Skip to main content

Blow-Up for Quasi-Linear Wave Equations in Three Space Dimensions

  • Chapter
Fritz John

Part of the book series: Contemporary Mathematicians ((CM))

  • 361 Accesses

Abstract

We consider equations of the form

$$u = \phi (x,t,u,u',u'')$$
((1a))

for a function u = u(x 1,…, x n ,t) = u(x,t). Here □ denotes the d’Alembertian

$$\square = \frac{{{\partial ^2}}}{{\partial {t^2}}} - \vartriangle$$
((1b))

and u′ represents the vector of first derivatives, u″ that of second derivatives of u with respect to the x k and t. On linearizing (1a) shall go over into the classical wave equation □ u = 0; this means that Φ and its first derivatives with respect to u, u′, u″ shall vanish for u = u′ = u″ = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Kato, T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Archive for Rat. Mech. Analysis, 1974–75, pp. 57–58.

    Google Scholar 

  2. Hughes, T. J. R., Kato, T., and Marsden, J. E., Wellposed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Archives Rat. Mech. Analysis 63–4, 1976–77, pp. 273–293.

    Google Scholar 

  3. John, F., Delayed singularity formation in solutions of nonlinear wave equations in higher dimensions, Comm. Pure Appl. Math. 29, 1976, pp. 649–682.

    Google Scholar 

  4. Graff, R. A., A functional analytic approach to existence and uniqueness of solutions to some nonlinear Cauchy problems, preprint.

    Google Scholar 

  5. Knops, R. J., Levine, H. A., and Payne, L. E., Non-existence, instability, and growth theorems for solutions of a class of abstract nonlinear equations with applications to nonlinear elastodynamics, Arch. Rational Mech. Anal. 55, 1974, pp. 52–72.

    Article  Google Scholar 

  6. Payne, L. E., Improperly posed problems in partial differential equations, Regional Conference Series in Appl. Math. 22, 1975, SIAM.

    Google Scholar 

  7. Pecher, H., Globale klassische Losungen nichtlinearer Wellengleichungen für höhere Raumdimensionen, Nachr. Akad. Wiss. Göttingen Math. Phys., Kl. II, 1975, pp. 221–232.

    Google Scholar 

  8. Pecher, H., L p-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I, Math. Z. 150, 1976, pp. 159–183; II. Manuscripta Math. 20, 1977, pp. 227–244.

    Google Scholar 

  9. Pecher, H., Existenzsätze für reguläre Lösungen semilinearer Wellengleichungen, Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl. II, 1979, pp. 129–151.

    Google Scholar 

  10. Brenner, P., and von Wahl, W., Global classical solutions of nonlinear wave equations, preprint.

    Google Scholar 

  11. Glassey, R. T., Finite-time blow-up for solutions of nonlinear wave equations, preprint.

    Google Scholar 

  12. Kato, T., Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math. 33, 1980, to appear.

    Google Scholar 

  13. John, F., Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28, 1979, pp. 235–268.

    Article  Google Scholar 

  14. Klainerman, S., Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33, 1980, pp. 43–101.

    Article  Google Scholar 

  15. Klainerman, S., Long time behaviour of solutions to nonlinear evolution equation, preprint.

    Google Scholar 

  16. Lax, P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Regional Conference Series in Applied Mathematics 11, 1973.

    Google Scholar 

  17. John, F., Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math. 27, 1974, pp. 377–405.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

John, F. (1985). Blow-Up for Quasi-Linear Wave Equations in Three Space Dimensions. In: Moser, J. (eds) Fritz John. Contemporary Mathematicians. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5406-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5406-5_39

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-5408-9

  • Online ISBN: 978-1-4612-5406-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics