “Steiner Minimal Trees”, SIAM Journal of Applied Mathematics, Vol. 16, pp. 1–29 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  • Hakimi, S.L, “Steiner’s Problem in Graphs and Its Implications”, Networks, Vol. 1, pp. 113–133 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  • Hanan, M., “On Steiner’s Problem with Rectilinear Distance”, SIAM Journal of Applied Mathematics, Vol. 14, pp. 255–265 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  • Houck, D.J., and Vemuganti, R.R., “An Algorithm for the Vertex Packing Problem”, Operations Research, Vol. 25, pp. 773–787 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang, F.K., and Richards, D.S., “Steiner Tree Problems”, Networks, Vol. 22, pp. 55–89 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  • Khoury, B.N., Pardalos, P.M., and Hearn, D.W., “Equivalent Formulations for the Steiner Problem on Graphs”, Network Optimization Problems (Edited by D.-Z, Du and P.M. Pardos), World Scientific Publishing Co., pp. 111–124 (1993).

    Google Scholar 

  • Khoury, B.N., Pardalos, P.M., and Du, D.-Z., “A Test Problem Generator for the Steiner Problem in Graphs”, Department of Industrial and Systems Engineering Working Paper, University of Florida, Gainsville, Florida (1993).

    Google Scholar 

  • Leighton, F., “A Graph-Coloring Algorithm for Large Scheduling Problems”, Journal of Research of the National Bureau of Standards, Vol. 84, pp. 489–506 (1979).

    MATH  MathSciNet  Google Scholar 

  • Maculan, N., “The Steiner Problem in Graphs”, Annals of Discrete Mathematics, Vol. 31, pp. 185–212 (1987).

    MathSciNet  Google Scholar 

  • Mehta, N.K., “The Application of Graph Coloring Model to an Examina- tion Scheduling Problem”, Interfaces, Vol. 11, pp. 57–64 (1981).

    Article  Google Scholar 

  • Nemhauser, G.L., and Trotter, L.E., “Vertex Packing: Structural Properties and Algorithm”, Mathematical Programming, Vol. 8, pp. 232–248 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  • Nemhauser, G.L., and Trotter, L.E., “Properties of Vertex Packing and Independent Systems Polyhedra”, Mathematical Programming, Vol. 6, pp. 48–61 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • Norman, R.Z., and Rabin, M.O., “An Algorithm for a Minimum Cover of a Graph”, Proceedings of the American Mathematical Society, Vol. 10, pp. 315–319 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  • Salazar, A., and Oakford, R.V., “A Graph Formulation of a School Scheduling Algorithm”, Communications of the ACM, Vol. 17, pp. 696–698 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, C.C., “An Algorithm for the Chromatic Number of a Graph”, Journal of ACM, Vol. 21, pp.385–391 (1974).

    Article  MATH  Google Scholar 

  • Weinberger, D.B., “Network Flows, Minimum Coverings, and the Four Color Conjecture”, Operations Research, Vol. 24, pp. 272–290 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  • Winter, P., “Steiner Problem in Networks: A Survey”, Networks, Vol. 17, pp. 129–167 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  • Wong, R.T., “A Dual Ascent Approach to Steiner Tree Problems on a Directed Graph”, Mathematical Programming, Vol. 28, pp. 271–287 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  • Wood, D.C., “A Technique for Coloring a Graph Applicable to Large Scale Time-Tableing Problems”, Computing Journal, Vol. 12, pp. 317–319 (1969).

    Article  MATH  Google Scholar 

  • Wu, Y.F., Widmayer, P., and Wong, C.K., “A Faster Approximation Algorithm for the Steiner Problem in Graphs”, Acta Informatica, Vol. 23, pp. 223–229 (1986).

    Article  MATH  MathSciNet  Google Scholar 

Personnel Scheduling

  • Abernathy, W., Baloff, N., and Hershey, J., “A Variable Nurse Staffing Model”, Decision Sciences, Vol. 5, pp. 58–72 (1974).

    Article  Google Scholar 

  • Abernathy, W., Baloff, N., Hershey, J., and Wandel, S., “A Three Stage Manpower Planning and Scheduling Model - A Service Sector Example”, Operations Research, Vol. 21, pp. 693–711 (1973).

    Article  Google Scholar 

  • Abernathy, W., Baloff, N., and Hershey, J., “The Nurse Staffing Problem: Issues and Prospects”, Sloan Management Review, Vol. 12, pp. 87–99 (1971).

    Google Scholar 

  • Ahuja, H., and Sheppard, R., “Computerized Nurse Scheduling” Industrial Engineering, Vol. 7, pp. 24–29 (1975).

    Google Scholar 

  • Altman, S., Beltrami, E.J., Rappoport, S.S., and Schoepfle, G.K., “Nonlinear Programming Model of Crew Assignments for Household Refuse Collection”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 1, pp. 289–291 (1971).

    Article  Google Scholar 

  • Bailey, J., “Integrated Days Off and Shift Personnel Scheduling”, Computers and Industrial Engineering, Vol. 9, pp. 395–404 (1985).

    Article  Google Scholar 

  • Bailey, J., and Field, J., “Personnel Scheduling with Flexshift Models”, Journal of Operations Management, Vol. 5, pp. 327–338 (1985).

    Article  Google Scholar 

  • Baker, K.R., Burns, R.N., and Carter, M., “Staff Scheduling with Days-Off and Work Stretch Constraints”, AIIE Transactions, Vol. 11, pp. 286–292 (1979).

    Google Scholar 

  • Baker, K.R., and Magazine, M.J., “Workforce Scheduling with Cyclic Demands and Days-Off Constraints”, Management Science, Vol. 24, pp. 161–167 (1977).

    Article  MATH  Google Scholar 

  • Baker, K.R., “Workforce Allocation in Cyclic Scheduling Problem: A Sur- vey”, Operational Research Quarterly, Vol. 27, pp. 155–167 (1976).

    Article  Google Scholar 

  • Baker, K.R., “Scheduling a Full-Time Workforce to Meet Cyclic Staffing Requirements”, Management Science, Vol. 20, pp. 1561–1568 (1974).

    Article  MATH  Google Scholar 

  • Baker, K.R., Crabil, T.B., and Magazine, M.J., “An Optimal Procedure for Allocating Manpower with Cyclic Requirements”, AIIE Transactions, Vol. 5, pp. 119–126 (1973).

    Google Scholar 

  • Bartholdi, J.J., “A Guaranteed-Accuracy Round-off Algorithm for Cyclic Scheduling and Set Covering”, Operations Research, Vol. 29, pp. 501–510 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • Bartholdi, J.J., Orlin, J.B., and Ratliff, H.D., “Cyclic Scheduling via Integer Programs with Circular Ones,” Operations Research, Vol. 29, pp.1074–1085 (1980).

    Article  MathSciNet  Google Scholar 

  • Bartholdi, J.J., and Ratliff, H.D., “Unnetworks, With Applications to Idle Time Scheduling”, Management Science, Vol. 24, pp. 850–858 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  • Bechtold, S., Brusco, M., and Showalter, M., “A Comparative Evaluation of Labor Tour Scheduling Methods”, Decision Sciences, Vol. 22, pp. 683–699 (1991).

    Article  Google Scholar 

  • Bechtold, S.E., “Optimal Work-Rest Schedules with a Set of Fixed-Duration Rest Periods”, Decision Sciences, Vol. 22, pp. 157–170 (1991).

    Article  Google Scholar 

  • Bechtold, S.E., and Jacobs, L.W., “Implicit Modelling of Flexible Break Assignments in Optimal Shift Scheduling”, Management Science, Vol. 36, pp. 1339–1351 (1990).

    Article  Google Scholar 

  • Bechtold, S.E., and Sumners, D.L., “Optimal Work-Rest Scheduling with Exponential Work Rate Decay”, Management Science, Vol. 34, pp. 547–552 (1988).

    Article  MathSciNet  Google Scholar 

  • Bechtold, S.E., “Implicit Optimal and Heuristic Labor Staffing in a Multi-objective Multilocation Environment”, Decision Sciences, Vol. 19, pp. 353–372 (1988).

    Article  Google Scholar 

  • Bechtold, S.E., and Showalter, M., “A Methodology for Labor Scheduling in a Service Operating System”, Decision Sciences, Vol. 18, pp. 89–107 (1987).

    Article  Google Scholar 

  • Bechtold, S.E., and Showalter, M., “Simple Manpower Scheduling Methods for Managers”, Production and Inventory Management, Vol. 26, pp. 116–132 (1985).

    Google Scholar 

  • Bechtold, S.E., Janaro, R.E., and Sumners, D.L., “Maximization of Labor Productivity through Optimal Rest-Break Schedules”, Management Science, Vol. 30, pp. 1442–1458 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  • Bechtold, S.E., “Work Force Scheduling for Arbitrary Cyclic Demand”, Journal of Operations Management Vol. 1, pp. 205–214 (1981).

    Article  Google Scholar 

  • Bechtold, S.E., “Quantitative Models for Optimal Rest Period Scheduling: A Note”, OMEGA, The International Journal of Management Science, Vol. 7, pp. 565–566 (1979).

    Google Scholar 

  • Bennett, B.T., and Potts, R.B., “Rotating Roster for a Transit System”, Transportation Science, Vol. 2, pp. 14–34 (1968).

    Article  Google Scholar 

  • Bodin, L.D., “Toward a General Model for Manpower Scheduling: Parts 1 and 2”, Journal of Urban Analysis, Vol. 1, pp. 191–245 (1973).

    Google Scholar 

  • Browne, J.J., “Simplified Scheduling of Routine Work Hours and Days Off’, Industrial Engineering, Vol. 11, pp. 27–29 (1979).

    Google Scholar 

  • Browne, J.J. and Tibrewala, R.K., “Manpower Scheduling”, Industrial Engineering, Vol. 7, pp. 22–23 (1975).

    Google Scholar 

  • Brownell, W.S., and Lowerre, J.M., “Scheduling of Workforce Required in Continuous Operations Under Alternate Labor Policies”, Management Science, Vol. 22, pp. 597–605 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  • Buffa, E.S., Cosagrove, M.J., and Luce, B.J., “An Integrated Work Shift Scheduling System”, Decision Sciences, Vol. 7, pp. 620–630 (1976).

    Article  Google Scholar 

  • Burns, R.N., and Koop, G.J., “A Modular Approach to Optimal Shift Manpower Scheduling”, Operations Research, Vol. 35, pp. 100–110 (1987).

    Article  MATH  Google Scholar 

  • Burns, R.N., and Carter, M.W., “Work Force Size and Single Shift Schedules with Variable Demands”, Management Science, Vol. 31, pp. 599–607 (1985).

    Article  Google Scholar 

  • Burns, R.N., “Manpower Scheduling with Variable Demands and Alternate Weekends Off’, INFOR, Canadian Journal of Operations Research and Information Processing, Vol. 16, pp. 101–111 (1978).

    MATH  MathSciNet  Google Scholar 

  • Byrne, J.L., and Potts, R.B., “Scheduling of Toll Collectors”, Transportation Science, Vol. 30, pp. 224–245 (1973).

    Article  Google Scholar 

  • Chaiken, J., and Dormont, P., “A Patrol Car Allocation Model: Background and A Patrol Car Allocation Model: Capabilities and Algorithms”, Management Science, Vol. 24, pp. 1280–1300 (1978)

    Article  Google Scholar 

  • Chelst, K., “Deployment of One vs. Two-Officer Patrol Units: A Comparison of Travel Times”, Management Science, Vol. 27, pp. 213–230 (1981).

    Article  Google Scholar 

  • Chelst, K., “Algorithm for Deploying a Crime Directed Patrol Force”, Management Science, Vol. 24, pp. 1314–1327 (1978).

    Article  MATH  Google Scholar 

  • Chen, D., “A Simple Algorithm for a Workforce Scheduling Model”, AIIE Transactions, Vol. 10, pp. 244–251 (1978).

    Google Scholar 

  • Church, J.G., “Sure Staff: A Computerized Staff Scheduling System for Telephone Business Offices” Management Science, Vol. 20, pp. 708–720 (1973).

    Article  Google Scholar 

  • Dantazig, G.W., “A Comment on Edie’s Traffic Delays at Toll Booths”, Operations Research, Vol. 2, pp. 339–341 (1954).

    Article  Google Scholar 

  • Easton, F.F., and Rossin, D.F., “Sufficient Working Subsets for the Tour Scheduling Problem”, Management Science, Vol. 37, pp. 1441–1451 (1991a).

    Article  MATH  Google Scholar 

  • Easton, F.F., and Rossin, D.F., “Equivalent Alternate Solutions for the Tour Scheduling Problems”, Decision Sciences, Vol. 22, pp. 985–1007 (1991b).

    Google Scholar 

  • Eilon, S., “On a Mechanistic Approach to Fatigue and Rest Periods”, International Journal of Production Research, Vol. 3, pp. 327–332 (1964).

    Article  Google Scholar 

  • Emmons, H., and Burns, R.N., “Off-Day Scheduling with Hierarchical Worker Categories”, Operations Research, Vol. 39, pp. 484–495 (1991).

    Article  MATH  Google Scholar 

  • Emmons, H., “Workforce Scheduling with Cyclic Requirements and Constraints on Days Off, Weekends Off and Workstretch”, IIE Transactions, Vol. 17, pp. 8–16 (1985).

    Article  Google Scholar 

  • Frances, M.A., “Implementing a Program of Cyclical Scheduling of Nursing Personnel”, Hospitals, Vol. 40, pp. 108–123 (1966).

    Google Scholar 

  • Gaballa, A., and Pearce, W., “Telephone Sales Manpower Planning at Qantas”, Interfaces, Vol. 9, pp. 1–9 (1979).

    Article  Google Scholar 

  • Gentzler, G.L., Khalil, T.M., and Sivazlian, B.B., “Quantitative Methods for Optimal Rest Period Scheduling”, OMEGA, The International Journal of Management Science, Vol. 5, pp. 215–220 (1977).

    Google Scholar 

  • Glover, F., and McMillan, C., “The General Employee Scheduling Problem: An Integration of Management Science and Artificial Intelligence”, Computers and Operations Research, Vol. 13, pp. 563–573 (1986).

    Article  Google Scholar 

  • Glover, F., McMillan, C. and Glover, R., “A Heuristic Programming Approach to the Employee Scheduling Problem and Some Thoughts on ‘Managerial Robots”, Journal of Operations Management, Vol. 4, pp. 113–128 (1984).

    Article  Google Scholar 

  • Green, L. and Kolesar, P., “The Feasibility of One Officer Patrol in New York City”, Management Science, Vol. 30, pp. 964–981 (1984).

    Article  Google Scholar 

  • Guha, D., and Browne, J., “Optimal Scheduling of Tours and Days Off”, Preprints, Workshop on Automated Techniques for Scheduling of Vehicle Operators for Urban Public Transportation Services (Edited by Bodin and Bergman), Chicago, Illinois (1975).

    Google Scholar 

  • Hagberg, B., “An Assignment Approach to the Rostering Problem: An Application to Taxi Vehicles”, Computer Scheduling of Public Transport 2 (Edited by J-M Rousseau), pp. 313–318, North-Holland (1985).

    Google Scholar 

  • Henderson, W.B., and Berry, W.L., “Determining Optimal Shift Schedules for Telephone Traffic Exchange Operators”, Decision Sciences, Vol. 8, pp. 239–255 (1977)

    Article  Google Scholar 

  • Henderson, W.B., and Berry, W.L., “Heuristic Methods for Telephone Operator Shift Scheduling: An Experimental Analysis”, Management Science, Vol. 22, pp.1372–1380 (1976).

    Article  Google Scholar 

  • Hershy, J.C., Albernathy, W.J., and Baloff, N., “Comparison of Nurse Allocation Policies - A Monte Carlo Model”, Decision Sciences, Vol. 5, pp. 58–72 (1974).

    Article  Google Scholar 

  • Holloran, T.J., and Byrn, J.E., “United Airline Station Manpower Planning System”, Interfaces, Vol. 16, pp. 39–50 (1986).

    Article  Google Scholar 

  • Howell, J.P., “Cyclical Scheduling of Nursing Personnel,” Hospitals, J.A.H.A., Vol. 40, pp. 77–85 (1966).

    Google Scholar 

  • Hung, R., and Emmons, H., “Multiple-Shift Workforce Scheduling Under the 3–4 Compressed Workweek With a Hierarchical Workforce”, Department of Operations Research Working Paper, Case Western Reserve University, Cleveland, Ohio (1990).

    Google Scholar 

  • Ignall, E. Kolesar, P., and Walker, W., “Linear Programming Models of Crew Assignments for Refuse Collection”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 2, pp. 664–666 (1972).

    Article  Google Scholar 

  • Keith, E.G., “Operator Scheduling”, AIIE Transactions, Vol. 11, pp. 37–41 (1979).

    Google Scholar 

  • Klasskin, P.M., “Operating to Schedule Operators”, Telephony, Vol. 12 pp. 29–31 (1973).

    Google Scholar 

  • Koop, G.J., “Multiple Shift Workforce Lower Bounds”, Management Science, Vol. 34, pp. 1221–1230 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  • Koop, G.J., “Cyclic Scheduling of Weekends”, Operations Research Letters, Vol. 4, pp. 259–263 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  • Krajewski, L.J., Ritzman, L.P., and McKenzie, P., “Shift Scheduling in Banking Operations: A Case Application”, Interfaces, Vol. 10, pp. 1–8 (1980).

    Article  Google Scholar 

  • Krajewski, L.J., and Ritzman, L.P., “Disaggregation in Manufacturing and Service Organizations: Survey of Problems and Research”, Decision Sciences, Vol. 8, pp. 1–18, (1977).

    Article  Google Scholar 

  • Lessard, R., Rousseau, J.M., and DuPuis, D., “Hatus I: A Mathematical Programming Approach to the Bus Driver Scheduling Problem”, Computer Scheduling of Public Transport, (Edited by A. Wren), North-Holland Publishing Company, pp. 255–267 (1981).

    Google Scholar 

  • Li, C., Robinson, E.P., and Mabert, V.A., “An Evaluation of Tour Scheduling Heuristics with Differences in Employee Productivity and Cost”, Decision Sciences, Vol. 22, pp. 700–718 (1991).

    Article  Google Scholar 

  • Linder, R.W., “The Development of Manpower and Facilities Planning Methods for Airline Telephone Reservation Offices”, Operational Research Quarterly, Vol. 20, No. 1, pp. (1969).

    Google Scholar 

  • Loucks, J.S., and Jacobs, F.R., “Tour Scheduling and Task Assignment of a Heterogeneous Work Force”, Decision Sciences, Vol. 22, pp. 719–738 (1991).

    Article  Google Scholar 

  • Lowerre, J.M., “On Personnel Budgeting on Continuous Operations (With Emphasis on Hospitals)”, Decision Sciences, Vol, 10, pp. 126–135 (1979).

    Article  Google Scholar 

  • Lowerre, J.M., “Work Stretch Properties for the Scheduling of Continuous Operations Under Alternative Labor Policies”, Management Science, Vol. 23, pp. 963–971 (1977).

    Article  MATH  Google Scholar 

  • Mabert, V.A., and Watts C.A., “A Simulation Analysis of Tour Shift Construction Procedures”, Management Science, Vol. 28, pp. 520–532 (1982).

    Article  Google Scholar 

  • Mabert, V.A., and McKenzie, J.P., “Improving Bank Operations: A Case Study at Bank Ohio/Ohio National Bank”, OMEGA, The International Journal of Management Science, Vol. 8, pp. 345–354 (1980).

    Google Scholar 

  • Mabert, V.A., “A Case Study of Encoder Shift Scheduling Under Uncertainty”, Management Science, Vol. 25, pp. 623–631 (1979).

    Article  Google Scholar 

  • Mabert, V.A., and Raedels, A., “The Detail Scheduling of A Part-Time Work Force: A Case Study of Tellar Staffing”, Decision Sciences, Vol. 8, pp. 109–120 (1977).

    Article  Google Scholar 

  • Maier-Rothe, C., and Wolf, H.B., “Cylical Scheduling and Allocation of Nursing Staff”, Socio-Economic Planning Sciences, Vol. 7, pp. 471–487 (1973).

    Article  Google Scholar 

  • McGinnis, L.F., Culver, W.D., and Deane, R.H., “One and Two-Phase Heuristics for Workforce Scheduling”, Computers and Industrial Engineering, Vol. 2, pp. 7–15 (1978).

    Article  Google Scholar 

  • McGrath, D., “Flextime Scheduling: A Survey”, Industrial Management, Vol. 22, pp. 1–4 (1980).

    Google Scholar 

  • Megeath, J.D., “Successful Hospital Personnel Scheduling”, Interfaces, Vol. 8, pp. 55–59 (1978).

    Article  Google Scholar 

  • Miller, H.E., Pierskalla, W.P., and Rath, G.J., “Nurse Scheduling, Using Mathematical Programming”, Operations Research, Vol. 24, pp. 857–870 (1976).

    Article  MATH  Google Scholar 

  • Monroe, G., “Scheduling Manpower for Service Operations”, Industrial Engineering, Vol. 2, pp. 10–17 (1970).

    Google Scholar 

  • Moondra, S.L., “An L.P. Model for Work Force Scheduling for Banks”, Journal of Bank Research, Vol. 6, pp. 299–301 (1976).

    Google Scholar 

  • Morris, J.G., and Showalter, M.J., “Simple Approaches to Shift, Days-Off and Tour Scheduling Programs”, Management Science, Vol. 29, pp. 942–950 (1983).

    Article  Google Scholar 

  • Morrish, A.R., and O’Connor, A.R., “Cyclic Scheduling” Hospitals J.A.H.A., Vol. 14, pp. 66–71 (1970).

    Google Scholar 

  • Ozkarahan, I., and Bailey, J.E., “Goal Programming Model Subsystem of Flexible Nurse Scheduling Support System”, IIE Transactions, Vol. 20, No. 3, pp. 306–316 (1988).

    Article  Google Scholar 

  • Ozkarahan, I., “A Flexible Nurse Scheduling Support System”, Ph.D. Dissertation, Arizona State University (1987).

    Google Scholar 

  • Paixao, J., and Pato, M., “A Structural Lagrangean Relaxation for Two-Duty Period Bus Drive Scheduling Problems”, European Journal of Operational Research, Vol. 39, No. 2, pp. 213–222 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Pappas, I.A., “Dynamic Job Assignment for Railway Personnel”, Management Science, Vol. 13, pp. B809–B816 (1967).

    Article  Google Scholar 

  • Price, E., “Techniques to Improve Staffing”, American Journal of Nursing, Vol. 70, pp. 2112–2115 (1970).

    Google Scholar 

  • Ritzman, L.P., Krajewski, L.J., and Showalter, M.J., “The Disaggregation of Aggregate Manpower Plans”, Management Science, Vol. 22, pp. 1204–1214 (1976).

    Article  Google Scholar 

  • Rothstein, M., “Hospital Manpower Shift Scheduling by Mathematical Pro- gramming”, Health Service Research, Vol. 8, pp. 60–66 (1973).

    Google Scholar 

  • Rothstein, M., “Scheduling Manpower by Mathematical Programming”, Industrial Engineering, Vol. 4, pp. 29–33 (1972).

    Google Scholar 

  • Segal, M., “The Operator-Scheduling Problem: A Network Flow Approach”, Operations Research, Vol. 22, pp. 808–823 (1974).

    Article  MATH  Google Scholar 

  • Shepardson, F., and Marsten, R.E., “A Lagrangean Relaxation Algorithm for the Two Duty Period Scheduling Problem”, Management Science, Vol. 26, pp. 274–281 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  • Showalter, M.J., and Mabert, V.A., “An Evaluation of A Full-Part Time Tour Scheduling Methodology”, International Journal of Operations and Production Management, Vol. 8, pp. 54–71 (1988).

    Article  Google Scholar 

  • Showalter, M.J., Krajewski, L. J., and Ritzman, L.P., “Manpower Allocation in U.S. Postal Facilities: A Heuristic Approach”, Computers and Operations Research, Vol. 2, pp. 141–13 (1978).

    Google Scholar 

  • Smith, D.L., “The Application of an Interactive Algorithm to Develop Cyclical Schedules for Nursing Personnel”, INFOR, Canadian Journal of Operations Research and Information Processing„ Vol. 14, pp. 53–70 (1976).

    Google Scholar 

  • Smith, H.L., Mangelsdorf, K.R., Luna, J.C., and Reid, R.A., “Supplying Ecuador’s Health Workers Just in Time”, Interfaces, Vol. 19, pp. 1–12 (1989).

    Article  Google Scholar 

  • Smith, L., and Wiggins, A., “A Computer-Based Nursing Scheduling System”, Computers and Operations Research, Vol. 4, pp. 195–212 (1977).

    Article  Google Scholar 

  • Stern, H.I., and Hersh, M., “Scheduling Aircraft Cleaning Crews”, Transportation Science, Vol. 14, pp. 277–291 (1980).

    Article  Google Scholar 

  • Taylor, P.E., and Huxlery, S.J., “A Break from Tradition for the San Francisco Police: Patrol Officer Scheduling Using An Optimization-Based Decision Support System”, Interfaces, Vol. 19, pp. 4–24 (1989).

    Article  Google Scholar 

  • Tibrewala, R., Phillippe, D., and Browne, J., “Optimal Scheduling of Two Consecutive Idle Periods”, Management Science, Vol. 19, pp. 71–75 (1972).

    Article  MATH  Google Scholar 

  • Tien, J.M., and Kamiyama, A., “On Manpower Scheduling Algorithms”, SIAM Review, Vol. 24, pp. 275–287 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  • Vohra, R.V., “A Quick Heuristic for Some Cyclic Staffing Problems with Breaks”, Journal of Operations Research Society, Vol. 39, pp. 1057–1061 (1988).

    MATH  Google Scholar 

  • Warner, D.M., “Scheduling Nursing Personnel According to Nursing Preference: A Mathematical Programming Approach”, Operations Research, Vol. 24, pp. 842–856 (1976).

    Article  MATH  Google Scholar 

  • Warner, D.M., and Prawda, J., “A Mathematical Programming Model for Scheduling Nursing Personnel in Hospitals”, Management Science, Vol. 19, pp. 411–422 (1972).

    Article  MATH  Google Scholar 

  • Wolfe, H., and Young, J.P., “Staffing the Nursing Unit Part I Controlled Variable Staffing”, Nursing Research, Vol. 14, pp. 236–243 (1965a).

    Google Scholar 

  • Wolfe, H., and Young, J.P., “Staffing the Nursing Unit Part II The Multiple Assignment Technique”, Nursing Research, Vol. 14, pp. 299–303 (1965b).

    Google Scholar 

Crew Scheduling

  • Amar, G., “New Bus Scheduling Methods at RATP”, Computer Scheduling of Public Transport, (Edited by J.H. Roussean), Elsevier Science Publishers, North Holland, pp. 415–426 (1985).

    Google Scholar 

  • Anbil, R., Gelman, E., Patty, B., and Tanga, R., “RecentAdvances in Crew-Paring Optimization at American Airlines”, Interfaces, Vol. 21, pp. 62–74 (1991).

    Article  Google Scholar 

  • Arabeyre, J.P., Fearnley, J., Steiger, F.C., and Teather, W., “The Airline Crew Scheduling Problem: A Survey”, Transportation Science, Vol. 3, pp. 140–163 (1969).

    Article  Google Scholar 

  • Arabeyre, J.P., “Methods of Crew Scheduling”, Proceedings, 6th AGI-FORS (Airline Group of International Federation of Operations Research) Symposium, Air France (1966).

    Google Scholar 

  • Baker, E., and Fisher, M., “Computational Results for Very Large Air Crew Scheduling Problems”, OMEGA, The International Journal of Management Science, Vol. 9, pp. 613–618 (1981).

    Google Scholar 

  • Baker, E.K., and Frey, K., “A Heuristic Set Covering Based System for Scheduling Air Crews”, Proceedings, SE AIDS (1980).

    Google Scholar 

  • Baker, E.K., and Bodin, L.D., Finnegan, W.F., and Ponder, R., “Efficient Heuristic Solutions to an Airline Crew Scheduling Problem”, AIIE Transactions, Vol. 11, pp. 79–85 (1979).

    Google Scholar 

  • Ball, M.O., Bodin, D.L., and Greenberg, J., “Enhancement to the RUCUS - II Crew Scheduling System”, Computer Scheduling of Public Transport 2 (Edited by J.-M. Rousseau), Elsevier Science Publishers, North- Holland Publishing Company, pp. 279–293 (1985).

    Google Scholar 

  • Ball, M., and Roberts, A., “A Graph Partitioning Approach to Airline Crew Scheduling”, Transportation Science, Vol. 19, pp. 106–126 (1985).

    Article  Google Scholar 

  • Ball, M., Bodin, L., and Dial, R., “A Matching Based Heuristic for Scheduling Mass Transit Crews and Vehicles” Transportation Science, Vol. 17, pp. 4–31 (1983).

    Article  Google Scholar 

  • Ball, M.O., Bodin, D.L., and Dial, R., “Experimentation with Computerized System for Scheduling Mass Transit Vehicles and Crews”, Computer Scheduling of Public Transport (Edited by A. Wren), North-Holland Publishing Company, pp. 313–334, (1981).

    Google Scholar 

  • Ball, M., Bodin, L., and Dial, R., “Scheduling of Drivers for Mass Transit Systems Using Interactive Optimization”, World Conference on Transportation Research, London, England (April 1980).

    Google Scholar 

  • Barnhart, C., Johnson, E., Anbil, R., and Hatay, L., “A Column Generation Technique for the Long-haul Crew Assignment Problem”, ORSA/TIMS (1991).

    Google Scholar 

  • Belletti, R., and Davani, A., “BDROP: A Package for the Bus Drivers’ Rostering Problem”, Computer Scheduling of Public Transport 2 (Edited by J. -M. Rousseau), Elsevier Science Publishers, North-Holland Publishing Company, pp. 319–324 (1985).

    Google Scholar 

  • Bodin, L., Ball, M., Duguid, R., and Mitchell, M., “The Vehicle Scheduling Problem with Interlining”, Computer Scheduling of Public Transport 2, (Edited by J. -M. Rousseau), Elsevier Science Publishers, North-Holland, (1985).

    Google Scholar 

  • Bodin, L., Rosenfield and Kydes, A., “Scheduling and Estimation Techniques for Transportation Planning”, Computers and Operations Research, Vol. 8, pp. 25–38 (1981).

    Article  Google Scholar 

  • Bodin, L., and Dial, R., “Hierarchical Procedures for Determining Vehicle and Crew Requirements for Mass Transit Systems”, Transportation Research Record, 746, pp. 58–64 (1980).

    Google Scholar 

  • Booler, J.M., “A Method for Solving Crew Scheduling Problems”, Operational Research Quarterly, Vol. 26, pp. 55–62 (1975).

    Article  MATH  Google Scholar 

  • Borret, J.M.J., and Roes, A.W., “Crew Scheduling by Computer: A Test on the Possibility of Designing Duties for a Certain Bus Line”, Computer Scheduling Public Transport, (Edited by A. Wren), North- Holland Publishing Company, pp. 237–253 (1981).

    Google Scholar 

  • Bronemann, D.R., “A Crew Planning and Scheduling System”, Proceedings, 10th AGIFORS (Airline Group of International Federation of Operations Research) Symposium, (1970).

    Google Scholar 

  • Carraresi, P., and Gallo, G., “Network Models for Vehicle and Crew Scheduling”, European Journal of Operational Research, Vol. 16, pp. 139–151 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  • Ceder, A., “The Variable Trip Procedure Used in the Automobile Vehicle Scheduler”, Computer Scheduling of Public Transport 2 (Edited by J. -W. Rousseau), Elsevier Science Publishers, North-Holland Publishing Company, pp. 371–390, (1985).

    Google Scholar 

  • Darby-Dowman, K., and Mitra, G., “An Extension of Set Partitioning with Applications to Scheduling Problems”, European Journal of Operational Research, Vol. 21, pp. 200–205 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • Edwards, G.R., “An Approach to the Crew Scheduling Problem”, New Zealand Operational Research, Vol. 8, pp. 153–171 (1980).

    Google Scholar 

  • Evers, G.H.E., “Relevant Factors Around Crew-Utilization”, AGIFORS (Airline Group of International Federation of Operations Research) Symposium, KLM (1956).

    Google Scholar 

  • Falkner, J.C., and Ryan, D.M., “A Bus Crew Scheduling System Using a Set Partitioning Model”, Asia- Pacific Journal of Operations Research, Vol. 4, pp. 39–56 (1987).

    Google Scholar 

  • Gerbract, R., “A New Algorithm for Very Large Crew Pairing Problems”, Proceedings, 18th AGIFORS (Airline Group of the International Federation of Operations Research) Symposium (1978).

    Google Scholar 

  • Gershkoff, I., “Overview of the Crew Scheduling Problem”, ORSA/TIMS National Conference (1990).

    Google Scholar 

  • Gershkoff, I., “Optimizing Flight Crew Schedules”, Interfaces, Vol. 19, pp. 29–43 (1989).

    Article  Google Scholar 

  • Gershkoff, I., “American’s System for Building Crew Pairings”, Airline Executive, Vol. 11, pp. 20–22 (1987).

    Google Scholar 

  • Hartley, T., “Two Complementary Bus Scheduling Programs”, Computer Scheduling of Public Transport 2 (Edited by J. - M. Rousseau), Elsevier Science Publishers, pp. 345–367 (1985).

    Google Scholar 

  • Hartley, T., “A Glossary of Terms in Bus and Crew Scheduling”, Computer Scheduling of Public Transport (Edited by A. Wren), North-Holland Publishing Company, pp. 353–359 (1981).

    Google Scholar 

  • Henderson, W., “Relationships Between the Scheduling of Telephone Operators and Public Transportation Vehicle Drivers”, Preprint, Workshop on Automated Techniques for Schedules of Vehicle Operators for Urban Public Transportation Services (Edited by L. Bodin, and D. Bergmann), Chicago, Illinois (1975).

    Google Scholar 

  • Heurgon, E., and Hervillard, R., “Preparing Duty Rosters for Bus by Computers”, UITP Revue, Vol. 24, pp. 33–37 (1975).

    Google Scholar 

  • Hoffstadt, J., “Computerized Vehicle and Driver Scheduling for the Hamburger Hochbahn Aktiengesellschaft”, Computer Scheduling of Public Transport: Urban Passenger and Crew Scheduling (Edited by A. Wren), North-Holland Publishing Company, pp. 35–52 (1981).

    Google Scholar 

  • Howard, S.M., and Moser, P.I., “Impacs: A Hybrid Interactive Approach to Computerized Crew Scheduling”, Computer Scheduling of Public Transport 2 (Edited by J.-M. Rousseau), Elsevier Science Publishers, North-Holland Publishing Company, pp. 211–220, (1985).

    Google Scholar 

  • Jones, R.D., “Development of an Automated Airline Crew Bid Generations Systems”, Interfaces, Vol. 19, pp. 44–51 (1989).

    Article  Google Scholar 

  • Kabbani, N.M., and Patty, B.W., “Aircraft Routing at American Airlines”, ORSA/TIMS, Joint National Meeting (1993).

    Google Scholar 

  • Keaveny, I.T., and Burbeck, S., “Automatic Trip Scheduling and Optimal Vehicle Assignments”, Computer Scheduling of Public Transport (Edited by A. Wren), North-Holland Publishing Company, pp. 125–145, (1981).

    Google Scholar 

  • Kolner, T.K., “Some Highlights of a Scheduling Matrix Generator System”, Proceedings, 6th AGIFORS (Airline Group of the International Federation of Operations Research) Symposium (1966).

    Google Scholar 

  • Koutsopoulos, H.N., Odoni, A.R., and Wilson, N.H.M., “Determination of Headways as a Function of Time Varying Characteristics on a Transient Network”, Computer Scheduling of Public Transport 2 (Edited by J. M. Rousseau), Elsevier Science Publishers, North-Holland, pp. 391–413 (1985).

    Google Scholar 

  • Lavoie, S., Minoux, M., and Odier, E., “A New Approach for Crew Pairing Problems by Column Generation Scheme with An Application to Air Transportation”, European Journal of Operational Research, Vol. 35, pp. 45–58 (1988).

    Article  MATH  Google Scholar 

  • LePrince, M., and Mertens, W., “Vehicle and Crew Scheduling at the Societe Des Transports Intercommunaux De Bruxelles”, Computer Scheduling of Public Transport 2 (Edited by J.-M. Rousseau), Elsevier Science Publishers, North-Holland, pp. 149–178, (1985).

    Google Scholar 

  • Lessard, R., Rouseau, J.-M., and DuPuis, D., “HASTUS I: A Mathematical Programming Approach to the Bus Driver Scheduling Problem”, Computer Scheduling of Public Transport (Edited by A. Wren), North-Holland Publishing Company, pp. 255–267, (1980).

    Google Scholar 

  • Leudtke, L.K., “RUCUS II: A Review of System Capabilities”, Computer Scheduling of Public Transport 2 (Edited by J.-M. Rousseau), Elsevier Science Publishers, North-Holland Publishing Company, pp. 61–116 (1985).

    Google Scholar 

  • Marsten, R.E., and Muller, M.R., and Killion, D.L., “Crew Planning at Flying Tiger: A Successful Application of Integer Programming”, Management Science, Vol. 25, pp. 1175–1183 (1989).

    Article  Google Scholar 

  • Marsten, R.E., and Shepardson, F., “Exact Solution of Crew Scheduling Problems Using the Set Partitioning Model: Recent Successful Applications”, Networks, Vol. 11, pp. 165–177 (1981).

    Article  Google Scholar 

  • McCloskey, J.F., and Hanssman, F., “An Analysis of Stewardess Requirements and Scheduling for a Major Airline”, Naval Research Logistic Quarterly, Vol. 4, pp. 183–192 (1957).

    Article  Google Scholar 

  • Minoux, M., “Column Generation Techniques in Combinatorial Optimization, A new Application to Crew- Pairing Problems”, Proceedings, 24th AGIFORS (Airline Group of the International Federation of Operations Research) Symposium, Strasbourg, France (1984).

    Google Scholar 

  • Mitchell, R., “Results and Experience of Calibrating HASTAUS-MARCO for Work Rule Cost at the Southern California Rapid Transit District, Los Angeles”, Computer Scheduling of Public Transport 2 (Edited by J.-M. Rousseau), Elsevier Science Publishers, North-Holland, (1985).

    Google Scholar 

  • Mitra, G., and Darby-Dowman K., “CRU-SCHED: A Computer Based Bus Crew Scheduling System Using Integer Programming” Computer Scheduling in Public Transport (Edited by J-M. Rousseau), Elsevier Publishers, North-Holland Publishing Company, pp. 223–232 (1985).

    Google Scholar 

  • Mitra, G., and Welsh, A., “A Computer Based Crew Scheduling System Using a Mathematical Programming Approach”, Computer Scheduling Public Transport: Urban Passenger Vehicle and Crew Scheduling (Edited by A. Wren) North Holland Publishing Company, pp. 281–296 (1981).

    Google Scholar 

  • Niederer, M., “Optimization of Swissair’s Crew Scheduling by Heuristic Methods Using Integer Linear Programming Models”, Proceedings, 6th AGIFORS (Airline Group of the International Federation of Operations Research), Symposium (1966).

    Google Scholar 

  • Paixao, J.P., Branco, M.I., Captivo, M.E., Pato, M.V., Eusebio, R., and Amado, L., “Bus and Crew Scheduling on a Microcomputer”, (Edited by J. D. Coelho and L. V. Tavers), North-Holland Publishing Company (1986).

    Google Scholar 

  • Parker, M.E., and Smith, B.M., “Two Approaches to Computer Crew Scheduling”, Computer Scheduling of Public Transport, (Edited by A. Wren), North-Holland Publishing Company, pp. 193–221 (1981).

    Google Scholar 

  • Piccione, C., Cherici, A., Bielli, M., and LaBella, A., “Practical Aspects in Automatic Crew Scheduling”, Computer Scheduling of Public Transport: Urban Passenger Vehicle and Crew Scheduling (Edited by A. Wren), North-Holland Publishing Company, pp. 223–236 (1981).

    Google Scholar 

  • Rannou, B., “A New Approach to Crew Pairing Optimization”, Proceedings, 26th AGIFORS (Airline Group of the International Federation of Operations Research) Symposium, England (1986).

    Google Scholar 

  • Rousseau, J.-M., (Ed)., Computer Scheduling of Public Transport 2, Elsevier Publishers, North Holland (1985).

    MATH  Google Scholar 

  • Rousseau, J. -M, and Lessard, R., “Enhancements to the HASTUS Crew Scheduling Algorithm”, Computer Scheduling of the Public Transport 2 (Edited by J. -M. Rousseau), Elsevier Science Publishers, North-Holland, pp. 295–310, (1985).

    Google Scholar 

  • Rubin, J., “A Technique for the Solution of Massive Set Covering Problem with Application to Airline Crew Scheduling”, Transportation Science, Vol. 7, No. 1, pp. 34–48 (1973).

    Article  Google Scholar 

  • Ryan, D.M., and Foster, B.A., “An Integer Programming Approach to Scheduling”, Computer Scheduling of Public Transport: Urban Passenger Vehicle and Crew Scheduling (Edited by A. Wren), North-Holland Publishing Company, pp. 269–280 (1981).

    Google Scholar 

  • Scott, D., “A Large Scale Linear Programming Approach to the Public Transport Scheduling and Costing Problem”, Computer Scheduling of Public Transport 2 (Edited by J. - M. Rousseau), Elsevier Science Publishers, North-Holland Publishing Company, pp. 473–491, (1985).

    Google Scholar 

  • Shepardson, F., “Modelling the Bus Crew Scheduling Problem”, Computer Scheduling of Public Transport 2 (Edited by J. -M. Rousseau), Elsevier Science Publishers, North-Holland Publishing Company, pp. 247–261 (1985).

    Google Scholar 

  • Stern, H.I., and Ceder, A., “A Deficit Funciton Approach for Bus Scheduling”, Computer Scheduling of Public Transport (Edited by A. Wren), North-Holland Publishing Company, pp. 85–96, (1981).

    Google Scholar 

  • Spitzer, M., “Crew Scheduling with Personal Computer”, Airline Executive, Vol. 11, pp. 24–27 (1987).

    Google Scholar 

  • Spitzer, M., “Solution to the Crew Scheduling Problem”, Proceedings, 1st AGIFORS (Airline Group of International Federation of Operations Research) Symposium (1961).

    Google Scholar 

  • Steiger, F., “Optimization of Swissair’s Crew Scheduling by an Integer Linear Programming Model”, Swissair, O.R. SDK 3.3.911 (1965).

    Google Scholar 

  • Stern, H., “Bus and Crew Scheduling (Note)”, Transportation Research, Vol. 14A, pp. 154–160 (1980).

    Google Scholar 

  • Tykulsker, R.J., O’Niel, K.K., Ceder, A., and Scheffi, Y., “A Commuter Rail Crew Assignment/Work Rules Model”, Computer Scheduling of Transport 2, (Edited by J-M. Rousseau), Elsevier Publishers, North-Holland, pp. 232–246 (1985).

    Google Scholar 

  • Ward, R.E., Durant, P.A., and Hallman, A.B., “A Problem Decomposition Approach to Scheduling the Drivers and Crews of Mass Transit Systems”, Computer Scheduling of Public Transport, (Edited by A. Wren), North-Holland Publishing Company, pp. 297–316 (1981).

    Google Scholar 

  • Wren, A., Smith, B.M., and Miller, A.J., “Complimentary Approaches to Crew Scheduling”, Computer Scheduling of Transport 2, (Edited by J.H. Rousseau), North-Holland Publishing Company, pp. 263–278 (1985).

    Google Scholar 

  • Wren, A., “General Review of the Use of Computers in Scheduling Buses and Their Crews”, Computer Scheduling of Public Transport: Urban Passenger Vehicle and Crew Scheduling, (Edited by A. Wren), North-Holland Publishing Company, pp. 3–16 (1981).

    Google Scholar 

Manufacturing

  • Baybars, I., “A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem”, Management Science, Vol. 32, pp. 909–932 (1986a).

    Article  MATH  MathSciNet  Google Scholar 

  • Baybars, I., “An Efficient Heuristic Method for the Simple Assembly Line Balancing Problem”, International Journal of Production Research, Vol. 24, pp. 149–166 (1986b).

    Article  MATH  Google Scholar 

  • Bowman, E.H., “Assembly-Line Balancing by Linear Programming”, Operations Research, Vol. 8, pp. 385–389 (1960).

    Article  MATH  Google Scholar 

  • Cattrysse, D., Saloman, M., Kuik, R., and Van Wassenhove, L.N., “A Dual Ascent and Column Generation Heuristic for the Discrete Lotsizing an Scheduling Problem with Setup Times”, Management Science, Vol. 39, pp. 477–486 (1993).

    Article  MATH  Google Scholar 

  • Cattrysse, D., Maes, J. and Van Wassenhove, L.N., “Set Partitioning and Column Generation Heuristics for Capacitated Dynamic Lotsizing”, European Journal of Operational Research, Vol. 46, pp. 38–47 (1990)

    Article  MATH  Google Scholar 

  • Cattrysse, J., Maes, J., and Van Wassenhove, L.N., “Set Partitioning Heuristic for Capacitated Lotsizing”, Working Paper 88–12, Division of Industrial Management, Katholieke Universiteit Leuven, Belgium. (1988).

    Google Scholar 

  • Dzielinski, B.P., and Gomory, R.E., “Optimal Programming of Lot Sizes Inventory and Labor Allocations”, Management Science, Vol. 11, pp. 874–890 (1965).

    Article  MathSciNet  Google Scholar 

  • Fisher, M.L., “Optimal Solution of Scheduling Problems Using Lagrange Multipliers - Part I”, Operations Research, Vol. 21, pp. 1114–1127 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  • Freeman, D.R., and Jucker, J.V., “The Line Balancing Problem”, Journal of Industrial Engineering, Vol. 18, pp. 361–364 (1967).

    Google Scholar 

  • Gutjahr, A.L., and Nemhauser, G.L., “An Algorithm for the Line Balancing Problem”, Management Science,Vol. 11, pp. 308–315 (1964).

    Article  MathSciNet  Google Scholar 

  • Hackman, S.T., Magazine, M.J., and Wee, T.S., “Fast Effective Algorithms for Simple Assembly Line Balancing Problems”, Operations Research, Vol. 37, pp. 916–924 (1989).

    Article  MATH  Google Scholar 

  • Hoffmann, T.R., “Eureka: A Hybrid System for Assembly Line Balancing”, Management Science, Vol. 38, pp. 39–47 (1992).

    Article  MATH  Google Scholar 

  • Ignall, E.J., “A Review of Assembly Line Balancing”, The Journal of Industrial Engineering, Vol. 16, pp. 244–254 (1965).

    Google Scholar 

  • Johnson, R.V., “A Branch and Bound Algorithm for Assembly Line Balancing Problems with Formulation Irregularities”, Management Science, Vol. 29, pp. 1309–1324 (1983).

    Article  MATH  Google Scholar 

  • Johnson, R.V., “Assembly Line Balancing Algorithms: Computational Comparisons:, International Journal of Production Research, Vol. 19, pp. 277–287 (1981).

    Article  Google Scholar 

  • Kilbridge, M.D., and Webster, L., “A Review of Analytical Systems of Line Balancing”, Operations Research, Vol. 10, pp. 626–638 (1962).

    Article  Google Scholar 

  • Lasdon, L.S., and Terjung, R.C., “An Efficient Algorithm for Multi-Item Scheduling”, Operations Research, Vol. 19, pp. 946–969 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  • Manne, A.S., “Programming of Economic Lot Sizes”, Management Science, Vol. 4, pp. 115–135 (1958).

    Article  Google Scholar 

  • Patterson, J.H., and Albracht, J.J., “Assembly-Line Balancing: Zero-One Programming with Fibonacci Search”, Operations Research, Vol. 23, pp. 166–174 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  • Pierce, J.F., “Pattern Sequencing and Matching a Stock Cutting Operations”, Tappi, Vol. 53, pp. 668–678 (1970).

    Google Scholar 

  • Salveson, M.E., “The Assembly Line Balancing Problem”, Journal of Industrial Engineering, Vol. 6, pp. 18–25 (1955).

    Google Scholar 

  • Scudder, G.D., “Priority Scheduling and Spare Parts Stocking Policies for a Repair Shop: The Multiple Failure Case”, Management Science, Vol. 30, pp. 739–749 (1984).

    Article  Google Scholar 

  • Stanfell, L.E., “Successive Approximation Procedures for a Cellular Manufacturing Problem with Machine Loading Constraints”, Engineering Costs and Production Economics, Vol. 17, pp. 135–147 (1989).

    Article  Google Scholar 

  • Talbot, F.B., and Gehrlein, W.V., “A Comparative Evaluation of Heuristic Line Balancing Techniques”, Management Science, Vol. 32, pp. 430–454 (1986).

    Article  Google Scholar 

  • Talbot, F.B., and Patterson, J.H., “An Integer Programming Algorithm with Network Cuts Solving the Assembly Line Balancing Problem”, Management Science, Vol. 30, pp. 85–99 (1984).

    Article  MATH  Google Scholar 

  • Vasko, F.J., Wolf, F.E., and Scott, K.L., Jr., “A Set Covering Approach to Metallurgical Grade Assignment”, European Journal of Operations Research, Vol. 38 pp. 27–34 (1989).

    Article  Google Scholar 

  • Vasko, F.J., Wolf, F.E., and Scott, K.L., “Optimal Selection of IGNOT Sizes Via Set Covering”, Operations Research, Vol. 35, pp. 346–353 (1987).

    Article  Google Scholar 

  • White, W.W., “Comments on a Paper by Bowman”, Operations Research, Vol. 9, pp. 274–276 (1961).

    Article  Google Scholar 

Miscellaneous Operations

  • Almond, M., “A University Faculty Time Table”, Computer Journal, Vol. 12, pp. 215–217 (1969).

    Google Scholar 

  • Almond, M., “An Algorithm for Constructing University Time-Table”, Computer Journal, Vol. 8, pp. 331–340 (1966).

    Google Scholar 

  • Aneja, Y.P., and Vemuganti, R.R., “Set Covering and Fixed Charge Transportation Problem”, Technical Report, University of Baltimore, Maryland (1974).

    Google Scholar 

  • Arani, T., and Lotfi, V., “A Three Phased Approach to Final Exam Scheduling”, IIE Transactions, Vol. 21, pp. 86–96 (1989).

    Article  Google Scholar 

  • Aubin, J., and Ferland, J.A., “A Large Scale Timetabling Problem”, Computers and Operations Research, Vol. 16, pp. 67–77 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Aust, R.J., “An Improvement Algorithm for School Timetablikng”, Computer Journal, Vol. 19, pp. 339–345 (1976).

    Article  MATH  Google Scholar 

  • Barham, A.M., and Westwood, J.B., “A Simple Heuristic to Facilitate Course Timetabling”, Journal of the Operational Research Society, Vol. 29, pp. 1055–1060 (1978).

    MATH  Google Scholar 

  • Broder, S., “Final Examination Scheduling”, Communications of ACM, Vol. 7, pp. 494–498 (1964).

    Article  MATH  Google Scholar 

  • Carter, M.W., and Tovey, C.A., “When is the Classroom Assignment Problem Hard?”, Operations Research, Vol. 40, pp. S28-S39 (1992).

    Article  Google Scholar 

  • Carter, M.W., “A Lagrangian Relaxation Approach to Classroom Assignment Problem”, INFOR, Canadian Journal of Operations Research and Information Processing, Vol. 27, pp. 230–246 (1989).

    MATH  Google Scholar 

  • Carter, M.W., “A Survey of Practical Applications of Examination Timetable Scheduling”, Operations Research, Vol. 34, pp. 193–202 (1986).

    Article  MathSciNet  Google Scholar 

  • Csima, J., and Gotleib, G.C., “Tests on a Computer Method for Constructing Timetables”, Communications of the ACM, Vol. 7, pp. 160–163 (1964).

    Article  MATH  Google Scholar 

  • Day, R.H., “On Optimal Extracting from a Multiple Data Storage System: An Application of Integer Programming”, Operations Research, Vol. 13, pp. 482–494 (1965).

    Article  Google Scholar 

  • Dempster, M.A.H., “Two Algorithms for the Timetabling Problem”, Combinatorial Mathematics and Applications (Edited by D.J.A. Welsh), Academic Press, pp. 63–85 (1971).

    Google Scholar 

  • DeWerra, D., “Some Comments on a Note About Timetabling”, INFOR, Canadian Journal of Operations Research and Information Processing, Vol. 16, pp. 90–92 (1978).

    Google Scholar 

  • DeWerra, D., “On a Particular Conference Scheduling Problem”, INFOR, Canadian Journal of Operations Research and Information Processing, Vol. 13, pp. 308–315 (1975).

    MathSciNet  Google Scholar 

  • Even, S., Itai, A., and Shamir, A., “On the Complexity of Timetable and Multicommodity Flow Problems”, SIAM Journal on Computing, Vol. 5, pp. 691–703 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  • Ferland, P.C., and Roy, S., “Timetabling Problem for University as Assignment of Activities to Resources”, Computers and Operations Research, Vol. 12, pp. 207–218 (1985).

    Article  MATH  Google Scholar 

  • Frank, R.S., “On the Fixed Charge Hitchcock Transportation Problem”, Ph.D. Dissertation, The Johns Hopkins University, Baltimore, Maryland (1972).

    Google Scholar 

  • Fulkerson, D.R., Nemhauser, G.L., and Trotter, I.E., “Two Computationally Difficult Set Covering Problems that Arises in Computing the 1-With of Incidence Matrices of Steiner Triple Systems”, Mathematical Programming Study, Vol. 2, pp. 72–81 (1974).

    Google Scholar 

  • Gans, O.B. de., “A Computer Timetabling System for Secondary Schools in Netherlands”, European Journal of Operational Research, Vol. 7, pp. 175–182 (1981).

    Article  Google Scholar 

  • Garfinkel, R.S., Kunnathur, A.S., and Liepins, G.E., “Optimal Imputation of Erroneous Data: Categorial Data, General Edits”, Operations Research, Vol. 34, pp. 744–751 (1986).

    Article  MATH  Google Scholar 

  • Garfinkel, R.S., and Nemhauser, G.L., “Optimal Political Distracting by Implicitly Enumeration Techniques”, Management Science, Vol. 16, pp. B495–B508 (1970).

    Article  Google Scholar 

  • Glassey, C.R., and Mizrach, M., “A Decision Support System for Assigning Classes to Rooms”, Interfaces, Vol. 16, pp. 92–100 (1986).

    Article  Google Scholar 

  • Gosselin, K., and Trouchon, M., “Allocation of Classrooms by Linear Programming”, Journal of Operational Research Society, Vol. 37, pp. 561–569 (1986).

    Google Scholar 

  • Grimes, J., “Scheduling to Reduce Conflict in Meetings”, Communications of the ACM, Vol. 13, pp. 351–352 (1970).

    Article  MATH  Google Scholar 

  • Hall, A., and Action, F., “Scheduling University Course Examination by Computer”, Communications of the ACM, Vol. 10, pp. 235–238 (1967).

    Article  Google Scholar 

  • Heath, L.S., “Covering a Set with Arithmetic Progressions is NP-Complete”, Information Processing Letters“, Vol. 34, pp. 293–298 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  • Hertz, A., “Find a Feasible Course Schedule Using Tabu Search”, Discrete Applied Mathematics, Vol. 35, pp. 255–270 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  • Knauer, B.A., “Solution of Timetable Problem”, Computers and Operations Research, Vol. 1, pp. 363–375 (1974).

    Article  Google Scholar 

  • LaPorte, G., and Desroches, S., “Examination Timetabling by Computer”, Computers and Operations Research, Vol. 11, pp. 351–360 (1984).

    Article  Google Scholar 

  • Lions, J., “The Ontario School Scheduling Problem”, Computer Journal, Vol. 10, pp. 14–21 (1967).

    Article  Google Scholar 

  • Markland, R.E., and Nauss, R.M., “Improving Transit Clearing Operations at Maryland National Bank”, Interfaces, Vol. 13, pp. 1–9 (1983).

    Article  Google Scholar 

  • McKeown, P.G., “A Branch-and-Bound Algorithm for Solving Fixed-Charge Problems”, Naval Research Logistics Quarterly, Vol. 28, pp. 607–617 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • Mehta, N.K., “The Application of a Graph Coloring Method to an Exam- ination Scheduling Problem”, Interfaces, Vol. 11, pp. 57–64 (1981).

    Article  Google Scholar 

  • Mulvey, J.M., “A Classroom/Time Assignment Model”, European Journal of Operational Research, Vol. 9, pp. 64–70 (1982).

    Article  MATH  Google Scholar 

  • Nawijn, W.M., “Optimizing the Performance of a Blood Analyzer: Application of the Set Partitioning Problem”, European Journal of Operational Research, Vol. 36, pp. 167–173 (1988).

    Article  MathSciNet  Google Scholar 

  • Reggia, J.A., Naw, D.S., and Wang, P.Y., “Diagnostic Expert Systems Based on Set Covering Model”, International Journal of Man-Machine Studies, Vol. 19, pp. 437–460, (1983).

    Article  Google Scholar 

  • Thuve, H., “Frequency Planning as a Set on Partitioning Problem”, Euro- pean Journal of Operational Research, Vol. 6, pp. 29–37 (1981).

    Article  MathSciNet  Google Scholar 

  • Tripathy, A., “School Timetabling - A Case in Large Binary Linear Integer Programming”, Management Science, Vol. 30, pp. 1473–1489 (1984).

    Article  MATH  Google Scholar 

  • Tripathy, A., “A Lagrangian Relaxation Approach to Course Timetabling”, Journal of the Operational Research Society, Vol. 31, pp. 599–603 (1980).

    MATH  Google Scholar 

  • Valenta, J.R., “Capital Equipment Decision: A Model for Optimal Systems Interfacing”, M.S. Thesis, Massachusetts Institute of Technology (1969).

    Google Scholar 

  • Van Slyke, R., “Redundant Set Covering in Telecommunications Networks”, Proceedings of the 1982 IEEE Large Scale Systems Symposium, pp. 217–222 (1982).

    Google Scholar 

  • White, G.M., and Chan, P.W., “Towards the Construction of Optimal Examination Schedules”, INFOR, Canadian Journal of Operations Research and Information Processing, Vol. 17, pp. 219–229 (1979).

    Google Scholar 

  • Wood, D.C., “A Technique for Coloring a Graph Applicable to Large Scale Time-Tabling Problems”, Computer Journal, Vol. 12, pp. 317–319 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  • Woodbury, M., Ciftan, E., and Amos, D., “HLA Serum Screening Based on an Heuristic Solution of the Set Cover Problem”, Computer Programs in Biomedicine, Vol. 9, pp. 263–273 (1979).

    Article  Google Scholar 

Routing

  • Agarwal, Y., Mathur, K., and Salkin, H.M., “A Set-Partitioning Based Algorithm for the Vehicle Routing Problem”, Networks, Vol. 19, pp. 731–750 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Agin, N., and Cullen, D., “An Algorithm for Transportation Routing and Vehicle Loading”, Logistics (Edited by M. Geisler), North Holland, Amsterdam, pp. 1–20 (1975).

    Google Scholar 

  • Altinkemer, K., and Gavish, B., “Parallel Savings Based Heuristics for the Delivery Problem”, Operations Research, Vol. 39, pp. 456–469 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  • Altkinkemer, K., and Gavish, B., “Heuristics for the Delivery Problem with Constant Error Guarantees”, Transportation Science, Vol. 24, pp. 294–297 (1990).

    Article  Google Scholar 

  • Altkinkemer, K., and Gavish, B., “Heuristics for Unequal Weight Delivery Problem with a Fixed Error Guarantee”, Operations Research Letters, Vol. 6, pp. 149–158 (1987).

    Article  MathSciNet  Google Scholar 

  • Angel, R., Caudle, W., Noonan, R., and Whinston, A., “A Computer Assisted School Bus Scheduling”, Management Science, Vol. 18, pp. 279–288 (1972).

    Article  Google Scholar 

  • Anily, S., and Federgruen, A., “Two-Echelon Distribution Systems with Vehicle Routing Costs and Central Inventories”, Operations Research, Vol. 41, pp. 37–47 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  • Anily, S., and Federgruen, A., “Rejoinder to Comments on One-Warehouse Multiple Retailer Systems with Vehicle Routing Costs”, Management Science, Vol. 37, pp. 1497–1499 (1992).

    Google Scholar 

  • Anily, S., and Federgruen, A., “A Class of Euclidean Routing Problems with General Route Costs Functions”, Mathematics of Operations Research, Vol. 15, pp. 268–285 (1990a).

    Article  MATH  MathSciNet  Google Scholar 

  • Anily S., and Federgruen, A., “One-Warehouse Multiple Repair Systems with Vehicle Routing Costs”, Management Science, Vol. 36, pp. 92–114 (1990b).

    Article  MATH  MathSciNet  Google Scholar 

  • Appelgren, L., “Integer Programming Methods for a Vessel Scheduling Problem”, Transportation Science, Vol. 5, pp. 64–78 (1971).

    Article  Google Scholar 

  • Appelgren, K., “A Column Generation Algorithm for a Ship Scheduling Problem”, Transportation Science, Vol. 3, pp. 53–68 (1969).

    Article  Google Scholar 

  • Arisawa, S., and Elmaghraby, S.E., “The ‘Hub’ and ’Wheel’ Scheduling Problems; I. The Hub Scheduling Problem: The Myopic Case”, Transportation Science, Vol. 11, pp. 124–146 (1977a).

    Article  Google Scholar 

  • Arisawa, S., and Elmaghraby S.E., “The ‘Hub’ and ’Wheel’ Scheduling Problems, II. The Hub Operation Scheduling Problem (HOSP): Multi-Period and Infinite Horizon and the Wheel Operation Scheduling Problem (WOSP)” Transportation Science, Vol. 11, pp. 147–165 (1977b).

    Article  Google Scholar 

  • Assad, A., “Analytic Models in Rail Transportation: An Annotated Bibliography”, INFOR, Canadian Journal of Operations Research and Information Processing, Vol. 19, pp. 59–80 (1981).

    MATH  Google Scholar 

  • Assad, A., “Models for Rail Transportation”, Transportation Research, Vol. 14A, pp. 205–220 (1980).

    Google Scholar 

  • Averabakh, I., and Berman, O., “Sales-Delivery Man Problems on Tree-Like Networks”, Working Paper, Faculty of Management, University of Toronto, Canada (1992).

    Google Scholar 

  • Baker, B.M., “Further Improvements to Vehicle Routing Heuristics”, Journal of the Operational Research Society, Vol. 43, pp. 1009–1012 (1992).

    MATH  Google Scholar 

  • Baker, E., and Schaffer, J., “Solution Improvement Heuristics for the Vehicle Routing and Scheduling Problem with Time Window Constraints”, American Journal of Mathematical and Management Sciences, Vol. 6, pp. 261–300 (1986).

    MATH  Google Scholar 

  • Balinksi, M., and Quandt, R., “On an Integer Program for the Delivery Problem”, Operations Research, Vol. 12, pp. 300–304 (1964).

    Article  Google Scholar 

  • Ball, M., Golden, B., Assad, A., and Bodin, L., “Planning for Truck Fleet Size in the Presence of a Common Carrier Option”, Decision Sciences, Vol. 14, pp. 103–130 (1983).

    Article  Google Scholar 

  • Bartholdi, J., Platzman, L., Collins, R., and Warden, W., “A Minimal Technology Routing System for Meals on Wheels”, Interfaces, Vol. 13, pp. 1–8 (1983).

    Article  Google Scholar 

  • Bartlett, T., “An Algorithm for the Minimum Number of Transport Units to Maintain a Fixed Schedule”, Naval Research Logistics Quarterly, Vol. 4, pp. 139–149 (1957).

    Article  MathSciNet  Google Scholar 

  • Bartlett, T., and Charnes, A., “Cyclic Scheduling and Combinatorial Topology: Assignment of Routing and Motive Power to Meet Scheduling Maintenance Requirements: Part II, Generalizations and Analysis.”, Naval Research Logistics Quarterly, Vol. 4, pp. 207–220 (1957).

    Article  Google Scholar 

  • Barton, R., and Gumaer, R., “The Optimum Routing for an Air Cargo Carrier’s Mixed Fleet”, Transportation - A Series, pp. 549–561. New York Academy of Science, New York (1968).

    Google Scholar 

  • Beasley, J., “Fixed Routes”, Journal of the Operational Research Society, Vol. 35, pp. 49–55 (1984).

    MATH  Google Scholar 

  • Beasley, J.E., “Route First-Cluster Second Methods for Vehicle Routing”, OMEGA, The International Journal of Management Science, Vol. 11, pp. 403–408 (1983).

    Google Scholar 

  • Beasley, J., “Adapting the Savings Algorithm for Varying Inter-Customer Travel Times”, OMEGA, The International Journal of Management Science, Vol. 9, pp. 658–659 (1981).

    Google Scholar 

  • Bell, W., Dalberto, L., Fisher, M., Greenfield, A., Jaikumar, R., Keedia, P., Mack, R., and Prutzman, P., “Improving the Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer”, Interfaces, Vol. 13, pp. 4–23 (1983).

    Article  Google Scholar 

  • Bellman R., “On a Routing Problem”, Quarterly Journal of Applied Mathematics, Vol. 16, pp. 87–90 (1958).

    MATH  Google Scholar 

  • Bellmore, M., and Hong, S., “Transformation of the Multisalesman Problem to the Standard Traveling Salesman Problem”, Journal of the ACM, Vol. 21, pp. 500–504 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • Beltrami, E., and Bodin, L., “Networks, and Vehicle Routing for Municipal Waste Collection”, Networks, Vol. 4, pp. 65–94 (1974).

    Article  MATH  Google Scholar 

  • Bennett, B., and Gazis, D., “School Bus Routing by Computer”, Transportation Research, Vol. 6, pp. 317–325 (1972).

    Article  Google Scholar 

  • Bertsimas, D.J., “A Vehicle Routing Problem with Stochastic Demand”, Operations Research, Vol. 40, pp. 574–585 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  • Bertismas, D.J., and Van Ryzin G., “A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane”, Operations Research, Vol. 39, pp. 601–615 (1991).

    Article  Google Scholar 

  • Bertsimas, D., “The Probabilistic Vehicle Routing Problem”, Sloan Working Paper No. 2067–88, Massachusetts Institute of Technology, Cambridge, Massachusetts (1988).

    Google Scholar 

  • Bodin, L, and Sexton, T., “The Multiple - Vehicle Subscriber Dial -A-Ride Problems”, TIMS Studies in the Management Sciences, Vol. 22, pp. 73–76 (1986).

    Google Scholar 

  • Bodin, L.D., Golden, L.B., Assad, A.A., and Ball, M.O., “Routing and Scheduling of Vehicles and Crews: The State of Art”, Computers and Operations Research, Vol. 10, pp. 65–211 (1983).

    MathSciNet  Google Scholar 

  • Bodin, L., and Golden, B., “Classification in Vehicle Routing and Scheduling”, Networks, Vol. 11, pp. 97–108 (1981).

    Article  Google Scholar 

  • Bodin, L., and Golden, B., Schuster A.D., and Romig, W., “A Model for the Blocking of Trains”, Transportation Research, Vol. 14B, pp. 115–120 (1980).

    MathSciNet  Google Scholar 

  • Bodin, L., and Berman, L., “Routing and Scheduling of School Busses by Computer”, Transportation Science, Vol. 13, pp. 113–129 (1979).

    Article  Google Scholar 

  • Bodin, L., and Kursh, S., “A Detailed Description of a Computer System for the Routing and Scheduling of Street Sweepers”, Computers and Operations Research, Vol. 16, pp. 181–198 (1979).

    Article  Google Scholar 

  • Bodin, L., and Kursh, S., “A Computer-Assisted System for the Routing and Scheduling of Street Sweepers”, Operations Research, Vol. 26, pp. 527–637 (1978).

    Article  Google Scholar 

  • Bodin, L., “A Taxonomic Structure for Vehicle Routing and Scheduling Problems”, Computers and Urban Society, Vol. 1, pp. 11–29 (1975).

    Article  Google Scholar 

  • Bodner, R., Cassell, E., and Andros, P., “Optimal Routing of Refuse Collection Vehicles”, Journal of Stationary Engineering Division, ASCE, 96(SA4) Proceedings Paper 7451, pp. 893–904 (1970).

    Google Scholar 

  • Bramel, J., and Simchi-Levi, D., “A Location Based Heuristic for General Routing Problems”, Technical Report, Graduate School of Business, Columbia University (1993).

    Google Scholar 

  • Bramel, J., Coffman, E.G., Shor, P.W., and Simchi-Levi, D., “Probabilistic Analysis of the Capacitated Vehicle Routing Problem With Unsplit Demands”, Operations Research, Vol. 40, pp. 1095–1106 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  • Brown, G.B., Graves, G.W., and Ronen, D., “Scheduling Ocean Transportation of Crude Oil”, Management Science, Vol. 33, pp. 335–346 (1987).

    Article  Google Scholar 

  • Brown, G., and Graves, G., “Real Time Dispatch of Petroleum Tank Trucks”, Management Science, Vol. 27, pp. 19–32 (1981).

    Article  Google Scholar 

  • Butt, S., and Cavalier, T.M., “A Heuristic for the Multiple Tour Maximum Collection Problem”, Department of Industrial and Managerial Systems Working Paper, The Pennsylvania State University, University Park, Pennsylvania (1991).

    Google Scholar 

  • Cassidy, P.J., and Bennett, H.S., “Tramp - A Multiple Depot Vehicle Scheduling System”, Operational Research Quarterly, Vol. 23, pp. 151–163 (1972).

    Article  Google Scholar 

  • Ceder, A., and Stern, H., “Deficit Function Bus Scheduling and Deadheading Trip Insertations for Fleet Size Reduction”, Transportation Science, Vol. 15, pp. 338–363 (1981).

    Article  Google Scholar 

  • Chard, R., “An Example of An Integrated Man-machine System for Truck Scheduling”, Operational Research Quarterly, Vol. 19, pp. 108 (1968).

    Google Scholar 

  • Charnes, A., and Miller, M.H., “A Model for the Optimal Programming of Railway Freight Train Movements”, Management Science, Vol. 3, pp. 74–92 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  • Cheshire, I.M., Malleson, A.M., and Naccache, P.F., “A Dual Heuristic for Vehicle Scheduling”, Journal of the Operational Research Society, Vol. 33, pp. 51–61 (1982).

    MATH  Google Scholar 

  • Chien, T.W., Balakrishnan, A., and Wong, R.T., “An Integrated Inventory Allocation and Vehicle Routing Problem”, Transportation Science, Vol. 23, pp. 67–76 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Christofides, N., “Vehicle Routing”, Traveling Salesman Problem, (Edited by E.L. Lawler, J.K. Lenstra, A.H.A. Rinooy Kan and D.S. Shmoys), John Wiley &Sons, pp. 431–448 (1985a).

    Google Scholar 

  • Christofides, N., “Vehicle Routing”, Combinatorial Optimization: Annotated Bibliographics (Edited by M. O’Heigeartaigh, J.K. Lenstra and A.H.G Kinnooy Kan), pp. 148–163, Centre for Mathematics and Computer Science, Amsterdam (1985b).

    Google Scholar 

  • Christofides, N., and Beasley, J., “The Period Routing Problem”, Networks, Vol. 14, pp. 237–256 (1984).

    Article  MATH  Google Scholar 

  • Christofides, N., Mingozzi, A., and Toth, P., “Exact Algorithms for the Vehicle Routing Problem, Based on Spanning Tree and Shortest Path Relaxations”, Mathematical Programming, Vol. 20, pp. 255–282 (1981a).

    Article  MATH  MathSciNet  Google Scholar 

  • Christofides, N., Mingozzi, A., and Toth, P., “State Space Relaxation Procedures for the Computation of Bounds to Routing Problems”, Networks, Vol. 11, pp. 145–164 (1981b).

    Article  MATH  MathSciNet  Google Scholar 

  • Christofides, N., Mingozzi, A., and Toth, P., “The Vehicle Routing Problem”, In Christofides et al., Combinatorial Optimization, Wiley and Sons, New York, pp. 315–338 (1979).

    Google Scholar 

  • Christofides, N., “The Vehicle Routing Problem”, Revue Francoise d’Automatique, Informatique et Recherche Operationnelle (RAIRO), Vol. 10, pp. 55–70 (1976).

    MathSciNet  Google Scholar 

  • Christofides, N., and Eilon, S., “Algorithms for Large Scale Traveling Salesman Problem”, Operational Research Quarterly, Vol. 23, pp. 511–518 (1973).

    Article  MathSciNet  Google Scholar 

  • Christofides, N., “Fixed Routes and Areas of Delivery Operations”, International Journal of Physical Distribution, Vol. 1, pp. 87–92 (1971).

    Article  Google Scholar 

  • Christofides, N., and Eilon, S., “An Algorithm for the Vehicle-Dispatching Problem”, Operational Research Quarterly, Vol. 20, pp. 309–318 (1969).

    Article  Google Scholar 

  • Clarke, G., and Wright, J.W., “Scheduling of Vehicles from a Central Depot to a Number of Delivery Points”, Operations Research, Vol. 12, pp. 568–681 (1964).

    Article  Google Scholar 

  • Crawford, J.L., and Sinclair, G.B., “ Computer Scheduling of Beer Tanker Deliveries”, International Journal of Physical Distribution, Vol. 7, pp. 294–304 (1977).

    Article  Google Scholar 

  • Cullen, F.H., Jarvis, J.J., and Ratliff, H.D., “Set Partitioning Based Heuristic for Interactive Routing”, Networks, Vol. 11, pp. 125–143 (1981).

    Article  MathSciNet  Google Scholar 

  • Cunto, E., “Scheduling Boats to Sample Oil Wells in Lake Maracaibo”, Operations Research, Vol. 26, pp. 183–196 (1978).

    Article  MATH  Google Scholar 

  • Daganzo, C., “The Distance Traveled to Visit N Points With A Maximum of C Stops Per Vehicle: An Analytical Model and An Application”, Transportation Science, Vol. 18, pp. 331–350 (1984).

    Article  MathSciNet  Google Scholar 

  • Daganzo, C., “An Approximate Analytic Model of Many-to-Many Demand Responsive Transportation Systems”, Transportation Research, Vol. 12, pp. 325–333 (1978).

    Article  Google Scholar 

  • Dantazig, G.G., and Ramser, J.H., “The Truck Dispatching Problem”, Management Science, Vol. 6, pp. 80–91 (1959).

    Article  MathSciNet  Google Scholar 

  • Desrosiers, J., Soumis, F., and Desrochers, M., “Routing with Time Windows by Column Generation”, Networks, Vol. 14, pp. 545–565 (1984).

    Article  MATH  Google Scholar 

  • Desrochers, M., Desrosiers, J., and Solomon, M., “A New Optimization Algorithm for the Vehicle Routing with Time Windows”, Operations Research, Vol. 40, pp. 342–354 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  • Desrochers, M., Lenstra, J.K., Savelsbergh, M.M.P, and Soumis, F., “Vehicle Routing with Time Windows: Optimization and Approximation”, Vehicle Routing: Methods and Studies, (Edited by B.L. Golden and A.A. Assad), North-Holland, Amsterdam, pp. 65–84 (1988).

    Google Scholar 

  • Desrosiers, J., Dumas, Y., and Soumis, F., “A Dynamic Programming Solution of the Large-Scale Single- Vehicle Dial-A-Ride Problem with Time Windows”, The American Journal of Mathematical and Management Sciences, Vol. 6, pp. 301–325 (1986).

    MATH  Google Scholar 

  • Desrosiers, J., Soumis, F., Desrochers, M., and Sauve, M., “Routing and Scheduling Time Windows Solved by Network Relaxation and Branchand-Bound on Time Variables”, Computer Scheduling of Public Transport 2 (Edited by J.-M. Rousseau), pp. 451–471, Elsevier Science Publishers (1985).

    Google Scholar 

  • Doll, L.L., “Quick and Dirty Vehicle Routing Procedures”, Interfaces, Vol. 10, pp. 84–85 (1980).

    Article  Google Scholar 

  • Dror, M., and Trudeau, P., “Split-Delivery Routing”, Naval Research Logistics Quarterly, Vol. 37, pp. 383–402 (1990).

    MATH  MathSciNet  Google Scholar 

  • Dror, M., and Ball, M., “Inventory/Routing: Reduction from an Annual to a Short-Period Problem”, Naval Research Logistics Quarterly, Vol. 34, pp. 891–905 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  • Dror, M., and Levy, L., “A Vehicle Routing Improvement Algorithm Comparison of a Greedy and Matching Implementation of Inventory Routing”, Computers and Operations Research, Vol. 13, pp. 33–45 (1986).

    Article  MATH  Google Scholar 

  • Dror, M., Ball, M., and Golden, B., “A Computational Comparison of Algorithms for the Inventory Routing Problem”, Annals of Operations Research, Vol. 4, pp. 3–23 (1986).

    MathSciNet  Google Scholar 

  • Dulac, G., Ferland, J., and Forgues, P., “School Bus Routes Generator in Urban Surroundings”, Computers and Operations Research, Vol. 1, pp. 199–213 (1980).

    Article  Google Scholar 

  • Dumas, Y., Desrosiers, J., and Soumis, F., “The Pick-up and Delivery Problem with Time Windows”, European Journal of Operational Research, Vol. 54, pp. 7–22 (1991).

    Article  MATH  Google Scholar 

  • Eilon, S., Watson-Gandy, G., and Christofides, N., “Distribution Management”, Griffin, London (1971).

    Google Scholar 

  • Eilon, S., and Christofides, N., “An Algorithm for the Vehicle Dispatching Problem”, Operational Research Quarterly, Vol. 20, pp. 309–318 (1969).

    Article  Google Scholar 

  • El-Azm, A., “The Minimum Fleet Size Problem and Its Applications to Bus Scheduling”, Computer Scheduling of Public Transport 2 (Edited by J.-M. Rousseau), pp. 493–512, Elsevier Science Publishers (1985).

    Google Scholar 

  • Etezadi, T., and Beasley, J., “Vehicle Fleet Composition”, Journal of the Operational Research Society, Vol. 34, pp. 87–91 (1983).

    MATH  Google Scholar 

  • Evans, S.R., and Norback, J.P., “The Impact of a Decision Support System for a Vehicle Routing in a Food Service Supply Situation”, Journal of the Operational Research Society, Vol. 36, pp. 467–472 (1985).

    Google Scholar 

  • Farvolden, J.M., Laporte, G., and Xu, J., “Solving an Inventory Allocation and Routing Problems Arising in Grocery Distribution”, CRT-886, Centre De Recherche Sur Les Transports, Universite De Montreal, Montreal, Canada (1993).

    Google Scholar 

  • Federgruen, A., and Simchi-Levi, D., “Analytical Analysis of Vehicle Routing and Inventory Routing Problems”, Handbooks in Operations Research and Management Science, the volume on “Networks and Distribution”, (Edited by M. Ball, C. Magnanti, C. Monma and G. Nemhauser) (1992).

    Google Scholar 

  • Federgruen, A., and Zipkin, P., “A Combined Vehicle Routing and Inventory Allocation Problem”, Operations Research, Vol. 32, pp. 1019–1037 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  • Ferebee, J., “Controlling Fixed-Route Operations”, Industrial Engineering, Vol. 6, pp. 28–31 (1974).

    Google Scholar 

  • Ferguson, A., and Dantzig, G., “The Allocation of Aircraft to Routes - An Example of Linear Programming Under Uncertain Demand”, Management Science, Vol. 3, pp. 45–73 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, M.L., and Rosenwein, M.B., “An Interactive Optimization System for Bulk Cargo Ship Scheduling”, Naval Research Logistic Quarterly, Vol. 36, pp. 27–42 (1989).

    Article  Google Scholar 

  • Fisher, M.L., Greenfield, A.J., Jaikumar, R., and Lester, J.T. III, “ A Computerized Vehicle Routing Application”, Interfaces, Vol. 12, No. 4, pp. 42–52 (1982).

    Article  Google Scholar 

  • Fisher, M.L., and Jaikumar, R., “A Generalized Assignment Heuristic for Vehicle Routing”, Networks, Vol. 11,.pp. 109–124 (1981).

    Article  MathSciNet  Google Scholar 

  • Fletcher, A., “Alternative Routes Round the Delivery Problem”, Data and Control, Vol. 1, pp. 20–22 (1963).

    Google Scholar 

  • Fleuren, H.A., “A Computational Study of the Set Partitioning Approach for Vehicle Routing and Scheduling Problems”, Ph.D Dissertation, Universiteit Twente, Netherlands (1988).

    Google Scholar 

  • Florian, M., Guerin, G., and Bushel, G., “The Engine Scheduling Problem in a Railway Network”, INFOR, Canadian Journal of Operations Research and Information Processing, Vol. 15, pp. 121–138 (1976).

    Google Scholar 

  • Foster, B.A., and Ryan, D.M., “An Integer Programming Approach to the Vehicle Scheduling Problem”, Operational Research Quarterly, Vol. 27, pp. 367–384 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  • Foulds, L.R., Read, E.G., and Robinson, D.F., “A Manual Solution Procedure for the School Bus Scheduling Problem”, Australian Road Research, Vol. 7, pp. 1–35 (1977).

    Google Scholar 

  • Frederickson, G., Hecht, M., and Kim, C., “Approximation Algorithms for Some Routing Problems”, SIAM Journal on Computing, Vol. 7 pp. 178–193 (1978).

    Article  MathSciNet  Google Scholar 

  • Garvin, W., Crandall, H., John, J., Spellman, R., “Applications of Vehicle Routing in the Oil Industry”, Management Science, Vol. 3, pp. 407–430 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  • Gaskell, T., “Bases for Vehicle Fleet Scheduling”, Operational Research Quarterly, Vol. 18, pp. 281–295 (1967).

    Article  Google Scholar 

  • Gaudioso, M., and Paletta, G., “A Heuristic for the Periodic Vehicle Rout- ing Problem”, Transportation Science, Vol. 26, pp. 86–92 (1992).

    Article  MATH  Google Scholar 

  • Gavish B., and Shlifer, E., “An Approach for Solving a Class of Transportation Scheduling Problem”, European Journal of Operational Research, Vol. 3, pp. 122–134 (1978).

    Article  MathSciNet  Google Scholar 

  • Gavish, B., and Schweitzer, P., and Shlifer, E., “Assigning Buses to Schedules in a Metropolitan Area”, Computers and Operations Research, Vol. 5, pp. 129–138 (1978).

    Article  Google Scholar 

  • Gendreau, M., Hertz, A., and LaPorte, G., “A Tabu Search Heuristic for the Vehicle Routing Problem”, CRT 777, Centre De Recherche Sur Les Transports, Universite De Montreal, Montreal, Canada (1992).

    Google Scholar 

  • Gertsbach, I., and Gurevich, Y., “Constructing an Optimal Fleet for a Transportation Schedule”, Transportation Science, Vol. 11, pp. 20–36 (1977).

    Article  Google Scholar 

  • Gheysens, F., Golden, B., and Assad, A., “A Comparison of Techniques for Solving the Fleet Size and Mix Vehicle Routing Problem”, OR Spektrum, Vol. 6, pp. 207–216 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  • Golden, B., and Wong, R., “Capacitated Arc Routing Problems”, Networks, Vol. 11, pp. 305–315 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • Gillett, B.E., and Johnson, J., “Multi-Terminal Vehicle-Dispatch Algorithm”, OMEGA, The International Journal of Management Science, Vol. 4, pp. 711–718 (1976).

    Google Scholar 

  • Gillett, B.E., and Miller, L.R., “A Heuristic Algorithm for the Vehicle-Dispatch Problem”, Operations Research, Vol. 22, pp. 340–349 (1974).

    Article  MATH  Google Scholar 

  • Golden, B.L., and Assad, A.A., “Vehicle Routing: Methods and Studies”, North-Holland, Amsterdam (1988).

    MATH  Google Scholar 

  • Golden, B., and Wasil, E., “Computerized Vehicle Routing in the Soft Drink Industry”, Operations Research, Vol. 35, pp. 6–17 (1987).

    Article  Google Scholar 

  • Golden, B., and Assad, A.A., “Prospectives of Vehicle Routing: Exciting New Developments”, Operations Research, Vol. 34, pp. 803–810 (1986a).

    Article  Google Scholar 

  • Golden, B., and Assad, A., “Vehicle Routing with Time Window Constraints”, American Journal of Mathematical and Management Sciences, Vol. 15, pp. (1986b).

    MATH  Google Scholar 

  • Golden, B., Bodin, L., and Goodwin, T., “Micro Computer-Based Vehicle Routing and Scheduling Software”, Computers and Operations Research, Vol. 13, pp. 277–285 (1986).

    Article  MATH  Google Scholar 

  • Golden, B., and Baker, E., “Future Directions in Logistics Research”, Transportation Research, Vol. 19A, pp. 405–409 (1985).

    Google Scholar 

  • Golden, B., Gheysens, F., and Assad, A., “On Solving the Vehicle Fleet Size and Mix Problem”, Operations Research, (Edited by J.P. Barnes), North Holland (1984).

    Google Scholar 

  • Golden, B., Assad, A., and Dahl, R., “Analysis of a Large-Scale Vehicle Routing Problem with An Inventory Component”, Large Scale Systems, Vol. 7, pp. 181–190 (1984).

    MATH  Google Scholar 

  • Golden, B., Levy, L., and Dahl, R., “Two Generalizations of the Traveling Salesman Problem”, OMEGA, The International Journal of Management Science, Vol. 9, pp. 439–441 (1981).

    Google Scholar 

  • Golden, B., Magnanti, T.L., and Nguyen, H.Q., “Implementing Vehicle Routing Algorithms”, Networks, Vol. 7, pp. 113–148 (1977).

    Article  MATH  Google Scholar 

  • Golden, B., “Evaluating a Sequential Vehicle Routing Algorithm”, AIIE Transactions, Vol. 9, pp. 204–208 (1977).

    Google Scholar 

  • Haimovich, M., Rinnooy Kan, H.G., and Stouge, L., “Analysis of Heuristics for Vehicle Routing Problem”, Vehicle Routing: Methods and Studies, (Edited by B.L. Golden, A.A. Assad), Elsevier Science Publishers, pp. 47–61 (1988).

    Google Scholar 

  • Haimovich, M., and Rinnooy Kan, A., “Bounds and Heuristics for Capacitated Routing Problems”, Mathematics for Operations Research, Vol. 10, pp. 527–542 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, R.W., “Comments on One-Warehouse Multiple Retailer Systems with Vehicle Routing Costs”, Management Science, Vol. 37, pp. 1496–1497 (1991).

    Article  Google Scholar 

  • Hauer, E., “Fleet Selection for Public Transportation Routes”, Transportation Science, Vol. 5, pp. 1–21 (1971).

    Article  Google Scholar 

  • Hausman, W., and Gilmour, P., “A Multi Period Truck Delivery Problem”, Transportation Research, Vol. 1, pp. 349–357 (1967).

    Article  Google Scholar 

  • Held, M., and Karp, R.M., “The- Traveling Salesman Problem and Minimum Spanning Trees”, Operations Research, Vol. 18, pp. 1138–1162 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  • Holmes, R.A., and Parker, R.G., “A Vehicle Scheduling Procedure Based Upon Savings and A Solution Perturbation Scheme”, Operational Research Quarterly, Vol. 27, pp. 83–92 (1971).

    Article  Google Scholar 

  • Hyman, W., and Gordon, L., “Commercial Airline Scheduling Technique”, Transportation Research, Vol. 2, pp. 23–30 (1968).

    Article  Google Scholar 

  • Jacobsen, S.K., and Madsen, O., “A Comparative Study of Heuristics for a Two-Level Routing Location- Problem”, European Journal of Operational Research, Vol. 5, pp. 378–387 (1980).

    Article  MATH  Google Scholar 

  • Jaw, J., Odoni, H., Psaraftis, H., and Wilson, N., “A heuristic Algorithm for the Multi-Vehicle Advance- Request Dial-A-Ride Problem with Time Windows”, Transportation Research, Vol. 20B, pp. 243–257 (1986).

    Google Scholar 

  • Kirby, R.F., and McDonald, J.J., “The Savings Method for the Vehicle Scheduling”, Operational Research Quarterly, Vol. 24, pp. 305–306 (1972).

    Article  Google Scholar 

  • Kirby, R.F., and Potts, R.B., “The Minimization Route Problem with Turn Penalties and Prohibitions”, Transportation Research, Vol. 3, pp. 397–408 (1969).

    Article  Google Scholar 

  • Knight, K.W., and Hofer, J.P., “Vehicle Scheduling with Timed and Connected Calls: A Case Study”, Operational Research Quarterly, Vol. 19, pp. 299–309 (1968).

    Article  Google Scholar 

  • Kolen, A., Rinnooy Kan, A., and Trienekens, H., “Vehicle Routing with Time Windows”, Operations Research, Vol. 35, pp. 266–273, (1987).

    Article  MATH  MathSciNet  Google Scholar 

  • Koskosidis, Y.A., Powell, W.B., and Solomon, M.M., “An Optimization-Based Heuristic for Vehicle Routing and Scheduling with Soft Time Window Constraints”, Transportation Science, Vol. 26, pp. 69–85 (1992).

    Article  MATH  Google Scholar 

  • Krolak, P., Felts, W., and Nelson, J., “A Man-Machine Approach Toward Solving the Generalized Truck Dispatching Problem”, Transportation Science, Vol. 6, pp. 149–169 (1972).

    Google Scholar 

  • Labbe, M., Laporte, G., and Mercure, H., “Capacitated Vehicle Routing on Trees”, Operations Research, Vol. 39, pp. 616–622 (1991).

    Article  MATH  Google Scholar 

  • Laderman, J.L., Gleiberman, L., and Egan, J.F., “Vessal Allocation by Linear Programming”, Naval Research Logistics Quarterly, Vol. 13, pp. 315–320 (1966).

    Article  Google Scholar 

  • Lam, T., “Comments on a Heuristic Algorithm for the Multiple Terminal Delivery Problem”, Transportation Science, Vol. 4, pp. 403–405 (1970).

    Article  Google Scholar 

  • LaPorte, G., “The Vehicle Routing Problem: An Overview of Exact and Approximate Algorithms”, European Journal of Operational Research, Vol. 59, pp. 345–358 (1992a).

    Article  MATH  Google Scholar 

  • LaPorte, G., “The Traveling Salesman Problem: An Overview of Exact and Approximate Algorithms”, European Journal of Operational Research, Vol. 59, pp. 231–248 (1992b).

    Article  MATH  MathSciNet  Google Scholar 

  • Lenstra, J.K,. and Rinnooy Kan, A.H.G., “On General Routing Problems”, Networks, Vol. 6, pp. 273–280 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  • LaPorte, G., Nobert, Y., and Taillefer, S., “Solving a Family of Multi-Depot Vehicle Routing and Location Routing Problems”, Transportation Science, Vol. 22, pp. 161–172 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  • LaPorte, G., Nobert, Y., and Taillefer, S., “A Branch-and-Bound Algorithm for the Assymetrical Distance Constrained Vehicle Routing Problem”, Mathematical Modelling, Vol. 9, pp. 857–868 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  • LaPorte, G., and Nobert, Y., “Exact Algorithms for the Vehicle Routing Problem”, Annals of Discrete Mathematics, Vol. 31, pp. 147–184 (1987).

    MathSciNet  Google Scholar 

  • Laporte, G., Mercure and Nobert, Y., “An Exact Algorithm for the Asymmetrical Capacitated Vehicle Routing Problem”, Networks, Vol. 16, pp. 33–46 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  • LaPorte, G., Nobert, Y., and Arpin, D., “An Exact Algorithm for Solving Capacitated Location-Routing Problem”, Annals of Operations Research, Vol. 6, pp. 239–310 (1986).

    Article  Google Scholar 

  • LaPorte, G., Nobert, Y., and Derochers, M., “Optimal Routing Under Capacity and Distance Restrictions”, Operations Research, Vol. 33, pp. 1050–1073 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • LaPorte, G., Desrochers, M., and Nobert, Y., “Two Exact Algorithms for the Distance - Constrained Vehicle Routing Problem”, Networks, Vol. 14, pp. 161–172 (1984).

    Article  MATH  Google Scholar 

  • LaPorte, G., and Nobert, Y., “Comb Inequalities for the Vehicle Routing Problem”, Methods of Operations Research, Vol. 51, pp. 271–276 (1984).

    MATH  MathSciNet  Google Scholar 

  • LaPorte, G., and Nobert, Y., “An Exact Algorithm for Minimizing Routing and Operating Costs in Depot Locations”, European Journal of Operational Research, Vol. 6, pp. 224–226 (1981).

    Article  MATH  Google Scholar 

  • Lenstra, J.K., and Rinnooy Kan, A.H.G., “Complexity of Vehicle Routing and Scheduling Problems”, Networks, Vol. 11, pp. 221–227 (1981).

    Article  Google Scholar 

  • Lenstra, J.K., and Rinnooy Kan, A.H.G., “Some Simple Applications of the Traveling Salesman Problem”, Operational Research Quarterly, Vol. 26, pp. 717–733 (1975).

    Article  MATH  Google Scholar 

  • Levary, R., “Heuristic Vehicle Scheduling” OMEGA, The International Journal of Management Science, Vol. 9, pp. 660–663 (1981).

    Google Scholar 

  • Levin, A., “Scheduling and Fleet Routing Models for Transportation Systems”, Transportation Science, Vol. 5, pp. 232–255 (1971).

    Article  MathSciNet  Google Scholar 

  • Levy, L., Golden B., and Assad, A., “The Fleet Size and Mix Vehicle Routing Problem”, Management Science and Statistics Working Paper 80–011, College of Business and Management, University of Maryland College Park, Maryland (1980).

    Google Scholar 

  • Li, Chung-Lun, Simchi-Levi, D., and Desrochers, S.M., “On the Distance Constrained Vehicle Routing Problem”, Operations Research, Vol. 40, pp. 790–799 (1993).

    Article  MathSciNet  Google Scholar 

  • Li, Chung-Lun, and Simchi-Levi, D., “Worst Case Analysis of Heuristics for Multidepot Capacitated Vehicle Routing Problems”, ORSA Journal on Computing, Vol. 2, pp. 64–73 (1990).

    MATH  Google Scholar 

  • Lin, S., and Kernighan, B., “An Effective Heuristic Algorithm for the Traveling Salesman Problem”, Operations Research, Vol. 21, pp. 498–516 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  • Lin, S., “Computer Solutions of the Traveling Salesman Problem”, Bell Systems Technical Journal, Vol. 44, pp. 2245–2269 (1965).

    MATH  Google Scholar 

  • Lucena Filho, A.P., “Exact Solution Approaches for the Vehicle Routing Problem”, Ph.D. Thesis, Imperial College, London, (1986).

    Google Scholar 

  • Male, J., Liebman, J., and Orloff, C., “An Improvement of Orloff’s General Routing Problem”, Networks, Vol. 7, pp. 89–92 (1977).

    Article  MATH  Google Scholar 

  • Magnanti, T.L., “Combinatorial Optimization and Vehicle Fleet Planning: Perspectives and Prospects”, Networks, Vol. 11, pp. 179–213 (1981).

    Article  MathSciNet  Google Scholar 

  • Malandraki, C., and Daskin, M.S., “Time Dependent Vehicle Routing Problems: Formulations and Heuristic Algorithms”, Technical Report, Department of Civil Engineering, Northwestern University (1989).

    Google Scholar 

  • Marquez Diez-Canedo, J., and Escalante, O., “A Network Solution to a General Vehicle Scheduling Problem”, European Journal of Operational Research, Vol. 1, pp. 255–261 (1977).

    Article  MATH  Google Scholar 

  • Martin-Lof, A., “A Branch-And-Bound Algorithm for Determining the Minimal Fleet Size of a Transportation System”, Transportation Science, Vol. 4, pp. 159–163 (1970).

    Article  Google Scholar 

  • McDonald, J.J., “Vehicle Scheduling: A Case Study”, Operational Research Quarterly, Vol. 23, pp. 433–444 (1972).

    Article  Google Scholar 

  • McKay, M.D., and Harlety, H.O., “Computerized Scheduling of Seagoing Tankers”, Naval Research Logistics Quarterly, Vol. 21, pp. 255–264 (1974).

    Article  MATH  Google Scholar 

  • Minas, J.G., and Mitten, L.G., “The Hub Operation Scheduling Problem”, Operations Research, Vol. 6, pp. 329–345 (1958).

    Article  Google Scholar 

  • Minieka, E., “The Chinese Postman Problem for Mixed Networks”, Management Science, Vol. 25, 643–648 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  • Mole, R., “The Curse of Unintended Rounding Error, A Case from the Vehicle Scheduling Literature”, Journal of the Operational Research Society, Vol. 34, pp. 607–613 (1983).

    Google Scholar 

  • Mole, R., Johnson, D.G., and Wells, R., “Combinatorial Analysis for the Route First-Cluster Second Vehicle Routing”, OMEGA, The International Journal of Management Science, Vol. 11, pp. 507–512 (1983).

    Google Scholar 

  • Mole, R., “A Survey of Local Delivery Vehicle Routing Methodology”, Journal of the Operational Research Society, Vol. 30, pp. 245–252 (1979).

    MathSciNet  Google Scholar 

  • Mole, R., and Jameson, S., “A Sequential Route-Building Algorithm Em-ploying a Generalized Savings Criterion”, Operational Research Quarterly, Vol. 27, pp. 503–511 (1976).

    Article  Google Scholar 

  • Nelson, M.D., Nygard, K.E., Griffin, J.H., and Shreve, W. E., “Implementation Techniques for the Vehicle Routing Problem”, Computers and Operations Research, Vol. 12, pp. 273–283 (1985).

    Article  MATH  Google Scholar 

  • Nemhauser, G., “Scheduling Local and Express Trains”, Transportation Science, Vol. 3, pp. 164–175 (1969).

    Article  Google Scholar 

  • Newton, R., and Thomas, W., “Bus Routing in a Multi-School System”, Computers and Operations Research, Vol. 1, pp. 213–222 (1974).

    Article  Google Scholar 

  • Newton, R., and Thomas, W., “Design of School Bus Routes by Computer”, Socio-Economic Planning Sciences, Vol. 3, pp. 75–85 (1969).

    Article  Google Scholar 

  • Norback, J.P., and Evans, S.R., “An Heuristic Method for Solving Time-Sensitive Routing Problems”, Journal of the Operational Research Society, Vol. 35, pp. 407–414 (1984).

    MATH  Google Scholar 

  • Orloff, C., “On General Routing Problems Comments”, Networks, Vol. 6, pp. 281–284 (1976a).

    Article  MATH  MathSciNet  Google Scholar 

  • Orloff, C., “Route Constrained Fleet Scheduling”, Transportation Science, Vol. 10, pp. 149–168 (1976b).

    Article  Google Scholar 

  • Orloff, C., and Caprera, D., “Reduction and Solution of Large Scale Vehicle Routing Problems”, Transportation Science, Vol. 10, pp. 361–373 (1976).

    Article  Google Scholar 

  • Orloff, C., “A Fundamental Problem in Vehicle Routing”, Networks, Vol. 4, pp. 35–64 (1974a).

    Article  MATH  MathSciNet  Google Scholar 

  • Orloff, C., “Routing A Fleet of M Vehicles to/from a Central Facility”, Networks, Vol. 4, pp. 147–162 (1974b).

    Article  MathSciNet  Google Scholar 

  • Olson, C.A., Sorenson, E.E., and Sullivan, W.J., “Medium Range Scheduling for Freighter Fleet”, Operations Research, Vol. 17, pp. 255–264 (1969).

    Article  Google Scholar 

  • Paessens, H., “The Savings Algorithms for the Vehicle Routing Problem”, European Journal of Operational Research, Vol. 34, pp. 336–344 (1988).

    Article  MATH  Google Scholar 

  • Peterson, F.R., and Fullerton, H.V., “An Optimizing Network Model for the Canadian Railways”, Rail Int., Vol. 4, pp. 1187–1192 (1973).

    Google Scholar 

  • Pierce, J.F., “Direct Search Algorithms for Truck Dispatching Problems - Part P”, Transportation Science, Vol. 3, pp. 1–42 (1969).

    Article  Google Scholar 

  • Pollack, M., “Some Elements of the Airline Fleet Planning Problem”, Transport Research, Vol. 11, pp. 301–310 (1977).

    Article  Google Scholar 

  • Potvin, J-Y., and Rousseau, J-M., “A Parallel Route Building Algorithm for the Vehicle Routing and Scheduling Problem with Time Windows”, European Journal of Operational Research, Vol. 66, pp. 331–340 (1993).

    Article  MATH  Google Scholar 

  • Potvin, J-Y., Kervahut, T., and Rousseau, J-M., “A Tabu Heuristic for the Vehicle Routing Problem with Time Windows”, CRT-855, Centre De Recherche Sur Les Transports, Universite De Montreal, Montreal, Canada (1992).

    Google Scholar 

  • Psaraftis, H.N., “Dynamic Vehicle Routing: Is It A Simple Extension of Static Routing”, CORS/TIMS/ORSA, Vancouver, Working Paper - MIT-OR-89–1 (1989).

    Google Scholar 

  • Psaraftis, H.N., “Dynamic Vehicle Routing Problems”, Vehicle Routing: Methods and Studies, (Edited by B. Golden and A. Assad), North Holland (1988).

    Google Scholar 

  • Psaraftis, H.N., “Scheduling Large Scale Advance Request Dial-A-Ride Systems”, American Journal of Mathematical and Management Science, Vol. 6, pp. (1986).

    Google Scholar 

  • Psaraftis, H.N., “An Exact Algorithm for the single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows”, Transportation Science, Vol. 17, pp. 351–357 (1983a).

    Article  Google Scholar 

  • Psaraftis, H.N., “Analysis of an O(N2) Heuristi for the Single Vehicle Manyto-Many Euclidean Dial-a-Ride Problem”, Transportation Research, Vol. 17B, pp. 133–145 (1983b).

    Google Scholar 

  • Psaraftis, H.N., “K-Interchange Procedures for Local Search in a Precedence-Constrained Routing Problem”, European Journal of Operational Research, Vol. 13, pp. 391–402 (1983c).

    Article  MATH  Google Scholar 

  • Psaraftis, H.N., “A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-A-Ride Problem”, Transportation Science, Vol. 14, pp. 130–154 (1980).

    Article  Google Scholar 

  • Pullen, H.G.M., and Webb, M.H.J., “A Computer Application to a Transport Scheduling Problem”, Computer Journal, Vol. 10, pp. 10–13 (1967).

    Article  Google Scholar 

  • Raft, O.M., “A Modular Algorithm for an Extended Vehicle Scheduling Problem”, European Journal of Operational Research, Vol. 11, pp. 67–76 (1982).

    Article  MATH  Google Scholar 

  • Rao, M.R., and Zionts, S., “Allocation of Transportation Units to Alternative Trips-A Column Generation Scheme with out-of-killer Subproblems”, Operations Research, Vol. 16, pp. 52–63 (1968).

    Article  Google Scholar 

  • Richardson, R., “An Optimization Approach to Routing Aircraft”, Transportation Science, Vol. 10, pp. 52–71 (1976).

    Article  Google Scholar 

  • Robertson, W.C., “Route and Van Scheduling in the Newspaper Industry”, Operational Research Quarterly, Special Conference Issue, Vol. 20, p 9 (1969).

    Google Scholar 

  • Ronen, D., “Allocation of Trips to Trucks Operating from a Single Terminal”, Computers and Operations Research, Vol. 19, pp. 445–451 (1992).

    Article  Google Scholar 

  • Ronen, D., “Short-Term Scheduling of Vessals for Shipment of Bulk and Semi-Bulk Commodities Originating in a Single Area”, Operations Research, Vol. 34, pp. 164–173 (1986).

    Article  MATH  Google Scholar 

  • Ronen, D., “Cargo Ships Routing and Scheduling: A Survey of Models and Problems”, European Journal of Operational Research, Vol. 12, pp. 119–126 (1983).

    Article  Google Scholar 

  • Russell, R., and Igo, W., “An Assignment Routing Problem”, Networks, Vol. 9, pp. 1–17 (1979).

    Article  Google Scholar 

  • Russell, R.A., “An Effective Heuristic for the M-Tour Traveling Salesman Problem with Some Side Constraints”, Operations Research, Vol. 25, pp. 517–524 (1977).

    Article  MATH  Google Scholar 

  • Salzborn, F., “A Note on Fleet Routing”. Transportation Research, Vol. 7, pp. 335–355 (1972a).

    Google Scholar 

  • Saha, J.L., “An Algorithm for Bus Scheduling Problems”, Operational Research Quarterly, Vol. 21, pp. 463–474 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  • Salzborn, F., “Minimum Fleet Size Models for Transportation Systems”, Transportation and Traffic Theory (Edited by D. Buckley), Reed, Sydney, pp. 607–624 (1974).

    Google Scholar 

  • Salzborn, F., “A Note on Fleet Routing Models for Transportation Systems”, Transportation Science, Vol. 6, pp. 335–337 (1972b).

    Article  Google Scholar 

  • Salzborn, F., “The Minimum Fleet Size for a Suburban Railways System”, Transportation Science, Vol. 4, pp. 383–402 (1970).

    Article  Google Scholar 

  • Salzborn, F., “Timetables for a Suburban Rail Transit System”, Transportation Science, Vol. 3, pp. 297–316 (1969).

    Article  Google Scholar 

  • Salvelsbergh, M.W.P., “An Efficient Implementation of Local Search Algorithms for Constrained Routing Problems”, European Journal of Operational Research“, Vol. 47, pp. 75–85 (1990).

    Article  MathSciNet  Google Scholar 

  • Salvelsbergh, M.W.P., “Local Search in Routing Problems with Time Win- dows”, Annals of Operations Research, Vol. 4, pp. 285–305 (1985).

    Article  MathSciNet  Google Scholar 

  • Schrage, L., “Formulation and Structure of More Complex/Realistic Routing and Scheduling Problem”, Networks, Vol. 11, pp. 229–232 (1981).

    Article  Google Scholar 

  • Schultz, H., “A Practical Method for Vehicle Scheduling”, Interfaces, Vol. 9, pp. 13–19 (1979).

    Article  Google Scholar 

  • Sexton, T., and Choi, Y., “Pick-up and Delivery of Partial Loads with Time Windows”, The American Journal of Mathematical and Management Sciences, Vol. 6, pp. 369–398 (1986).

    MATH  Google Scholar 

  • Sexton, T., and Bodin, L., “Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery Times: II Routing”, Transportation Science, Vol. 19, pp. 411–435 (1985a).

    Article  MATH  MathSciNet  Google Scholar 

  • Sexton, T., and Bodin, L., “Optimizing Single Vehicle Many-to-Many Operations with Desired Delivery Times: I, Scheduling”, Transportation Science, Vol. 19, pp. 378–410 (1985b).

    MATH  MathSciNet  Google Scholar 

  • Sexton, T., and Choi, Y., “Routing and Scheduling Problems with time Windows, Partial Loads and Dwell Times”, American Journal of Mathematical and Management Sciences, Vol. pp. (1972).

    Google Scholar 

  • Simpson, R., “A Review of Scheduling and Routing Models for Airline Scheduling”, Proceedings, Ninth AGIFORS Symposium, Operations Research Division, American Airlines, New York (1969).

    Google Scholar 

  • Smith, B., and Wren, A., “VAMPIRES and TASC: Two Successfully Applied Bus Scheduling Programs”, Computer Scheduling of Public Transport: Urban Passenger Vehicle and Crew Scheduling (Edited by A. Wren), North-Holland Publishing Company, Amsterdam, pp. 97–124. (1981).

    Google Scholar 

  • Solomon, M., and Desrosiers, J., “Time Window Constrained Routing and Scheduling Problems”, Transportation Science, Vol. 22, pp. 1–13 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  • Solomon, M., “Algorithms for the Vehicle Routing and Scheduling Problems with Time Windows Constraints”, Operations Research, Vol. 35, pp. 254–265 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  • Solomon, M.M., “On the Worst-Case Performance of Some Heuristics for the Vehicle Routing and Scheduling Problems with Time Window Constraints”, Networks, Vol. 16, pp. 161–174 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  • Soumis, F. Ferland, J., Rousseau, J., “A Model for Large Scale Aircraft Routing and Scheduling Problems”, Transportation Research, Vol. 14B, pp. 191–201 (1980).

    Google Scholar 

  • Spaccamela, M.A., Rinnooy Kan, A., and Stougie, L., “Hierarchical Vehicle Routing Problems”, Networks, Vol. 14, pp. 571–586 (1984).

    Article  MATH  Google Scholar 

  • Stein, D., “Scheduling Dial-A-Ride Transportation Systems”, Transportation Science, Vol. 12, pp. 232–249 (1978).

    Article  Google Scholar 

  • Stein, D.M., “An Asymptotic, Probabilistic Analysis of a Routing Problem”, Mathematics of Operations Research, Vol. 3, pp. 89–101 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  • Stern, H., and Dror, M., “Routing Electric Meter Readers”, Computers and Operations Research, Vol. 6, pp. 209–233 (1979).

    Article  Google Scholar 

  • Stewart, W.R., and Golden, B., “A Lagrangian Relaxation Heuristic for Vehicle Routing”, European Journal of Operational Research, Vol. 15, pp. 84–88 (1984).

    Article  MATH  Google Scholar 

  • Stewart, W., and Golden, B., “Computing Effective Subscriber Bus Routes”, Proceedings, 1980 SE TIMS Conference (Edited by P. Dearing, G. Worm), Virginia Beach, pp. 170–178 (1981).

    Google Scholar 

  • Stewart, W., and Golden, B., “The Subscriber Bus Routing Problem”, Proceedings, IEEE International Conference on Circuits and Computers, Port Chester, New York, pp. 153–156 (1980).

    Google Scholar 

  • Stricker, R., “Public Sector Vehicle Routing: The Chinese Postman Problem”, M.S. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (1970).

    Google Scholar 

  • Sumichrast, R.T., and Markham, I.S., “Routing Delivery Vehicles with Multiple Sources, Destinations and Depots”, TIMS/ORSA Joint National Meeting (1993).

    Google Scholar 

  • Sutcliffe, C., and Board, J., “The Ex-Ante Benefits of Solving Vehicle-Routing Problems”, Journal of the Operational Research Society, Vol. 42, pp. 135–143 (1991).

    Google Scholar 

  • Szpigel, V., “Optimal Train Scheduling on a Single Track Railway”, Operations Research, Vol. 20, pp. 343–352 (1972).

    Google Scholar 

  • Tan, C., and Beasley, J., “A Heuristic Algorithm for the Period Vehicle Routing Problem”, OMEGA,The International Journal of Management Science, Vol. 12, pp. 497–504 (1984).

    Article  Google Scholar 

  • Tillman, F., and Cain, T., “An Upper Bounding Algorithm for the Single and Multiple Terminal Delivery Problem”, Management Science, Vol. 18, pp. 664–682 (1972).

    Article  MATH  Google Scholar 

  • Tillman, F., and Hering, R., “A Study of a Look-Ahead Procedure for Solving the Multiterminal Delivery Problem”, Transportation Research, Vol. 5, pp. 225–229 (1971).

    Article  Google Scholar 

  • Tillman, F.A., “The Multiple Terminal Delivery Problem with Probabilis- tic Demands”, Transportation Science, Vol. 3, pp. 192–204 (1969).

    Article  Google Scholar 

  • Tillman, F.A., and Cochran, H., “A Heuristic Approach for Solving the Delivery Problem”, Journal of Industrial Engineering, Vol. 19, pp. 354–358 (1968).

    Google Scholar 

  • Turner, W., Ghare, P., and Foulds, L., “Transportation Routing Problem - A Survey”, AIIE Transactions, Vol. 6, pp. 288–301 (1976).

    Google Scholar 

  • Turner, W., and Hougland, E., “The Optimal Routing of Solid Waste Col- lection Vehicles”, AIIE Transactions, Vol 7, pp. 427–431 (1975).

    Google Scholar 

  • Tyagi, M., “A Practical Method for the Truck Dispatching Problem”, Journal Operational Research Society of Japan, Vol. 10, pp. 76–92 (1968).

    Google Scholar 

  • Unwin, E., “Bases for Vehicle Fleet Scheduling”, Operational Research Quarterly, Vol. 19, pp. 201–202 (1968).

    Article  Google Scholar 

  • Van Leeuwen P., and Volgenant, A., “Solving Symmetric Vehicle Routing Problems Asymetrically”, European Journal of Operational Research, Vol. 12, pp. 388–393 (1983).

    Article  MATH  Google Scholar 

  • Watson-Gandy, C.D.T., and Foulds, L.R., “The Vehicle Scheduling Problem: A Survey”, New Zealand Operational Research Quarterly, Vol. 23, pp. 361–372 (1972).

    Google Scholar 

  • Webb, M.H.J., “Relative Performance of Some Sequential Methods of Planning Multiple Delivery Journeys”, Operational Research Quarterly, Vol. 23, pp. 361–372 (1972).

    Article  Google Scholar 

  • White, W., and Bomberault, A., “A Network Algorithm for Empty Freight Car Allocation”, IBM Systems Journal, Vol. 9, pp. 147–169 (1969).

    Article  Google Scholar 

  • Williams, B., “Vehicle Scheduling: Proximity Searching”, Journal of Operational Research Society, Vol. 33, pp. 961–966 (1982).

    MATH  Google Scholar 

  • Wolters, J., “Minimizing the Number of Aircraft for a Transportation Network”, European Journal of Operational Research, Vol. 3, pp. 394–402 (1979).

    Article  MATH  Google Scholar 

  • Wren, A., and Holliday, A., “Computer Scheduling of Vehicle from One or More Depots to a Number of Delivery Points”, Operational Research Quarterly, Vol. 23, pp. 333–344 (1972).

    Article  Google Scholar 

  • Wren, A., (Ed.), Computer Scheduling of Public Transportation: Urban Passenger Vehicle and Crew Scheduling“, North-Holland Publishing Company, Amsterdam (1981).

    Google Scholar 

  • Yellow, P., “A Computational Modification to the Savings Method of Vehicle Scheduling”, Operational Research Quarterly, Vol. 21, pp. 281–283 (1970).

    Article  Google Scholar 

  • Young, D., “Scheduling a Fixed Schedule, Common Carrier Passenger Transportation System”, Transportation Science, Vol. 4, pp. 243–269 (1970).

    Article  Google Scholar 

Location

  • Akinc, V., and Khumawala, B.M., “An Efficient Branch and Bound Algorithm for the Capacitated Warehouse Location Problem”, Management Science, Vol. 23 pp. 585–594 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  • Alao, N., “Two Classes of Distance Minimization Problems”, A Review, Some Interpretations and Extensions“, Geographical Analysis, Vol. 3, pp. 299–319 (1971).

    Article  Google Scholar 

  • Aneja, Y.P., and Chandra Sekaran, R., and Nair, R.P.K., “A Note on the M-Center Problem with Rectilinear Distances”, European Journal of Operational Research, Vol. 35, pp. 118–123 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  • Armour, G.C., and Buffa, E.S., “A Heuristic Algorithm and Simulation Approach to the Relative Location of Facilities”, Management Science, Vol. 9, pp. 294–309 (1963).

    Google Scholar 

  • Atkins, R.J., and R.H. Shriver, “New Approaches to Facilities Location,” Harvard Business Review, pp. 70–79 (1968).

    Google Scholar 

  • Baker, K.R., “A Heuristic Approach to Locating a Fixed Number of Facilities”, Logistics and Transportation Review, Vol. 10, pp. 195–205 (1974).

    Google Scholar 

  • Balakrishnan, P.V., and Storbeck, J.E., “MCTHRESH: Modeling Maximum Coverage with Threshold Constraints”, Environment and Planning B: Planning and Design, Vol. 18, pp. 459–472 (1991).

    Article  Google Scholar 

  • Balas, E., “A Class of Location, Distribution and Scheduling Problems: Modelling and Solution Methods”, Revue Belge de Statistique, d’Informatique et de Recherche Operationnelle, Vol. 22, pp. 36–57 (1983).

    Google Scholar 

  • Ball, M.O., and Lin, F.L., “A Reliability Model Applied to Emergency Service Vehicle Location”, Operations Research, Vol. 41, pp. 18–36 (1993).

    Article  MATH  Google Scholar 

  • Ballou, R., “Locating Warehouses in a Logistics System”, The Logistics Review, Vol. 4, pp. 23–40 (1968).

    Google Scholar 

  • Barcelo, J., and Casanovas, J., “A Heuristic Lagrangian Algorithm for the Capacitated Plant Location Problem”, European Journal of Operational Research, Vol. 15, pp. 212–226 (1984).

    Article  MATH  Google Scholar 

  • Batta, R., and Mannur, N. R., “Covering-Location Models for Emergency Situations that Require Multiple Response Units”, Management Science, Vol. 36, pp. 16–23 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  • Batta, R., Dolan, J.M., and Krishnamurty, N.N., “The Maximal Expected Covering Location Problem: Revisited”, Transportation Science, Vol. 23, pp. 277–287 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Baumol, W.J., and Wolfe, P., “A Warehouse-Location Problem”, Operations Research, Vol. 6, pp. 252–263 (1958).

    Article  MathSciNet  Google Scholar 

  • Beckmann, M., “Principles of Optimum Location for Transportation Networks”, Quantitative Geography, Atherton Press, NY (1963).

    Google Scholar 

  • Bell, T., and Church, R., “Location and Allocation Modelling in Archeolgoical Settlement Pattern Search: Some Preliminary Applications”, World Archeology, Vol. 16, pp. 354–371 (1985).

    Article  Google Scholar 

  • Bellman, R., “An Application of Dynamic Programming to Location-Allocation Problems,” SIAM Review, Vol. 7, pp. 126–128 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  • Bennett, V.L., Eaton, D.J., and Church, R.L., “Selecting Sites for Rural Health Workers”, Social Sciences of Medicine, Vol. 16, pp. 63–72 (1982).

    Article  Google Scholar 

  • Berlin, G.N., and Liebman, J.C., “Mathematical Analysis of Emergency Ambulance Location”, Socio- Economical Planning Science, Vol. 8, pp. 323–328 (1971).

    Article  Google Scholar 

  • Bertsimas, D., “Two Traveling Salesman Facility Location Problems”, Sloan Working Paper No. 2068–88, Massachusetts Institute of Technology, Cambridge, Massachusetts (1988).

    Google Scholar 

  • Bilde, O., and Krarup, J., “Sharp Lower Bounds and Efficient Algorithms for the Simple Plant Location Problem”, Annals of Discrete Mathematics, Vol. 1, pp. 79–97 (1977).

    Article  MathSciNet  Google Scholar 

  • Bindschedler, A.E., and Moore, J.M., “Optimal Location of New Machines in Existing Plant Layouts”, The Journal of Industrial Engineering, Vol. 12, pp. 41–47 (1961).

    Google Scholar 

  • Bouliane, J., “Locating Postal Relay Boxes Using a Set Covering Alogorithm”, American Journal of Mathematical and Management Sciences, Vol. 12, pp. 65–74 (1992).

    Google Scholar 

  • Brandeau, M., and Chiu, S., “An Overview of Representative Problems in Location Research”, Management Science, Vol. 35, pp. 645–673 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Brown, P.A., and Gibson, D.F., “A Quantified Model for Facility Site Selection-Application to a Multiplant Location Problem”, AIIE Transactions, Vol. 4, pp. 1–10 (1972).

    Google Scholar 

  • Burstall, R.M., Leeaver, R.A., and Sussmas, J.E., “Evaluation of Transport Costs for Alternative Factory Sites - A Case Study,” Operational Research Quarterly, Vol. 13, pp. 345–354 (1962).

    Article  Google Scholar 

  • Cabot, A.V., and Francis, R.L., and Stary, M.A., “A Network Flow Solution to a Rectilinear Distance Facility Location Problem”, AIIE Transactions, Vol. 2, pp. 132–141 (1970).

    Google Scholar 

  • Cerveny, R.P., “An Application of Warehouse Location Technique to Bloodmobile Operations”, Interfaces, Vol. 10, pp. 88–94 (1980).

    Article  Google Scholar 

  • Chaiken, J.M., “Transfer of Emergency Service Deployment Models to Operating Agencies”, Management Science, Vol. 24, pp. 719–731 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  • Chan, A.W., and Francis, R.L., “A Round-Trip Location Problem on a Tree Graph”, Transportation Science, Vol. 10, pp. 35–51 (1976).

    Article  MathSciNet  Google Scholar 

  • Chandrasekaran, R., and Daughety, A., “Location on Tree Networks: P-Center and N-Dispersion Problems”, Mathematics of Operations Research, Vol. 6, pp. 50–57 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • Charnes, A., and Storbeck, J., “A Goal Programming Model for the Siting of Multilevel EMS Systems”, Socio-Economic Planning Sciences“, Vol. 14, pp. 155–161 (1980).

    Article  Google Scholar 

  • Chaudry, S.S., McCormick, S., and Moon, D., “Locating Independent Facilities with Maximum Weight: Greedy Heuristics.” OMEGA“, The International Journal of Management Science, Vol. 14, pp. 383–389 (1986).

    Google Scholar 

  • Chhajad, D., and Lowe, T.J., “M-Median and M-Center Problems with Mutual Communication: Solvable Special Cases”, Operations Research, Vol. 40, pp. S56–S66 (1992).

    Article  Google Scholar 

  • Cho, D.C., Johnson, E.L., Padberg, M., and Rao, M.R., “On the Uncapacitated Plant Location Problem I: Valid Inequalities and Facets”, Mathematics of Operations Research, Vol. 8, pp. 579–589 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  • Cho, D.C., Padberg, M., and Rao, M.R., “On the Uncapacitated Plant Location Problem II: Facets and Lifting Theorems”, Mathematics of Operations Research, Vol. 8, pp. 590–612 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  • Chrissis, J.W., Davis, R.P., and Miller, D.M., “The Dynamic Set Covering Problem”, Applied Mathematics Modelling, Vol. 6, pp. 2–6 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  • Christofides, N., and Viola, P., “The Optimum Location of Multi-Centers on a Graph”, Operational Research Quarterly, Vol. 22, pp. 145–154 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  • Church, R., Current, J. and Storbeck, J., “A Bicriterion Maximal Covering Location Formulation Which Considers the Satisfaction of Uncovered Demand”, Decision Sciences, Vol. 22, pp. 38–52 (1991).

    Article  Google Scholar 

  • Church, R.L., and Eaton, D.J., “Hierarchical Location Analysisd Using Covering Objectives”, Spatial Analysis and Location - Allocation Models (Edited by A. Ghosh and G. Ruston), Van Nostrand Reinhold Company, Inc., New York, pp. 163–185 (1987).

    Google Scholar 

  • Church, R.L., and Weaver, J.R. “Theoretical Links Between Median and Coverage Location Problems”, Annals of Operations Research, Vol. 6, pp. 1–19 (1986).

    Article  Google Scholar 

  • Church, R.L., and Roberts, K.L., “Generalized Coverage Models and Public Facility Location”, Papers of the Regional Science Association, Vol. 53, pp. 117–135 (1983).

    Article  Google Scholar 

  • Church, R.L., and Meadows, M.E., “Location Modeling Utilizing Maximum Service Distance Criteria”, Geographical Analysis, Vol. 11, pp. 358–373 (1979).

    Article  Google Scholar 

  • Church, R.L., and Garfinkel, R.S., “Locating an Obnoxious Facility on a Network”, Transportation Science, Vol. 12, pp. 107–118 (1979).

    Article  MathSciNet  Google Scholar 

  • Church, R.L., and Meadows, M.E., “Results of a New Approach to Solving the P-median Problem with Maximum Distance Constraints”, Geographical Analysis, Vol. 9, pp. 364–378 (1977).

    Article  Google Scholar 

  • Church, R.L., and Revelle, C., “Theoretical and Computational Links Between the p-median, Location Set-Covering, and the Maximal Covering Location Problem”, Geographical Analysis, Vol. 8, pp. 406–415 (1976).

    Article  Google Scholar 

  • Church, R.L., and Revelle, C. “The Maximum Covering Location Problems”, Papers of the Regional Science Association, Vol. 32, pp. 101–118 (1974).

    Article  Google Scholar 

  • Cohon, J.L., ReVelle, C.S., Current, J., Eagles, T., Eberhart, R., and Church, R., “Application of Multiobjective Facility Location Model to Power Plant Siting in a Six-State Region of the U.S.”, Computers and Operations Research, Vol. 7, pp. 107–123 (1980).

    Article  Google Scholar 

  • Conway, R.W., and Maxwell, W.L., “A Note on the Assignment of Facility Locations”, The Journal of Industrial Engineering, Vol. 12, pp. 34–36 (1961).

    Google Scholar 

  • Cooper, L., “The Transportation-Location Problem”, Operations Research, Vol. 20, pp. 94–108 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  • Cooper, L., “An Extension of the Generalized Weber Problem”, The Journal of Regional Science, Vol. 8, pp. 181–197 (1968).

    Article  Google Scholar 

  • Cooper, L., “Solutions of Generalized Location Equilibrium Models,” Journal of Regional Science, Vol. 7, pp. 1–18 (1967).

    Article  Google Scholar 

  • Cooper, L., “Heuristic Methods for Location and Allocation Problems”, SIAM Review, Vol. 6, pp. 37–53 (1964).

    Article  MathSciNet  Google Scholar 

  • Cooper, L., “Location - Allocation Problems”, Operations Research, Vol. 11, pp. 331–343 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  • Cornuejols, G., Nemhauser, G.L., and Wolsey, L.A., “The Uncapacitated Facility Location Problem”, In Discrete Location Theory, R.L., (Edited by Francis and P. Mirchandani), Wiley Interscience (1990).

    Google Scholar 

  • Cornuejols, G., Fisher, M.L., and Nemhauser, G.L., “Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms”, Management Science, Vol. 23, pp. 789–810 (1977a).

    Article  MATH  MathSciNet  Google Scholar 

  • Cornuejols, G., Fisher, M.L., and Nemhauser, G.L., “On the Uncapacitated Location Problem”, Annals of Discrete Mathematics, Vol. 1, pp. 163–177 (1977b).

    Article  MathSciNet  Google Scholar 

  • Current, J., and O’Kelly, M., “Locating Emergency Warning Sirens”, Decision Sciences, Vol. 23, pp. 221–234 (1992).

    Article  Google Scholar 

  • Current, J.R., and Schilling D.A. “Analysis of Errors Due to Demand Data Aggregation in the Set Covering and Maximal Covering Location Problems”, Geographical Analysis, Vol. 22, pp. 116–126 (1990).

    Article  Google Scholar 

  • Current, J.R., and Schilling, D.A., “The Covering Salesman Problem”, Transportation Science, Vol. 23, pp. 208–213 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Current, J.R., and Storbeck, J.E., “Capacitated Covering Models”, Environment and Planning B: Planning and Design, Vol. 15, pp. 153–163 (1988).

    Article  Google Scholar 

  • Current, J.R., and Storbeck, J.E., “Satisfying Solutions to Infeasible Set Partitions”, Environment and Planning B: Planning and Design, Vol. 14, pp. 182–192 (1987).

    Article  Google Scholar 

  • Current, J.R., ReVelle, C.S., and Cohon, J.L., “The Maximum/Shortest Path Problem: A Multiobjective Network Design and Routing Formulation”, European Journal of Operational Research Vol. 21, pp. 189–199 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • Daskin, M., Haghani, A.E., Khanal, M., and Malandraki, C., “Aggregation Effects in Maximum Covering Models”, Annals of Operations Research, Vol. 18, 115–140 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Daskin, M., Hogan, K., and Revelle, C., “Integration of Multiple, Excess, Backup and Expected Covering Models”, Environment and Planning B: Planning and Design, Vol. 15, pp. 15–35 (1988).

    Article  Google Scholar 

  • Daskin, M.S., “A Maximum Expected Covering Location Model: Formulation, Properties, and Heuristic Solution”, Transportation Science, Vol. 17, pp. 48–70 (1983).

    Article  Google Scholar 

  • Daskin, M.S., “Application of an Expected Covering Model to Emergency Medical Service Systems Design”, Decision Sciences, Vol. 13, pp. 416–439 (1982).

    Article  Google Scholar 

  • Dyer, M.E., and Frieze, A.M., “A Simple Heuristic for the P-Center Prob- lem”, Operations Research Letters, Vol. 3, pp. 285–288 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • Daskin, M., and Stern, E., “A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment”, Transportation Science, Vol. 15, pp 137–152 (1981).

    MathSciNet  Google Scholar 

  • Davis, P.S., and Ray, T.L., “A Branch and Bound Algorithm for the Capacitated Facilities Location Problem”, Naval Research Logistics Quarterly, Vol. 16, pp. 331–344 (1969).

    MATH  Google Scholar 

  • Dearing, P.M., “Location Problems”, Operations Research Letters, Vol. 4, pp. 95–98 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • Dearing, P.M., and Francis, R.L., “A Minimax Location Problem on a Network”, Transportation Science, Vol. 8, pp. 333–343 (1974a).

    Article  MathSciNet  Google Scholar 

  • Dearing, P.M., and Francis, R.L., “A Network Flow Solution to a Multi-Facility Minimax Location Problem Involving Rectilinear Distances”, Transportation Science, Vol. 8, pp. 126–141 (1974b).

    Article  MathSciNet  Google Scholar 

  • Dee, N., and Liebman, J.C., “Optimal Location of Public Facilities”, Naval Research Logistics Quarterly, Vol. 19, pp. 753–760 (1972).

    Article  Google Scholar 

  • Deighton, D., “A Comment on Location Models”, Management Science, Vol. 18, pp. 113–115 (1971).

    Article  Google Scholar 

  • Drezner, Z., “The P-Cover Problem”, European Journal of Operational Research, Vol. 26, pp. 312–313 (1985).

    Article  MathSciNet  Google Scholar 

  • Drezner, Z., “The P-Center Problem-Heuristic and Optimal Algorithms”, Journal of the Operational Research Society, Vol. 35, pp. 741–748 (1984).

    MATH  Google Scholar 

  • Drysdale, J.K., and Sandiford, P.J., “Heuristic Warehouse Location - A Case History Using a New Method”, Canadian Operations Research Society, Vol. 7, pp. 45–61 (1969).

    Google Scholar 

  • Dutton, R., Hinman, G., and Millham, C.B., “The Optimal Location of Nuclear Power Facilities in the Pacific Northwest”, Operations Research, Vol. 22, pp. 478–487 (1974).

    Article  Google Scholar 

  • Eaton, D., Daskin, M., Simmons, D., Bulloch, B., and Jansma, G., “Determining Emergency Medical Service Deployment in Austin, Texas”, Interfaces, Vol. 15, pp. 96–108 (1985).

    Article  Google Scholar 

  • Efroymson, M., and Ray, T., “A Branch and Bound Algorithm for Plant Location”, Operations Research, Vol. 14, pp. 361–368 (1966).

    Article  Google Scholar 

  • Eiselt, H.A., “Location Modeling in Practice”, American Journal of Mathematical and Management Sciences, Vol. 12, pp. 3–18 (1992).

    Google Scholar 

  • Eiselt, H.A., and Pederzoli, G., “A Location Problem in Graphs”, New Zealand Journal of Operations Research, Vol. 12, pp. 49–53 (1984).

    Google Scholar 

  • Eisemann, K., “The Optimum Location of a Center”, SIAM Review, Vol. 4, pp. 394–401 (1962).

    Article  Google Scholar 

  • Elfwein, L.B., and Gray, P., “Solving Fixed Charge Location - Allocation Problems with Capacity and Configuration Constraints”, AIIE Transactions, Vol. 3, pp. 290–298 (1971).

    Google Scholar 

  • El-Shaieb, A.M., “A New Algorithm for Locating Sources Among Destinations”, Management Science, Vol. 20, pp. 221–231 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  • Elson, D.G., “Site Location via Mixed Integer Programming”, Operational Research Quarterly, Vol. 23, pp. 31–43 (1972).

    Article  MATH  Google Scholar 

  • Elzinga, J., Hearn, D., and Randolph, W.D., “Minimax Multifacility Location with Euclidean Distances”, Transportation Science, Vol. 10, pp. 321–336 (1976).

    Article  MathSciNet  Google Scholar 

  • Elzinga, J., and Hearn, D., “A Note on a Minimax Location Problem”, Transportation Science, Vol. 7, pp. 100–103 (1973).

    Article  MathSciNet  Google Scholar 

  • Elzinga, J., and Hearn, D., “Geometrical Solutions for Some Minimax Location Problems”, Transportation Science, Vol. 6, pp. 379–394 (1972a).

    Article  MathSciNet  Google Scholar 

  • Elzinga, J., and Hearn, D., “The Minimum Covering Sphere Problem,” Management Science, Vol. 19, pp. 96–104 (1972b).

    Article  MATH  MathSciNet  Google Scholar 

  • Erkut, E., Francis, R.L., Lowe, T.J., and Tamir, A., “Equivalent Mathematical Programming Formulations of Montonic Tree Network Location Problems”, Operations Research, Vol. 37, pp. 447–461 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Erkut, E., Francis, R.L., and Lowe, T.J., “A Multimedian Problem with Interdistance Constraints”, Environment and Planning B: Planning and Design, Vol. 15, pp. 181–190 (1988).

    Article  Google Scholar 

  • Erlenkotter, D., “A Dual-Based Procedure for Uncapacitated Facility Location”, Operations Research, Vol. 26, pp. 992–1009 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  • Erlenkotter, D., “Facility Location with Price-Sensitive Demand, Private, Public and Quasi-Public”, Management Science, Vol. 24, pp. 378–386 (1977).

    Article  MATH  Google Scholar 

  • Erlenkotter, D., “A New Algorithm for Locating Sources Among Destinations”, Management Science, Vol. 20, pp. 221–231 (1973).

    Article  MathSciNet  Google Scholar 

  • Eyster, J.W., White, J.A., and Wierwille, W.W., “On Solving Multifacility Location Problems Using a Hyperboloid Approximation Procedure,” AIIE Transactions, Vol. 5, pp. 1–6 (1973).

    Google Scholar 

  • Feldmann, E., Lehrer, F., and Ray, T., “Warehouse Location Under Continuous Economics of Scale”, Management Science, Vol. 12, pp. 670–684 (1966).

    Article  Google Scholar 

  • Fitzsimmons, J.A., and Allen, L. A., “A Warehouse Location Model Helps Texas Comptroller Select Out-of-State Audit Offices”, Interfaces, Vol. 13, pp. 40–46 (1983).

    Article  Google Scholar 

  • Fitzsimmons, J.A., “A Methodology for Emergency Ambulance Deployment”, Management Science, Vol. 15, pp. 627–636 (1969).

    Google Scholar 

  • Flynn, J., and Ratick, S., “A Multiobjective Hierarchical Covering Model for the Essential Air Services Program”, Transportation Science, Vol. 22, pp. 139–147 (1988).

    Article  Google Scholar 

  • Foster, D.P., and Vohra, R.K., “A Probabilistic Analysis of the K-Location Problem”, American Journal of Mathematical and Management Sciences, Vol. 12, pp. 75–87 (1992).

    MATH  Google Scholar 

  • Francis, R.L., and Mirchandani, P.B., (Eds.), “Discrete Location Theory”, John Wiley & Sons (1989).

    Google Scholar 

  • Francis, R.L., McGinnis, L.F., and White J.A., “Locational Analysis”, European Journal of Operational Research, Vol. 12, pp. 220–252 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  • Francis, R.L., Lowe, T.J., and Ratliff, H.D., “Distance Constraints for Tree Network Multifacility Location Problem”, Operations Research, Vol. 26, pp. 570–596 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  • Francis, R.L., and Goldestein, J.M., “Location Theory: A Selective Bibliography”, Operations Research, Vol. 22, pp. 400–410 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • Francis, R.L., and White, J.A., “Facilities Layout and Location”, Prentice Hall, Inc., (1974).

    Google Scholar 

  • Francis, R.L., and Cabot, A.V., “Properties of a Multifacility Location Problem Involving Euclidean Distances”, Naval Research Logistics Quarterly, Vol. 19, pp. 335–353 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  • Francis, R.L., “A Geometric Solution Procedure for a Rectilinear Distance Minimax Location”, AIIE Transactions, Vol. 4, pp. 328–332 (1972).

    MathSciNet  Google Scholar 

  • Francis, R.L., “Some Aspects of Minimax Location Problem”, Operations Research, Vol. 15, pp. 1163–1168 (1967a).

    Article  Google Scholar 

  • Francis, R.L., “Sufficient Conditions for Some Optimum - Property Facility Design”, Operations Research, Vol. 15, pp. 448–466 (1967b).

    Article  MATH  Google Scholar 

  • Francis, R.L., “On the Location of Multiple New Facilities With Respect to Existing Facilities”, The Journal of Industrial Engineering, Vol. 15, pp. 106–107 (1964).

    Google Scholar 

  • Francis, R.L., “A Note on the Optimum Location of New Machines in Existing Plant Layouts”, The Journal of Industrial Engineering, Vol. 14, pp. 57–59 (1963).

    Google Scholar 

  • Frank, H., “Optimum Location on a Graph with Probabilistic Demand,” Operations Research, Vol. 14, pp. 409–421 (1966).

    Article  MATH  MathSciNet  Google Scholar 

  • Fujiwara, O., Makjamroen, T., and Gruta, K.K., “Ambulance Deployment Analysis: A Case Study of Bangkok”, European Journal of Operational Research, 31, pp. 9–18 (1987).

    Article  Google Scholar 

  • Garfinkel, R.S., and Noebe, A.W., and Rao, M.R., “The M-Center Problem: Minimax Facility Location”, Management Science, Vol. 23, pp. 1133–1142 (1977).

    Article  MATH  Google Scholar 

  • Gavett, J.W., and Plyter, N.V., “The Optimal Assignments of Facilities to Locations by Branch and Bound”, Operations Research, Vol. 14, pp. 210–231 (1966).

    Article  Google Scholar 

  • Gelders, L. F., Pintelow, L.M., and Van Wassenhove, L.N., “A Location-Allocation Problem in a Large Belgian Brewery”, European Journal of Operational Research, Vol. 28, pp. 196–206 (1987).

    Article  Google Scholar 

  • Geoffrion, A.M., and McBride, R., “Lagrangian Relaxation Applied to Capacitated Facility Location Problem”, AIIE Transactions, Vol. 10, pp. 40–47 (1978).

    Google Scholar 

  • Ghosh, A., and Craig, C.S., “An Approach to Determining Optimal Location of New Services”, Journal of Marketing Research, Vol. 23, pp. 354–362 (1986).

    Article  Google Scholar 

  • Gleason, J., “A Set Covering Approach to Bus Stop Location”, OMEGA, The International Journal of Management Science, Vol. 3, pp. 605–608 (1975).

    MathSciNet  Google Scholar 

  • Goldberg, J., and Paz, L., “Locating Emergency Vehicle Bases When Service Time Depends On Call Location”, Transportation Science, Vol. 25, pp. 264–280 (1991).

    Article  MATH  Google Scholar 

  • Goldberg, J. R., Dietrich, R., Chen, J.M., Mitwasi, M.G., Valenzuela, T., and Criss, E., “Validating and Applying a Model for Locating Emergency Medical Vehicles in Tucson, AZ (Case Study)”, European Journal of Operational Research, Vol. 49, pp. 308–324 (1990).

    Article  Google Scholar 

  • Goldman, A.J., “Minimax Location of a Facility on a Network”, Transportation Science, Vol. 6, pp. 407–418 (1972a).

    Article  Google Scholar 

  • Goldman, A.J., “Approximate Localization Theorems for Optimal Facility Placement,” Transportation Science, Vol. 6, pp. 195–201 (1972b).

    Article  Google Scholar 

  • Goldman, A.J., “Optimal Center Locations in Simple Networks”, Transportation Science, Vol. 5, pp. 212–221 (1971).

    Article  MathSciNet  Google Scholar 

  • Goldman, A.J., and Witzgall, C.J., “A Localization Theorem for Optimal Facility Placement,” Transportation Science, Vol. 4, pp. 406–408 (1970).

    Article  MathSciNet  Google Scholar 

  • Goldman, A.J., “Optimum Location for Centers in a Network”, Transportation Science, Vol. 3, pp. 352–360 (1969).

    Article  MathSciNet  Google Scholar 

  • Goodchild, M., and Lee, J., “Coverage Problems and Visibility Regions on Topographic Surfaces”, Annals of Operations Research, Vol. 18, pp. 175–186 (1989).

    Article  MathSciNet  Google Scholar 

  • Guignard, M., “Fractional Vertices, Cuts, Facets of the Simple Plant Location Problem”, Mathematical Programming Study, Vol. 12, pp. 150–162 (1980).

    MATH  MathSciNet  Google Scholar 

  • Guignard M., and Spielberg, K., “A Direct Dual Method for the Mixed Plant Location Problem with Some Side Constraints”, Mathematical Programming, Vol. 17, pp. 198–228 (1979).

    MATH  MathSciNet  Google Scholar 

  • Guignard, M., and Spielberg, K., “Algorithms for Exploiting the Structure of Simple Plant Location Problems”, Annals of Discrete Mathematics, Vol. 1, pp. 247–271 (1977).

    Article  MathSciNet  Google Scholar 

  • Gunawardane, G., “Dynamic Version of Set Covering Type Public Facility Location Problems”, European Journal of Operational Research, Vol. 10, pp. 190–195 (1982).

    Article  MATH  Google Scholar 

  • Hakimi, S., Schmeichel, E., and Pierce, J., “On P-Centers in Networks”, Transportation Science, Vol. 12, pp. 1–15 (1978).

    Article  MathSciNet  Google Scholar 

  • Hakimi, S., and Maheshwari, S.N., “Optimum Locations of Centers in Networks”, Operations Research, Vol. 20, pp. 967–973 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  • Hakimi, S.L., “Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems”, Operations Research, Vol. 13, pp. 462–475 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  • Hakimi, S., “Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph”, Operations Research, Vol. 12, pp. 450–459 (1964).

    Article  MATH  Google Scholar 

  • Halfin, S., “On Finding the Absolute and Vertex Centers of a Tree with Distances”, Transportation Science, Vol. 8, pp. 75–77 (1974).

    Article  MathSciNet  Google Scholar 

  • Halpern, J., “The Location of a Center-Median Convex Combination on an Undirected Tree”, Journal of Regional Science, Vol. 16, pp. 237–245 (1976).

    Article  Google Scholar 

  • Hammer, P.L., “Plant Location - A Pseudo-Boolean Approach”, Israel Journal of Technology, Vol. 6, pp. 330–332 (1968).

    MATH  Google Scholar 

  • Handler, G.Y., and Mirchandani, P.B., “Location on Networks, Theory and Algorithms”, MIT Press, Cambridge (1979).

    MATH  Google Scholar 

  • Handler, G., “Minimax Location Facility in an Undirected Tree Graph”, Transportation Science, Vol. 7, pp. 287–293 (1973).

    Article  MathSciNet  Google Scholar 

  • Hansen, P., Labbe, M., Peters, D., and Thisse, J-F., “Single Facility Location on Networks”, Annals of Discrete Mathematics, Vol. 31, pp. 113-146 (1987).

    Google Scholar 

  • Hansen, P., Thisse, J.F., and Wendell, R.E., “Equivalence of Solutions to Network Location Problems”, Mathematics of Operations Research, Vol. 11, pp. 672–678 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  • Hitchings, G.F., “Analogue Techniques for the Optimal Location of a Main Facility in Relation to Ancillary Facilities”, International Journal Production Research, Vol. 7, pp. 189–197 (1969).

    Article  Google Scholar 

  • Hodgson, M.J., “A Flow Capturing Location and Allocation Model”, Geographical Analysis, Vol. 22, pp. 270–279 (1990).

    Article  Google Scholar 

  • Hodgson, M.J., “The Location of Public Facilities Intermediate to the Journey to Work”, European Journal of Operational Research, Vol. 6, pp. 199–204 (1981).

    Article  Google Scholar 

  • Hogan, K., and Revelle, C., “Concepts and Applications of Backup Coverage”, Management Science, Vol. 32, pp. 1434–1444 (1986).

    Article  Google Scholar 

  • Hogan, K., and Revelle, C.S., “Backup Coverage Concepts in the Locaiton of Emergency Services”, Modleing and Simulation, Vol. 14, pp. 1423 (1983).

    Google Scholar 

  • Hogg, J., “The Siting of Fire Stations”, Operational Research Quarterly, Vol. 19, pp. 275–287 (1968).

    Article  Google Scholar 

  • Holmes, J., Williams, F.B., and Brown, L.A., “Facility Location Under Maximum Travel Restriction: An Example Using Day Care Facilities”, Geographical Analysis, Vol. 4, pp. 258–266 (1972).

    Article  Google Scholar 

  • Hooker, J.N., Garfinkel, R.S., and Chen, C.K., “Finite Dominating Sets for Network Location Problems”, Operations Research, Vol. 39, pp 100–118 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  • Hoover, E.M., “Some Programmed Models of Industry Location”, Land Economics Vol. 43, pp. 303–311 (1967).

    Article  Google Scholar 

  • Hopmans, A.C.M., “A Spatial Interaction Model for Branch Bank Accounts”, European Journal of Operations Research, Vol. 27, pp. 242–250 (1986).

    Article  Google Scholar 

  • Hormozi, A.M., and Khumawala, B.M., “An Improved Multi-Period Facility Location Model”, CBA Working Paper Series - 252, University of Houston (1992).

    Google Scholar 

  • Hsu, W.L., and Nemhauser, G.L., “Easy and Hard Bottleneck Location Problems”, Discrete Applied Mathematics., Vol. 1, pp. 209–215 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  • Hurter, A.P., Schaeffer, M.K., and Wendell, R.E., “Solution of Constrained Location Problems”, Management Science, Vol. 22, pp. 51–56 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  • Jarvinen, P., Rajala, J., and Sinerro, J., “A Branch-and-Bound Algorithm for Seeking P-Median”, Operations Research, Vol. 20, pp. 173–178 (1972).

    Article  Google Scholar 

  • Kalstorin, T.D., “On the Maximal Covering Location Problem and the General Assignment Problem”, Management Science, Vol. 25, pp. 106–112 (1979).

    Google Scholar 

  • Kariv, O., and Hakimi, S.L., “An Algorithmic Approach to Network Location Problem I: The P- Centers”, SIAM Journal of Applied Mathematics, Vol. 37, pp 513–538 (1979a).

    Article  MATH  MathSciNet  Google Scholar 

  • Kariv, O., and Hakimi, S.L., “An Algorithmic Approach to Network Location Problems II: The P- Medians”, SIAM Journal of Applied Mathematics, Vol. 37, pp. 539–560 (1979b).

    Article  MATH  MathSciNet  Google Scholar 

  • Keeney, R.L., “A Method for Districting Among Facilities”, Operations Research, Vol. 20, pp. 613–618 (1972).

    Article  MATH  Google Scholar 

  • Khumawala, B.M., Neebe, A.,and Dannenbring, D.G., “A Note on ElShaieb’s New Algorithm for Locating Sources Among Destinations”, Management Science, Vol. 21, pp. 230–233 (1974).

    Article  MathSciNet  Google Scholar 

  • Khumawala, B.M., “An Efficient Heuristic Procedure for the Uncapacitated Location Problem”, Naval Research Logistics Quarterly, Vol. 20, pp. 109–121 (1973a).

    Article  Google Scholar 

  • Khumawala, B.M., “An Efficient Algorithm for the P-Median Problem with Maximum Distance Constraints”, Geographical Analysis, Vol. 5, pp. 309–321 (1973b).

    Article  Google Scholar 

  • Khumawala, B.M., “An Efficient Branch and Bound Algorithm for the Warehouse Location Problem”, Management Science, Vol. 18, pp. 718–731 (1972).

    Article  Google Scholar 

  • Khumawala, B.M., and Whybark, W.E., “A Comparison of Some Recent Warehouse Location Techniques”, Logistics Review, Vol. 7, pp. 3–19 (1971).

    Google Scholar 

  • Kimes, S.E., and Fitzsimmons, J.A., “Selecting Profitable Sites ast La Quinta Inns”, Interfaces, Vol. 20, pp. 12–20 (1990).

    Article  Google Scholar 

  • Kirca, O., and Eurkip, N., “Selecting Transfer Station Locations for Large Solid Waste Systems”, European Journal of Operational Research, Vol. 38, pp. 339–349 (1988).

    Article  Google Scholar 

  • Kolen, A., “The Round-Trip P-Center and Covering Problem on a Tree”, Transportation Science, Vol. 19, pp. 222–234 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • Kolen, A., “Solving Problems and the Uncapacitated Plant Location Problems on Trees”, European Journal of Operational Research, Vol. 12, pp. 266–278 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  • Kolesar, P., and Walker W.E., “An Algorithm for the Dynamic Relocation of Fire Companies”, Operations Research, Vol. 11, pp. 244–274 (1974).

    Google Scholar 

  • Koopmans, Tjalling, C., and Beckmann, M., “Assignment Problems and the Location of Economic Activities,” Econometrica, Vol. 25, pp. 53–76 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  • Kramer, R.L., “Analysis of Lock-Box Locations”, Bankers Monthly Magazine, Vol. pp. 50–55 (1966).

    Google Scholar 

  • Krarup, J., and Pruzan, P.M., “The Simple Plant Location Problem: Survey and Synthesis”, European Journal of Operational Research, Vol. 12, pp. 36–81 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  • Kraus, A., Janssen, C., and McAdams, A.K., “The Lock-Box Location Problem: A Class of Fixed Charge Transportation Problem”, Journal of Bank Research, Vol. 1, pp. 51–58 (1970).

    Google Scholar 

  • Kuehn, A., and Hamburger, N., “A Heuristic Program for Locating Warehouses”, Management Science, Vol. 9, pp. 643–666 (1963).

    Article  Google Scholar 

  • Kuhn, H.W., and Kuenne, R.E., “An Efficient Algorithm for the Numerical Solution of the Generalized Weber Problem in Spatial Economics,” Journal of Regional Science, Vol. 4, pp. 21–33 (1962).

    Article  Google Scholar 

  • Laporte, G., Nobert, Y., and Arpin, D., “An Exact Algorithm for Solving Capacitated Location - Routing Problems”, In Location Decisions: Methodology and Applications, (Edited by J.C. Baltzer), Scientific Publishing Company, pp. 246–257 (1986).

    Google Scholar 

  • Larson, R.C., “Approximating the Performance of Urban Emergency Ser- vice Systems”, Operations Research, Vol. 23, pp. 845–869 (1975).

    Article  MATH  Google Scholar 

  • Larson, R.C., and Stevenson, K.A., “On Insensitivities in Urban Redistricting and Facility Location”, Operations Research, Vol. 20, pp. 595–612 (1972).

    Article  MATH  Google Scholar 

  • Lawrence, R.M., and Pengilly, P.J., “The Number and Location of Depots Required for Handling Products for Distribution to Retail Stores in South-East England”, Operational Research Quarterly, Vol. 20, pp. 23–32 (1969).

    Article  Google Scholar 

  • Learner, E.E., “Locational Equilibria,” Journal of Regional Science, Vol. 8, pp. 229–242 (1968).

    Article  Google Scholar 

  • Levy, J., “An Extended Theorem for Location on a Network”, Operational Research Quarterly, Vol. 18, pp. 433–442 (1967).

    Article  MATH  Google Scholar 

  • Lin, C.C., “On Vertex Addends in Minimax Location Problems”, Transportation Science, Vol. 9, pp. 165–168, (1975).

    Article  MathSciNet  Google Scholar 

  • Louveaux, F.V., and Peters, D., “A Dual-Based Procedure for Stochastic Facility Location”, Operations Research, Vol. 40, pp. 564–573 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  • Love, R.F., Morris, J.G., and Weslowsky, G.O., “Facilities Location: Models and Methods”, North Holland Publishing Company, New York (1988).

    MATH  Google Scholar 

  • Love, R.F., Wesolowsky, G.O., and Kraemer, S.A., “A Multi-Facility Mini-max Location Method for Euclidean Distances”, International Journal of Production Research, Vol. 11, pp. 37–46 (1973).

    Article  Google Scholar 

  • Love, R.F., and Morris, J.G., “Modelling Inter-City Road Distances by Mathematical Functions”, Operational Research Quarterly, Vol. 23, pp. 61–71 (1972).

    Article  MATH  Google Scholar 

  • Love, R.F., “A Computational Procedure for Optimally Locating a Facility with Respect to Several Rectangular Regions,” Journal of Regional Science, Vol. 12, pp. 233–243 (1972).

    Article  Google Scholar 

  • Love, R.F., “Locating Facilities in Three-Dimensional Space by Convex Programming,” Naval Research Logistics Quarterly., Vol. 16, pp. 503–516 (1969).

    MATH  MathSciNet  Google Scholar 

  • Love, R.F., “A Note on the Convexity of the Problem of Siting Depots”, International Journal Production Research, Vol. 6, pp. 153–154 (1967).

    Article  Google Scholar 

  • MacKinnon, Ross, G., and Barber, G.M., “A New Approach to Network Generation and Map Representation: The Linear Case of the Location-Allocation Problem,” Geographical Analysis, Vol. 4, pp. 156–158 (1972).

    Article  Google Scholar 

  • Maier, S.F., and Vanderweide, J.H., “A Unified Location Model for Cash Disbursements and Lock- Box Collections”, Journal of Bank Research, Vol. 7, pp. 166–172 (1976).

    Google Scholar 

  • Maier, S.F., and Vanderweide, J.H., “The Lock-Box Location Problem: A Practical Reformulation”, Journal of Bank Research, Vol. 5, pp. 92–95 (1974).

    Google Scholar 

  • Malczewski, J., and Ogyczak, W., “An Interactive Approach to the Centeral Facility Locaiton Problem”, Geographical Analysis, Vol. 22, pp. 244–258 (1990).

    Article  Google Scholar 

  • Manne, A.S., “Plant Location Under Economics-of-Scale-Decentralization and Computation”, Management Science, Vol. 11, pp. 213–235 (1964).

    Article  Google Scholar 

  • Maranzana, F., “On the Location of Supply Points to Minimize Transport Costs”, Operational Research Quarterly, Vol. 15, pp. 261–270 (1964).

    Article  Google Scholar 

  • Marks, D., Revelle, C.S., and Liebman, J.C., “Mathematical Models of Location: A Review”, Journal of Urban Planning and Development Division, Vol. 96, pp. 81–93 (1970).

    Google Scholar 

  • Marianov, V., and Revelle, C., “The Standard Response Fire Protection Siting Problem”, Information Systems and Operations Research, Vol. 29, pp. 116–129 (1991).

    MATH  Google Scholar 

  • Masuyama, S., Ibaraki, T., Hasegawa, T., “The Computational Complexity of the M-Center Problem in the Plane” Transactions of IECE Japan, Vol. E 64, pp. 57–64 (1981).

    Google Scholar 

  • Mavrides, L.P., “An Indirect Method for the Generalized K-Median Problem Applied to Lock-Box Location”, Management Science, Vol. 25, pp. 990–996 (1979).

    Article  MATH  Google Scholar 

  • McAdams, A.K., “Critique of: A Lock-Box Location Model”, Management Science, Vol. 15, pp. 888–890 (1968).

    Google Scholar 

  • McHose, A.H., “A Quadratic Formulation of the Activity Location Problem,” The Journal of Industrial Engineering, Vol. 12, pp. 334 (1961).

    Google Scholar 

  • Medgiddo, N., Zemel, E., and Hakimi, L., “The maximum coverage location problem”, SIAM Journal of Algebra and Discrete Methods, Vol. 4, pp 253–261 (1983).

    Article  Google Scholar 

  • Mehrez, A., and Stulman, A., “An Extended Continuous Maximal Covering Location Problem With Facility Placement”, Computers and Operations Research, Vol. 11, pp. 19–23 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  • Mehrez, A., “A Note on the Linear Integer Formulation of the Maximal Covering Location Problem with Facility Placement on the Entire Plane”, Journal of Regional Science, Vol. 23, pp. 553–555 (1983).

    Article  Google Scholar 

  • Mehrez, A., and Stulman, A., “The Maximal Covering Location Problem With Facility Placement on the Entire Plane”, Journal of Regional Science, Vol. 22, pp. 361–365 (1982).

    Article  Google Scholar 

  • Meyer, P.D., and Brill, E.D., Jr., “ A Method for Locating Wells in a Groundwater Monitoring Networking Under Conditions of Uncertainty”, Water Resources Research, Vol. 24, pp. 1277–1282 (1988).

    Article  Google Scholar 

  • Minieka, E., “The Centers and Medians of a Graph”, Operations Research, Vol. 25, pp. 641–650 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  • Minieka, E., “The M-Center Problem”, SIAM Review, Vol. 12, pp. 138–139 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  • Mirchandani, P.B., “Locational Decisions on Stochastic Networks”, Geographical Analysis, Vol. 12, pp. 172–183 (1980).

    Article  Google Scholar 

  • Mirchandani, P.B., and Odoni, A.R., “Locating New Passenger Facilities on a Transportation Network”, Transportation Research, Vol. 13-B, pp. 113–122 (1979a).

    MathSciNet  Google Scholar 

  • Mirchandani, P.B., and Odoni, A.R., “Location of Medians on Stochastic Networks”, Transportation Science, Vol. 13, pp. 85–97 (1979b).

    Article  MathSciNet  Google Scholar 

  • Mole, R.H., “Comments on the Location of Depots”, Management Science, Vol. 19, pp 832–833 (1973).

    Google Scholar 

  • Moon, I.D., and Chaudhry, S.S., “An Analysis of Network Location Problem with Distance Constraints”, Management Science, Vol. 30, pp. 290–307 (1984).

    Article  MATH  Google Scholar 

  • Moore, G., and Revelle, C., “The Hierarchical Service Location Problem”, Management Science, Vol. 28, pp. 775–780 (1982).

    Article  MATH  Google Scholar 

  • Mukundan, S., and Dakin, M., “Joint Location/Sizing Maximum Profit Covering Models”, Information Systems and Operations Research, Vol. 29, pp. 139–152 (1991).

    MATH  Google Scholar 

  • Mycielske, J., and Trzechiakowske, W., “Optimization of the Size and Location of Service Stations”, Journal of Regional Science, Vol. 5, pp. 59–68 (1963).

    Article  Google Scholar 

  • Nair, K.P.K., and R. Chandrasekaran, “Optimal Location of a Single Service Center of Certain Types,” Naval Research Logistics Quarterly, Vol. 18, pp. 503–510 (1971).

    Article  MathSciNet  Google Scholar 

  • Nambiar, J.M., Gelders, L.F., and Van Wassenhove, L.N., “Plant Location and Vehicle Routing in the Malaysian Rubber Smallholder Sector: A Case Study”, European Journal of Operational REsearch, Vol. 38, pp. 14–26 (1989).

    Article  Google Scholar 

  • Nambiar, J.M., Gelders, L. F., and Van Wassenhove, L.N., “A Large-Scale Location-Allocation Problem in a Natural Rubber Industry”, European Journal of Operational Research, Vol. 6, pp. 181–189 (1981).

    Article  Google Scholar 

  • Narula, S.C., Ogbu, U.I., and Samuelsson, H.M., “An Algorithm for the P-Median Problems”, Operations Research, Vol. 25, pp. 709–713 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  • Nauss, R.M., and Markland, R.E., “Theory and Application of an Optimizing Procedure for Lock-Box Location Analyses”, Management Science, Vol. 27, pp. 855–865 (1981).

    Article  MATH  Google Scholar 

  • Nauss, R.M., and Markland, R.E., “Solving Lock-Box Location Problems”, Financial Management, Vol. pp. 21–31 (1979).

    Google Scholar 

  • Neebe, A.W., “A Procedure for Locating Emergency-Service Facilities For All Possible Response Distances”, Journal of Operation Research Society, Vol. 39, 743–748 (1988).

    MATH  Google Scholar 

  • Neebe, A.W., “A Branch and Bound Algorithm for the P-Median Transportation Problem”, Journal of the Operational Research Society, Vol. 29, pp. 989 (1978).

    MATH  Google Scholar 

  • Orloff, C.S., “A Theoretical Model of Net Accessibility in Public Facility Location”, Geographical Analysis, Vol. 9, pp. 244–256 (1977).

    Article  Google Scholar 

  • Osleeb, J.P., Ratick, S.J., Buckley, P., Lee, K., and Kuby, M., “Evaluation of Dredging and Offshore Loading Locations for U.S. Coal Exports Using Local Logistics System”, Annals of Operations Research, Vol. 6, pp. 163–180 (1986).

    Article  Google Scholar 

  • Palermo, F.P., “A Network Minimization Problem”, IBM Journal, Vol. pp. 335–337 (1961).

    Google Scholar 

  • Patel, N., “Locating Rural Social Service Centers in India”, Management Science, Vol. 28, pp. 775–780 (1979).

    Google Scholar 

  • Perl, J., and Daskin, M., “A Warehouse Location-Routing Problem”, Transportation Research, Vol. 19B, pp. 381–396 (1985).

    Google Scholar 

  • Perl, J., and Daskin, M.S., “A Unified Warehouse Location-Routing Methodology”, Journal of Business Logistics, Vol. 5, pp. 92–111 (1984).

    Google Scholar 

  • Picard, J.C., and Ratliff, H.D., “A Cut Approach to the Rectilinear Distance Facility Location Problem”, Operations Research, Vol. 28, pp. 422–433 (1978).

    Article  MathSciNet  Google Scholar 

  • Pirkul, H., and Schilling, D., “The Maximal Covering Location Problem With Capacities on Total Workload”, Management Science, Vol. 37, pp. 233–248 (1991)

    Article  MATH  Google Scholar 

  • Pirkul, H., and Schilling, D., “The Capacitated Maximal Covering Location Problem With Backup Service”, Annals of Operations Research, Vol. 18, pp. 141–154 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • Plane, D.R., and Hendrick, T.E., “Mathematical Programming and the Location of Fire Companies for the Denver Fire Department”, Operations Research, Vol. 25, pp. 563–578 (1977).

    Article  MATH  Google Scholar 

  • Polopolus, L., “Optimum Plant Numbers and Locations for Multiple Produce Processing”, Journal of Farm Economics, Vol. 47, pp. 287–295 (1965).

    Article  Google Scholar 

  • Price, W.L., and Turcotte, M., “Locating a Blood Bank”, Interfaces, Vol. 16, pp. 17–26 (1986).

    Article  Google Scholar 

  • Pritsker, A.A.B., “A Note to Correct the Procedure of Pritsker and Ghare for Locating Facilities with Respect to Existing Facilities”, AIIE Transactions, Vol. 5, pp. 84–86 (1973).

    Google Scholar 

  • Pritsker, A.A., Ghare, P.M., “Locating New Facilities with Respect to Existing Facilities,” AIIE Transactions, Vol. 2 pp. 290–297 (1970).

    Google Scholar 

  • Rand, G.K., “Methodological Choices in Depot Location Studies”, Operational Research Quarterly, Vol. 27, pp. 241–249 (1976).

    Article  Google Scholar 

  • Rao, A., “Counterexamples for the Location of Emergency Service Facilities”, Operations Research, Vol. 22, pp. 1259–1261 (1974).

    Article  MATH  Google Scholar 

  • Ratick, S.J., and White, A.L., “A Risk-Sharing Model for Locating Noxious Facilities”, Environment and Planning B: Planning and Design, Vol. 15, pp. 165–179 (1988).

    Article  Google Scholar 

  • ReVelle, C., and Serra, D., “The Maximum Capture Problem Including Relocation”, Information Systems and Operations Research, Vol. 29, pp. 130–138 (1991).

    MATH  Google Scholar 

  • ReVelle, C., “Review, Extension and Prediction in Emergency Service Siting Models”, European Journal of Operational Research, Vol. 40, pp. 58–69 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • ReVelle, C., and Elzinga, D.J., “An Algorithm for Facility Location in A Districted Region.” Environment and Planning B: Planning and Design, Vol. 16, pp. 41–50 (1989).

    Article  Google Scholar 

  • ReVelle, C., and Hogan, K., “The Maximum Availability Location Problem”, Transportation Science, Vol. 23, pp. 192–200 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • ReVelle, C., and Hogan, R., “A Reliability - Constrained Siting Model with Local Estimates of Busy Fractions”, Environment and Planning B: Planning and Design, Vol. 15, pp. 143–152 (1988).

    Article  Google Scholar 

  • ReVelle, C., “The Maximum Capture or ‘Sphere of Influence’ Location Problem: Hotelling Revisited on a Network”, Journal of Regional Science, Vol. 26, pp. 343–358 (1989b).

    Article  Google Scholar 

  • ReVelle, C., and Hogan, K., “The Maximum Reliability Location Problem and Alpha-Reliable P- Center Problem: Derivatives of the Probabilistic Location Set Covering Problem”, Annals of Operations Research, Vol. 18, pp. 155–174 (1986).

    Article  MathSciNet  Google Scholar 

  • ReVelle, C., Toregas, C., and Falkson, L., “Applications of the Location Set-Covering Problem”, Geographical Analysis, Vol. 8, pp. 65–76 (1976).

    Article  Google Scholar 

  • ReVelle, C., Marks, D., and Liebman, J.C., “An Analysis of Private and Public Sector Location Models”, Management Science, Vol. 16, pp. 692–707 (1970).

    Article  MATH  Google Scholar 

  • ReVelle, C., and Swain, R., “Central Facilities Location”, Geographical Analysis, Vol. 2, pp. 30–42 (1970).

    Article  Google Scholar 

  • Richard, D., Beguin, H., and Peeters, D., “The Location of Fire Stations in a Rural Environment: A Case Study”, Environment and Planning A, Vol. 22, pp. 39–52 (1990).

    Article  Google Scholar 

  • Rojeski, P., and Revelle, C., “Central Facilities Location Under an Investment Constraint”, Geographical Analysis, Vol. 2, pp. 343–360 (1970).

    Article  Google Scholar 

  • Roodman, G. M., and Schwarz, L.B., “Extensions of the Multi-period Facility Phase-Out Model New Procedures and Application to a Phasein/Phase-out Problem”, AIIE Transactions, Vol. 9, pp. 103–107 (1977).

    Google Scholar 

  • Roodman, G.M., and Schwarz, L.B., “Optimal and Heuristic Facility Phase- Out Strategies”, AIIE Transactions, Vol. 7, pp. 177–184 (1975).

    Google Scholar 

  • Rosing, K.E., “The Optimal Location of Steam Generators in Large Heavy Oil Fields”, American Journal of Mathematical and Management Sciences, Vol. 12, pp. 19–42 (1992).

    Google Scholar 

  • Ross, G.T., and Soland, R.M., “Modeling Facility Location Problems as Generalized Assignment Problem”, Management Science, Vol. 24, pp. 345–357 (1977).

    Article  MATH  Google Scholar 

  • Rushton, G., “Applications of Location Models”, Annals of Operations Research“, Vol. 18, pp. 25–42 (1989).

    Article  MathSciNet  Google Scholar 

  • Rydell, P.C., “A Note on the Principle of Median Location: Comments,” Journal of Regional Science, Vol. 11, pp. 395–396 (1971).

    Article  Google Scholar 

  • Rydell, P.C., “A Note on a Location Principle: Between the Median and the Mode,” Journal of Regional Science, Vol. 7, pp. 185–192 (1967).

    Article  Google Scholar 

  • Sa, G., “Branch-and-Bound and Approximate Solutions to the Capacitated Plant-Location Problem”, Operations Research, Vol. 17, pp. 1007–1016 (1969).

    Article  Google Scholar 

  • Saatcioglu, O., “Mathematical Programming Models for Airport Site Selection”, Transportation Research-B, Vol. 16B, pp. 435–447 (1982).

    Article  Google Scholar 

  • Saedt, A.H.P., “The Siting of Green Forage Drying Plants for Use by a Large Number of Farms - A Location-Allocation Case Study”, European Journal of Operational Research, Vol. 6, pp. 190–194, (1981).

    Article  Google Scholar 

  • Saydam, C., and McKnew, M., “A Separable Programming Approach to Expected Coverage: An Application to Ambulance Location”, Decision Sciences, Vol. 16, pp. 381–397 (1985).

    Article  Google Scholar 

  • Schaefer, M.R., and Hurtur, A.P., “An Algorithm for the Solution of a Location Problem”, Naval Research Logistics Quarterly, Vol. 4, pp. 625–636 (1974).

    Article  Google Scholar 

  • Schilling, D.A., Jayaraman, V., and Barkhi, R., “A Review of Covering Problems in Facility Location”, Location Science, Vol. 1, pp. 25–55 (1993).

    MATH  Google Scholar 

  • Schilling, D., “Strategic Facility Planning: The Analysis of Options”, Decision Sciences, Vol. 13, pp. 1–14 (1982).

    Article  Google Scholar 

  • Schilling, D., ReVelle, C., Cohen, J., and Elzinga, D.J., “Some Models for Fire Protection Location Decisions”, European Journal of Operations Research, Vol. 5, pp. 1–7 (1980).

    Article  Google Scholar 

  • Schilling, D., “Dynamic Location Modeling for Public Sector Facilities: A Multicriteria Approach”, Decision Sciences, Vol. 11, pp. 714–724 (1980).

    Article  Google Scholar 

  • Schilling, D., Elzinga, D.J., Cohen, J., Church, R., and ReVelle, C., “The Team/Fleet Models for Simultaneous Facility and Equipment Siting”, Transportation Science, Vol. 13, pp. 163–175 (1979).

    Article  Google Scholar 

  • Schneider, J.B., “Solving Urban Location Problems: Human Intuition Versus the Computer”, American Institute of Planners, Vol. 37, pp. 95–99 (1971).

    Article  Google Scholar 

  • Schneiderjans, M.J., Kwak, N.K, and Helmer, M.C., “An Application of Good Programming to Resolve A Site Locaiton Problem”, Interfaces, Vol. 12, pp. 65–72 (1982).

    Article  Google Scholar 

  • Schreuder, J.A.M., “Application of a Location Model for Fire Stations in Rotterdam”, European Journal of Operational Research, Vol. 6, pp. 212–219 (1981).

    Article  Google Scholar 

  • Scott, A.J., “Location-Allocation Systems: A Review”, Geographical Analysis, Vol. 2, pp. 95–119 (1970).

    Article  Google Scholar 

  • Shanker, R.J., and Zoltners, A.A., “An Extension of the Lock-Box Problem”, Journal of Bank Research, Vol. 2, pp. 62–62 (1972).

    Google Scholar 

  • Shannon, R.D., and Ignizio, J.P., “A Heuristic Programming Algorithm for Warehouse Location,” AIIE Transactions, Vol. 2, pp. 334–339 (1970).

    Google Scholar 

  • Simmons, D.M., “A Further Note on One-Dimensional Space Allocation”, Operations Research, Vol. 19, pp. 249–249 (1971).

    Article  MathSciNet  Google Scholar 

  • Simmons, D.M., “One Dimensional Space Allocation: An Ordering Algorithm”, Operations Research, Vol. 17, pp. 812–826 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  • Slater, P.J., “On Locating a Facility to Service Areas Within a Network”, Operations Research, Vol. 29, pp. 523–531 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, H.L., Mangelsdorf, K.R., Luna, J.S., and Reid, R.A., “Supplying Ecuador’s Health Workers Just in Time”, Interfaces, Vol. 19, pp. 1–12 (1989).

    Article  Google Scholar 

  • Snyder, R.D., “A Note on the Location of Depots”, Management Science, Vol. 18, pp. 97–97 (1971a).

    Article  MATH  Google Scholar 

  • Snyder, R.D., “A Note on the Principles of Median Location”, Journal of Regional Science, Vol. 11, pp. 391–394 (1971b).

    Article  Google Scholar 

  • Spielberg, K., “On Solving Plant Location Problems”, In Applications of Mathematical Programming Techniques, (Edited by E. M. Beale), American Elsevier (1970).

    Google Scholar 

  • Spielberg, K., “Plant Location with Generalized Search Origin”, Management Science, Vol. 16, pp. 165–178 (1969a).

    Article  Google Scholar 

  • Spielberg, K., “Algorithms for the Simple Plant Location Problem with Some Side Constraints”, Operations Research, Vol. 17, pp. 85–111 (1969b).

    Article  MATH  Google Scholar 

  • Stancill, J.M., “A Decision Rule Model for Establishment of a Lock-Box”, Management Science, Vol. 15, pp. 884–887 (1968).

    Article  Google Scholar 

  • Storbeck, J.E., “Slack, Natural Slack, and Location Covering”, SocioEconomic Planning Sciences, Vol. 16, pp. 99–105 (1982).

    Article  Google Scholar 

  • Storbeck, J.E., “Classical Central Places As Protected Thresholds”, Geographical Analysis, Vol. 22, pp. 4–21 (1990).

    Article  Google Scholar 

  • Storbeck, J.E., “The Spatial Structuring of Central Places”, Geographical Analysis, Vol. 20, pp. 93–110 (1988).

    Article  Google Scholar 

  • Storbeck, J.E., and Vohra, V. “A Simple Trade-Off Model for Maximal and Multiple Coverage”, Geographical Analysis, Vol. 20, pp. 220–230 (1988).

    Article  Google Scholar 

  • Swain, R.W., “A Parametric Decomposition Approach for the Solution of Uncapacitated Location Problems”, Management Science, Vol. 21, pp. 189–98 (1974).

    Article  MATH  Google Scholar 

  • Tansel, B. C., and Yesilkokcen, G., “Composite Regions of Feasibility for Certain Classes of Distance Constrained Network Location Problems”, IEOR - 9313, Department of Industrial Engineering, Bilkent University, Ankara, Turkey (1993).

    Google Scholar 

  • Tansel, B.C., Francil, R.L., and Lowe, T.J., “Location on Networks, Part I, the P-Center and P- Median Problems”, Management Science, Vol. 29, pp. 482–497 (1983a).

    Article  MATH  Google Scholar 

  • Tansel, B.C., Francis, R.L., and Lowe, T.J., “Location on Networks, Part II, Exploiting Tree Network Structure”, Management Science, Vol. 29, pp. 498–511 (1983b).

    Article  MATH  MathSciNet  Google Scholar 

  • Tansel, B.C., Francis, and R.L., Lowe, T.J., “Binding Inequalities for Tree Network Location Problems with Distance Constraints”, Transportation Science, Vol. 14, pp. 107–124 (1980).

    Article  MathSciNet  Google Scholar 

  • Tapiero, C.S., “Transportation-Location-Allocation Problems Over Time”, Journal of Regional Science, Vol. 11, pp. 377–386 (1971).

    Article  Google Scholar 

  • Taylor, P.J., “The Location Variable in Taxonomy,” Geographical Analysis, Vol. 1, pp. 181–195 (1969).

    Article  Google Scholar 

  • Teitz, M., and Bart, P., “Heuristic Methods for Estimating Generalized Vertex Median of a Weighted Graph”, Operations Research, Vol. 16, pp. 955–961 (1968).

    Article  MATH  Google Scholar 

  • Teitz, M., “Towards a Theory of Urban Public Facility Location”, Papers of the Regional Science Association, Vol. 11, pp. 35–51 (1968).

    Article  Google Scholar 

  • Tewari, V.K., and Jena, S., “High School Location Decision Making in Rural India an Location - Allocation Models”, Spatial Analysis and Location and Allocation Models (Editors, A. Ghosh and G. Rushton), Van Nostrand Reinhold Company, Inc., New York, pp. 137–162 (1987).

    Google Scholar 

  • Tideman, M., “Comment on a Network Minimization Problem,” IBM Journal, pp. 259–259 (1962).

    Google Scholar 

  • Toregas, C., and ReVelle, C., “Binary Logic Solutions to a Class of Location Problems”, Geographical Analysis, Vol. 5, pp. 145–155 (1973).

    Article  Google Scholar 

  • Toregas, C., ReVelle C., Swain, R., Bergman, L., “The Location of Emergency Service Facilities”, Operations Research, Vol. 19, pp. 1363–1373 (1971).

    Article  MATH  Google Scholar 

  • Toregas, C., and ReVelle, C., “Optimal Location Under Time or Distance Constraints”, Papers of the Regional Science Association, Vol. 28, pp. 133–143 (1970).

    Google Scholar 

  • Valinsky, D., “A Determination of the Optimum Location of the Firefighting Units in New York City”, Operations Research, Vol. 3, pp. 494–512 (1955).

    Article  Google Scholar 

  • Van Roy, T.J., and Erlenkotter, D., “A Dual Based Procedure for Dynamic Facility Location”, Management Science, Vol. 28, pp 1091–1105 (1982).

    Article  MATH  Google Scholar 

  • Vergin, R.C., and Rogers, J.D., “An Algorithm and Computational Procedure for Locating Economic Facilities”, Management Science, Vol. 13, pp. 240–254 (1967).

    Article  Google Scholar 

  • Vijay, J., “An Algorithm for the P-Center Problem in the Plane”, Transportation Science, Vol. 19, pp. 235–245 (1985).

    Article  MATH  Google Scholar 

  • Volz, R.A., “Optimum Ambulance Location in Semi-Rural Areas”, Transportation Science, Vol. 5, pp. 193–203 (1971).

    Article  Google Scholar 

  • Wagner, J.L., and Falkson, L.M., “The Optimal Nodal Location of Public Facilities with Price- Sensitive Demand”, Geographical Analysis, Vol. 7, pp. 69–83 (1975).

    Article  Google Scholar 

  • Walker, W., “Using the Set-Covering Problem to Assign Fire Companies to Fire Houses”, Operations Research, Vol. 22, pp. 275–277 (1974).

    Article  Google Scholar 

  • Watson-Gandy, C.D.T., “A Note on the Centre of Gravity in Depot Location”, Management Science, Vol. 18, pp. B478–B481 (1972).

    Article  Google Scholar 

  • Watson-Gandy, C.D.T., “Heuristic Procedures for the M-Partial Cover Problem on a Plane”, European Journal of Operations Research, Vol. 11, pp. 149–157 (1982).

    Article  MATH  Google Scholar 

  • Watson-Gandy, C.D.T., and Eilon, S., “The Depot Siting Problem with Discontinuous Delivery Cost”, Operational Research Quarterly, Vol. 23, pp. 277–287 (1972).

    Article  MATH  Google Scholar 

  • Weaver, J. -R., and Church, R.L., “A Median Locaiton Model with Non-closest Facility Service”, Transportation Science, Vol. 19, pp. 58 (1985).

    Article  MathSciNet  Google Scholar 

  • Weaver, J. - R, Church, R.L., “A Comparison of Solution Procedures for Covering Location Problems”, Modeling and Simulation, Vol. 14, pp. 147 (1983).

    Google Scholar 

  • Weaver, J. -R., and Church, R.L., “Computational Procedures for Location Problems on Stochastica Networks”, Transportation Science, Vol. 17, pp. 168 (1983).

    Article  Google Scholar 

  • Wendell, R.E., and Hurter, Jr., A.P., “Optimal Location on a Network”, Transportation Science, Vol. 7, pp. 18–33 (1973).

    Article  MathSciNet  Google Scholar 

  • Wesolowsky, G.O., “Dynamic Facility Location,” Management Science, Vol. 19, pp. 1241–1248 (1973).

    Article  Google Scholar 

  • Wesolowsky, G.O., “Location in Continuous Space”, Geographical Analysis, Vol. 5, pp. 95–112 (1973).

    Article  Google Scholar 

  • Wesolowsky, G.O., and Love, R.F., “A Nonlinear Approximation for Solving a Generalized Rectangular Distance Weber Problem,” Management Science, Vol. 18, pp. 656–663 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  • Wesolowsky, G.O., “Rectangular Distance Location Under the Minimax Optimality Criterion”, Transportation Science, Vol. 6, pp. 103–113 (1972).

    Article  MathSciNet  Google Scholar 

  • Wesolowsky, G.O., and Love, R.F., “Location of Facilities with Rectangular Distances Among Point and Area Destinations”, Naval Research Logistics Quarterly, Vol. 18, pp. 83–90 (1971).

    Article  MATH  Google Scholar 

  • Wesolowsky, G.O., and Love, R.F., “The Optimal Location of New Facilities Using Rectangular Distances”, Operations Research, Vol. 19, pp. 124–129 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  • Weston, Jr., F.C., “Optimal Configuration of Telephone Answering Sites in a Service Industry”, European Journal of Operational Research, Vol. 10, pp. 395–405 (1982).

    Article  Google Scholar 

  • White, J.A., and Case, K.E. “On Covering Problems and the Central Facilities Location Problem”, Geographical Analysis, Vol. 6, pp. 281–293 (1974).

    Article  Google Scholar 

  • Wirasinghe, S.C., and Waters, N.M., “An Approximate Procedure for De-terming the Number, Capacities and Locations of Solid Waste Transfer Stations in an Urban Region”, European Journal of Operational Research, Vol. 12, pp. 105–111 (1983).

    Article  MATH  Google Scholar 

  • Young, H.A., “On the Optimum Location of Checking Stations”, Operations Research, Vol. 11, pp. 721–731 (1963).

    Article  MathSciNet  Google Scholar 

General

  • Balas, E., “Disjunctive Programming”, Annals of Discrete Mathematics, Vol. 5, pp. 3–51 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  • Balas, E., “Machine Sequencing via Disjunctive Graphs: An Implicit Enumeration Algorithm” Operations Research, Vol. 17, pp. 941–957 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  • Bland, R. G., “New Finite Rules for the Simplex Method”, Mathematics of Operations Research, Vol. 2, pp. 103–107 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  • Balanski, M., and Spielberg, K., “Methods for Integer Programming: Algebraic, Combinatorial and Enumerative”, Progress in Operations Research, Vol. III, Wiley (1969).

    Google Scholar 

  • Balanski, M., “Integer Programming: Methods, Uses, Computation”, Management Science, Vol. 12, pp. 253–313 (1965).

    Article  MathSciNet  Google Scholar 

  • Balanski, M.L., “Fixed Cost Transportation Problem”, Naval Research Logistics Quarterly, Vol. 8, pp. 41–54 (1961).

    Article  Google Scholar 

  • Barr, R.S., Glover, F. and Klingman, D., “A New Optimization Method for Large-Scale Fixed-Charge Transportation Problems”, Operations Research, Vol. 29, pp. 448–463 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • Breu, R., and Burdet, C.A., “Branch and Bound Experiments in 0–1 Programming”, Mathematical Programming Study, Vol. 2, pp. 1–50 (1974).

    MathSciNet  Google Scholar 

  • Camerini, P., Fratta, L. and Maffioli, F., “On Improving Relaxation Methods by Modified Gradient Techniques”, Mathematical Programming Study, Vol. 3, pp. 26–34 (1975).

    MathSciNet  Google Scholar 

  • Christofides, N., “Zero-one Programming Using Non-Binary Tree Search”, The Computer Journal, Vol. 14, pp. 418–421 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  • Dyer, M.E., “Calculating Surrogate Constraints”, Mathematical Programming, Vol. 19, pp. 255–278 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, M.L., “An Applications Oriented Guide to Lagrangian Relaxation”, Interfaces, Vol. 15, pp. 10–21 (1985).

    Article  Google Scholar 

  • Fisher, M.L., “The Langrangean Relaxation Method for Solving Integer Programming Problems”, Management Science, Vol. 27, pp. 1–18 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, M.L., “Worst-Case Analysis of Integer Programming Heuristic Algorithms”, Management Science, Vol. 26, pp. 1–17 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, M. L., Nemhauser, G.L., Wolsey, L., “An Analysis of Approximations for Finding a Maximum Weight Hamiltonian Circuit”, Operations Research, Vol. 27, pp. 799–809 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, M.L., Northup, W.D., and Shapiro, J.F., “Using Duality to Solve Discrete Optimization Problems: Theory and Computational Experience”, Mathematical Programming Study, Vol. 3, pp. 56–94 (1975).

    MathSciNet  Google Scholar 

  • Fisher, M.L., and Shapiro, J. “Constructive Duality in Integer Programming”. SIAM Journal of Applied Mathematics, Vol. 27, pp. 31–52 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • Fitzpatrick, D.W., “Scheduling on Disjunctive Graphs”, Ph.D Dissertation, The Johns Hopkins University, Baltimore, Maryland (1976).

    Google Scholar 

  • Garfinkel, R.S., and Neuhauser, G.L., “Integer Programming”, Wiley, New York (1975).

    Google Scholar 

  • Garfinkel, R.S., and Nemhauser, G.L., “A Survey of Integer Programming Emphasizing Computation an Relations Among Models”, Mathematical Programming, (Edited by T.C. Hu and S.M. Robinson), Academic Press (1973).

    Google Scholar 

  • Gavish, B., “On Obtaining the ‘Best’ Multipliers for a Lagrangean Relaxation For Integer Programming”. Computers and Operations Research, Vol. 5, pp. 55–71 (1978).

    Article  Google Scholar 

  • Geoffrion, A.M., “Lagrangean Relaxation for Integer Programming”, Mathematical Programming Study, Vol. 2, pp. 82–114 (1974).

    MathSciNet  Google Scholar 

  • Geoffrion, A.M., and Marsten, R.E., “Integer Programming Algorithms: A Framework and State-of-the-Art Survey”, Management Science, Vol. 18, pp. 465–491 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  • Glover, F., “Tabu Search - Part II”, ORSA Journal on Computing, Vol. 2, pp. 4–32 (1990).

    MATH  Google Scholar 

  • Glover, F., “Tabu Search - Part I”, ORSA Journal on Computing“, Vol. 1, pp. 190–206 (1989).

    MATH  MathSciNet  Google Scholar 

  • Glover, F., “Heuristics for Integer Programming Using Surrogate Constraints”, Decision Sciences, Vol. 8, pp. 156–166 (1977).

    Article  Google Scholar 

  • Glover, F. “Surrogate Constraint Duality in Mathematical Programming”, Operations Research, Vol. 23, pp. 434–451 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  • Goffin, J.L., “On the Convergence Rates of Subgradient Optimization Meth- ods”, Mathematical Programming, Vol. 13, pp. 329–348 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  • Harrison, T.P., “Micro Versus Mainframe Performance for a Selected Class of Mathematical Programming Problems”, Interfaces, Vol. 15, pp. 14–19 (1985).

    Article  Google Scholar 

  • Held, M., Wolfe, P., and Crowder, H.P., “Validation of Subgradient Opti- mization”, Mathematical Programming, Vol. 6, pp. 62–88 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • Jeroslow, R.G., “Cutting Plane Theory: Disjunctive Methods”, Annals of Discrete Mathematics, Vol. 1, pp. 293–330, (1977).

    Article  MathSciNet  Google Scholar 

  • Johnson, D.S., Demers, A., Ullman, J.D., Carey, M.R., and Graham, R.L., “Worst-Case Performance Bounds for Simple One-Dimensional Packing Problems”, SIAM Journal on Computing, Vol. 3 pp. 299–326 (1974).

    Article  MathSciNet  Google Scholar 

  • Karp, R.M., “On the Computational Complexity of Combinatorial Problems”, Networks, Vol. 5, pp. 45–68 (1975).

    MATH  MathSciNet  Google Scholar 

  • Karp, R.M., “Reducibility Among Combinatorial Problems”, Complexity of Computer Computations, (Edited by R.E. Miller and J.W. Thatcher), Plenum Press, New York, pp. 85–103 (1972).

    Google Scholar 

  • Karwan, M.H., and Rardin, R., “Surrogate Dual Multiplier Search Procedures in Integer Programming”, Operations Research, Vol. 32, pp. 52–69 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  • Karwan, M.H., and Rardin, R.L., “A Lagrangian Surrogate Duality in a Branch and Bound Procedure”, Naval Research Logistics Quarterly, Vol. 28, pp. 93–101 (1973).

    Article  MathSciNet  Google Scholar 

  • Klee, V., “Combinatorial Optimization: What is the State of Art?” Mathematics of Operations Research, Vol. 5, pp. 1–26 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  • Lawler, E.L., Lenstra, J.K., Rinooy Khan, A.H.G., and Shmoys, D.S., “Traveling Salesman Problem”, John Wiley and Sons (1985).

    MATH  Google Scholar 

  • Lawler, E.L., “Combinatorial Optimization”, Holt, Reinhart and Winston (1976).

    MATH  Google Scholar 

  • McKeown, P.G, “A Branch-and-Bound Algorithm for Solving Fixed-Charge Problems”, Naval Research Logistics Quarterly, Vol. 28, pp. 607–617 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • Mitra, G., “Investigation of some Branch and Bound Strategies for the Solution of Mixed Integer Linear Programs”, Mathematical Programming, Vol. 4, pp. 150–170 (1973).

    Article  Google Scholar 

  • Nemhauser, G.L., and Wolsey, L.A., “Integer Programming”, Handbooks in Operations Research and Manangement Science, Vol. 1, Optimization, (Edited by G.L. Nemhauser, A.H.G. Rinnooy Kan, M.J. Tood), North-Holland, Amsterdam (1989).

    Google Scholar 

  • Nemhauser, G.L., and Wolsey, L.A., “Integer and Combinatorial Optimization”, John Wiley and Sons, Inc. (1988).

    MATH  Google Scholar 

  • Owen, J., “Cutting Planes for Programs with Disjunctive Constraints”, Journal of Optimization Theory and Applications, Vol. 11, pp. 49–55 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  • Padberg, M., “Perfect Zero-One Matrices”, Mathematical Programming, Vol. 6, pp. 180–196 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • Ragsdale, C.T., and McKeewn, P.G., “An Algorithm for Solving Fixed-Charge Problem with Surrogate Constraints”, Computers and Operations Research, Vol. 18, pp. 87–96 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  • Raimond, J.F., “Minimaximal Paths in Disjunctive Graphs by Direct Search”, IMB Journal of Research and Development, Vol. 13, pp. 391–399 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  • Shapiro, J., “A Survey of Lagrangian Techniques for Discrete Optimization”, Annals of Discrete Mathematics, Vol. 5, pp. 113–138 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  • Singhal, J., Marsten, R.E., and Morin T.L., “Fixed Order Branch and Bound Methods for Mixed- Integer Programming: The Zoom System”, ORSA Journal on Computing, Vol. 1, pp. 44–51 (1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vemuganti, R.R. (1998). Applications of Set Covering, Set Packing and Set Partitioning Models: A Survey. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics