Skip to main content

Abnormalities of Left Ventricular Inflow and Outflow

  • Chapter
  • First Online:
Book cover Magnetic Resonance Imaging of Congenital Heart Disease
  • 1540 Accesses

Abstract

Congenital abnormalities of left ventricular inflow and outflow include abnormalities of the left atrium, mitral valve (supravalvar, valvar, and subvalvar), and abnormalities of the left ventricular outflow tract, the aortic valve, and supravalvar area. Cardiac magnetic resonance imaging (CMR) has become an important adjunctive tool in evaluating and following patients with this group of anomalies. This chapter reviews the role of CMR in the care of patients with congenital abnormalities of left ventricular inflow and outflow. In addition to describing the morphologic abnormalities and their clinical presentations, the indications and limitations of CMR in each condition are discussed and a suggested CMR examination protocol is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Victor S, Nayak VM. Aneurysm of the left atrial appendage. Tex Heart Inst J. 2001;28:111–8.

    PubMed  CAS  Google Scholar 

  2. Chowdhury UK, Seth S, Govindappa R, Jagia P, Malhotra P. Congenital left atrial appendage aneurysm: a case report and brief review of literature. Heart Lung Circ. 2009;18:412–6.

    Article  PubMed  Google Scholar 

  3. Park JS, Lee DH, Han SS, Kim MJ, Shin DG, Kim YJ, Shim BS. Incidentally found, growing congenital aneurysm of the left atrium. J Korean Med Sci. 2003;18:262–6.

    PubMed  Google Scholar 

  4. Wang D, Holden B, Savage C, Zhang K, Zwischenberger JB. Giant left atrial intrapericardial aneurysm: noninvasive preoperative imaging. Ann Thorac Surg. 2001;71:1014–6.

    Article  PubMed  CAS  Google Scholar 

  5. Van Praagh R, Corsini I. Cor triatriatum: pathologic anatomy and a consideration of morphogenesis based on 13 postmortem cases and a study of normal development of the pulmonary vein and atrial septum in 83 human embryos. Am Heart J. 1969;78:379–405.

    Article  PubMed  Google Scholar 

  6. Rumancik WM, Hernanz-Schulman M, Rutkowski MM, Kiely B, Ambrosino M, Genieser NB, Naidich DP. Magnetic resonance imaging of cor triatriatum. Pediatr Cardiol. 1988;9:149–51.

    Article  PubMed  CAS  Google Scholar 

  7. Locca D, Hughes M, Mohiaddin R. Cardiovascular magnetic resonance diagnosis of a previously unreported association: Cor triatriatum with right partial anomalous pulmonary venous return to the azygos vein. Int J Cardiol. 2009;135:e80–2.

    Article  PubMed  Google Scholar 

  8. McElhinney DB, Sherwood MC, Keane JF, del Nido PJ, Almond CSD, Lock JE. Current management of severe congenital mitral stenosis: outcomes of transcatheter and surgical therapy in 108 infants and children. Circulation. 2005;112:707–14.

    Article  PubMed  Google Scholar 

  9. Selamet Tierney ES, Graham DA, McElhinney DB, Trevey S, Freed MD, Colan SD, Geva T. Echocardiographic predictors of mitral stenosis-related death or intervention in infants. Am Heart J. 2008;156:384–90.

    Article  PubMed  Google Scholar 

  10. Toscano A, Pasquini L, Iacobelli R, Di Donato RM, Raimondi F, Carotti A, Di Ciommo V, Sanders SP. Congenital supravalvar mitral ring: an underestimated anomaly. J Thorac Cardiovasc Surg. 2009;137:538–42.

    Article  PubMed  Google Scholar 

  11. Ruckman RN, Van Praagh R. Anatomic types of congenital mitral stenosis: report of 49 autopsy cases with consideration of diagnosis and surgical implications. Am J Cardiol. 1978;42:592–601.

    Article  PubMed  CAS  Google Scholar 

  12. Marino BS, Kruge LE, Cho CJ, Tomlinson RS, Shera D, Weinberg PM, Gaynor JW, Rychik J. Parachute mitral valve: morphologic descriptors, associated lesions, and outcomes after biventricular repair. J Thorac Cardiovasc Surg. 2009;137:385–93. e384.

    Article  PubMed  Google Scholar 

  13. Collins 2nd RT, Ryan M, Gleason MM. Images in cardiovascular medicine. Mitral arcade: a rare cause of fatigue in an 18-year-old female. Circulation. 2010;121:e379–83.

    Article  PubMed  Google Scholar 

  14. Layman TE, Edwards JE. Anomalous mitral arcade: a type of congenital mitral insufficiency. Circulation. 1967;35:389–95.

    Article  PubMed  CAS  Google Scholar 

  15. Losada E, Moon-Grady AJ, Strohsnitter WC, Wu D, Ursell PC. Anomalous mitral arcade in twin-twin transfusion syndrome. Circulation. 2010;122:1456–63.

    Article  PubMed  Google Scholar 

  16. Baño-Rodrigo A, Van Praagh S, Trowitzsch E, Van Praagh R. Double-orifice mitral valve: a study of 27 postmortem cases with developmental, diagnostic and surgical considerations. Am J Cardiol. 1988;61:152–60.

    Article  PubMed  Google Scholar 

  17. Hamilton-Craig C, Anscombe R, Platts D, Burstow D, Slaughter R. Congenital mitral stenosis by multimodality cardiac imaging. Echocardiography. 2009;26:284–7.

    Article  PubMed  Google Scholar 

  18. Lanjewar C, Ephrem B, Mishra N, Jhankariya B, Kerkar P. Planimetry of mitral valve stenosis in rheumatic heart disease by magnetic resonance imaging. J Heart Valve Dis. 2010;19:357–63.

    PubMed  Google Scholar 

  19. Søndergaard L, Ståhlberg F, Thomsen C. Magnetic resonance imaging of valvular heart disease. J Magn Reson Imaging. 1999;10:627–38.

    Article  PubMed  Google Scholar 

  20. Stos B, Hatchuel Y, Bonnet D. Mitral valvar regurgitation in a child with Sweet’s syndrome. Cardiol Young. 2007;17:218–9.

    Article  PubMed  Google Scholar 

  21. Van Praagh S, Porras D, Oppido G, Geva T, Van Praagh R. Cleft mitral valve without ostium primum defect: anatomic data and surgical considerations based on 41 cases. Ann Thorac Surg. 2003;75:1752–62.

    Article  PubMed  Google Scholar 

  22. Geva T, Sanders SP, Diogenes MS, Rockenmacher S, Van Praagh R. Two-dimensional and Doppler echocardiographic and pathologic characteristics of the infantile Marfan syndrome. Am J Cardiol. 1990;65:1230–7.

    Article  PubMed  CAS  Google Scholar 

  23. Ben Ali W, Metton O, Roubertie F, Pouard P, Sidi D, Raisky O, Vouhe PR. Anomalous origin of the left coronary artery from the pulmonary artery: late results with special attention to the mitral valve. Eur J Cardiothorac Surg. 2009;36:244–8. discussion 248-249.

    Article  PubMed  Google Scholar 

  24. Takao A, Niwa K, Kondo C, Nakanishi T, Satomi G, Nakazawa M, Endo M. Mitral regurgitation in Kawasaki disease. Prog Clin Biol Res. 1987;250:311–23.

    PubMed  CAS  Google Scholar 

  25. Fraisse A, del Nido PJ, Gaudart J, Geva T. Echocardiographic characteristics and outcome of straddling mitral valve. J Am Coll Cardiol. 2001;38:819–26.

    Article  PubMed  CAS  Google Scholar 

  26. Milo S, Siew Yen H, Macartney FJ, Wilkinson JL, Becker AE, Wenink ACG, De Groot ACG, Anderson RH. Straddling and overriding atrioventricular valves: morphology and classification. Am J Cardiol. 1979;44:1122–34.

    Article  PubMed  CAS  Google Scholar 

  27. Fujita N, Chazouilleres AF, Hartiala JJ, O’Sullivan M, Heidenreich P, Kaplan JD, Sakuma H, Foster E, Caputo GR, Higgins CB. Quantification of mitral regurgitation by velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol. 1994;23:951–8.

    Article  PubMed  CAS  Google Scholar 

  28. Hartiala JJ, Mostbeck GH, Foster E, Fujita N, Dulce MC, Chazouilleres AF, Higgins CB. Velocity-encoded cine MRI in the evaluation of left ventricular diastolic function: measurement of mitral valve and pulmonary vein flow velocities and flow volume across the mitral valve. Am Heart J. 1993;125:1054–66.

    Article  PubMed  CAS  Google Scholar 

  29. Gelfand EV, Hughes S, Hauser TH, Yeon SB, Goepfert L, Kissinger KV, Rofsky NM, Manning WJ. Severity of mitral and aortic regurgitation as assessed by cardiovascular magnetic resonance: optimizing correlation with Doppler echocardiography. J Cardiovasc Magn Reson. 2006;8:503–7.

    Article  PubMed  Google Scholar 

  30. Hundley WG, Li HF, Willard JE, Landau C, Lange RA, Meshack BM, Hillis LD, Peshock RM. Magnetic resonance imaging assessment of the severity of mitral regurgitation: comparison with invasive techniques. Circulation. 1995;92:1151–8.

    Article  PubMed  CAS  Google Scholar 

  31. Buchner S, Debl K, Poschenrieder F, Feuerbach S, Riegger GA, Luchner A, Djavidani B. Cardiovascular magnetic resonance for direct assessment of anatomic regurgitant orifice in mitral regurgitation. Circ Cardiovasc Imaging. 2008;1:148–55.

    Article  PubMed  Google Scholar 

  32. Kleinert S, Geva T. Echocardiographic morphometry and geometry of the left ventricular outflow tract in fixed subaortic stenosis. J Am Coll Cardiol. 1993;22:1501–8.

    Article  PubMed  CAS  Google Scholar 

  33. Cape EG, VanAuker MD, Sigfússon G, Tacy TA, del Nido PJ. Potential role of mechanical stress in the etiology of pediatric heart disease: septal shear stress in subaortic stenosis. J Am Coll Cardiol. 1997;30:247–54.

    Article  PubMed  CAS  Google Scholar 

  34. Leichter DA, Sullivan I, Gersony WM. “Acquired” discrete subvalvular aortic stenosis: natural history and hemodynamics. J Am Coll Cardiol. 1989;14:1539–44.

    Article  PubMed  CAS  Google Scholar 

  35. Suri RM, Dearani JA, Schaff HV, Danielson GK, Puga FJ. Long-term results of the Konno procedure for complex left ventricular outflow tract obstruction. J Thorac Cardiovasc Surg. 2006;132:1064–71. e1062.

    Article  PubMed  Google Scholar 

  36. Suzuki T, Ohye RG, Devaney EJ, Ishizaka T, Nathan PN, Goldberg CS, Gomez CA, Bove EL. Selective management of the left ventricular outflow tract for repair of interrupted aortic arch with ventricular septal defect: management of left ventricular outflow tract obstruction. J Thorac Cardiovasc Surg. 2006;131:779–84.

    Article  PubMed  Google Scholar 

  37. Geva T, Hornberger LK, Sanders SP, Jonas RA, Ott DA, Colan SD. Echocardiographic predictors of left ventricular outflow tract obstruction after repair of interrupted aortic arch. J Am Coll Cardiol. 1993;22:1953–60.

    Article  PubMed  CAS  Google Scholar 

  38. Campbell M, Kauntze R. Congenital aortic valvular stenosis. Br Heart J. 1953;15:179–94.

    Article  PubMed  CAS  Google Scholar 

  39. Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55:2789–800.

    Article  PubMed  Google Scholar 

  40. Mookadam F, Thota VR, Lopez AM, Emani UR, Tajik AJ. Unicuspid aortic valve in children: a systematic review spanning four decades. J Heart Valve Dis. 2010;19:678–83.

    PubMed  Google Scholar 

  41. Williams JCP, Barratt-Boyes BG, Lowe JB. Supravalvular aortic stenosis. Circulation. 1961;24:1311–8.

    Article  PubMed  CAS  Google Scholar 

  42. Geva A, McMahon CJ, Gauvreau K, Mohammed L, del Nido PJ, Geva T. Risk factors for reoperation after repair of discrete subaortic stenosis in children. J Am Coll Cardiol. 2007;50:1498–504.

    Article  PubMed  Google Scholar 

  43. Youn HJ, Chung WS, Hong SJ. Demonstration of supravalvar aortic stenosis by different cardiac imaging modalities in Williams syndrome. Heart. 2002;88:438.

    Article  PubMed  Google Scholar 

  44. Beitzke A, Becker H, Rigler B, Stein JI, Suppan C. Development of aortic aneurysms in familial supravalvar aortic stenosis. Pediatr Cardiol. 1986;6:227–9.

    Article  PubMed  CAS  Google Scholar 

  45. Brown DW, Dipilato AE, Chong EC, Gauvreau K, McElhinney DB, Colan SD, Lock JE. Sudden unexpected death after balloon valvuloplasty for congenital aortic stenosis. J Am Coll Cardiol. 2010;56:1939–46.

    Article  PubMed  Google Scholar 

  46. Gleeson TG, Mwangi I, Horgan SJ, Cradock A, Fitzpatrick P, Murray JG. Steady-state free-precession (SSFP) cine MRI in distinguishing normal and bicuspid aortic valves. J Magn Reson Imaging. 2008;28:873–8.

    Article  PubMed  Google Scholar 

  47. Buchner S, Hulsmann M, Poschenrieder F, Hamer OW, Fellner C, Kobuch R, Feuerbach S, Riegger GAJ, Djavidani B, Luchner A, Debl K. Variable phenotypes of bicuspid aortic valve disease: classification by cardiovascular magnetic resonance. Heart. 2010;96:1233–40.

    Article  PubMed  Google Scholar 

  48. Debl K, Djavidani B, Buchner S, Poschenrieder F, Heinicke N, Schmid C, Kobuch R, Feuerbach S, Riegger G, Luchner A. Unicuspid aortic valve disease: a magnetic resonance imaging study. Rofo. 2008;180:983–7.

    Article  PubMed  CAS  Google Scholar 

  49. Sing-Chien Y, van Geuns R-J, Meijboom FJ, Kirschbaum SW, McGhie JS, Simoons ML, Kilner PJ, Roos-Hesselink JW. A simplified continuity equation approach to the quantification of stenotic bicuspid aortic valves using velocity-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9:899–906.

    Article  Google Scholar 

  50. Pouleur A-C, Le Polain de Waroux J-B, Pasquet A, Vanoverschelde J-LJ, Gerber BL. Aortic valve area assessment: multidetector CT compared with cine MR imaging and transthoracic and transesophageal echocardiography. Radiology. 2007;244:745–54.

    Article  PubMed  Google Scholar 

  51. Valsangiacomo Büchel ER, DiBernardo S, Bauersfeld U, Berger F. Contrast-enhanced magnetic resonance angiography of the great arteries in patients with congenital heart disease: an accurate tool for planning catheter-guided interventions. Int J Cardiovasc Imaging. 2005;21:313–22.

    Article  PubMed  Google Scholar 

  52. Debl K, Djavidani B, Buchner S, Poschenrieder F, Schmid F-X, Kobuch R, Feuerbach S, Riegger G, Luchner A. Dilatation of the ascending aorta in bicuspid aortic valve disease: a magnetic resonance imaging study. Clin Res Cardiol. 2009;98:114–20.

    Article  PubMed  CAS  Google Scholar 

  53. Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, Alley MT, Higgins CB. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology. 2010;255:53–61.

    Article  PubMed  Google Scholar 

  54. Barker A, Lanning C, Shandas R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng. 2010;38:788–800.

    Article  PubMed  Google Scholar 

  55. den Reijer PM, Sallee D, van der Velden P, Zaaijer E, Parks WJ, Ramamurthy S, Robbie T, Donati G, Lamphier C, Beekman R, Brummer M. Hemodynamic predictors of aortic dilatation in bicuspid aortic valve by velocity-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:4.

    Article  Google Scholar 

  56. Sabet HY, Edwards WD, Tazelaar HD, Daly RC. Congenitally bicuspid aortic valves: a surgical pathology study of 542 cases (1991 through 1996) and a literature review of 2,715 additional cases. Mayo Clin Proc. 1999;74:14–26.

    Article  PubMed  CAS  Google Scholar 

  57. Boodhwani M, de Kerchove L, Glineur D, Rubay J, Vanoverschelde J-L, Noirhomme P, El Khoury G. Repair of regurgitant bicuspid aortic valves: a systematic approach. J Thorac Cardiovasc Surg. 2010;140:276–84. e271.

    Article  PubMed  Google Scholar 

  58. Chiu S-N, Wang J-K, Lin M-T, Wu E-T, Lu FL, Chang C-I, Chen Y-S, Chiu I-S, Lue H-C, Wu M-H. Aortic valve prolapse associated with outlet-type ventricular septal defect. Ann Thorac Surg. 2005;79:1366–71.

    Article  PubMed  Google Scholar 

  59. Walley VM, Black MD. Erosion and perforation of a cusp by nodular calcification: an unusual cause of insufficiency in a congenital bicuspid aortic valve. Can J Cardiol. 1991;7:202–4.

    PubMed  CAS  Google Scholar 

  60. Brown DW, Dipilato AE, Chong EC, Lock JE, McElhinney DB. Aortic valve reinterventions after balloon aortic valvuloplasty for congenital aortic stenosis: intermediate and late follow-up. J Am Coll Cardiol. 2010;56:1740–9.

    Article  PubMed  Google Scholar 

  61. McMahon CJ, Ayres N, Pignatelli RH, Franklin W, Vargo TA, Bricker JT, El-Said HG. Echocardiographic presentations of endocarditis, and risk factors for rupture of a sinus of valsalva in childhood. Cardiol Young. 2003;13:168–72.

    Article  PubMed  Google Scholar 

  62. Martins JD, Sherwood MC, Mayer Jr JE, Keane JF. Aortico-left ventricular tunnel: 35-year experience. J Am Coll Cardiol. 2004;44:446–50.

    Article  PubMed  Google Scholar 

  63. Humes RA, Hagler DJ, Julsrud PR, Levy JM, Feldt RH, Schaff HV. Aortico-left ventricular tunnel: diagnosis based on two-dimensional echocardiography, color flow Doppler imaging, and magnetic resonance imaging. Mayo Clin Proc. 1986;61:901–7.

    Article  PubMed  CAS  Google Scholar 

  64. Søndergaard L, Lindvig K, Hildebrandt P, Thomsen C, Ståhlberg F, Joen T, Henriksen O. Quantification of aortic regurgitation by magnetic resonance velocity mapping. Am Heart J. 1993;125:1081–90.

    Article  PubMed  Google Scholar 

  65. Honda N, Machida K, Hashimoto M, Mamiya T, Takahashi T, Kamano T, Kashimada A, Inoue Y, Tanaka S, Yoshimoto N. Aortic regurgitation: quantitation with MR imaging velocity mapping. Radiology. 1993;186:189–94.

    PubMed  CAS  Google Scholar 

  66. Ley S, Eichhorn J, Ley-Zaporozhan J, Ulmer H, Schenk JP, Kauczor HU, Arnold R. Evaluation of aortic regurgitation in congenital heart disease: value of MR imaging in comparison to echocardiography. Pediatr Radiol. 2007;37:426–36.

    Article  PubMed  Google Scholar 

  67. Sondergaard L, Lindvig K, Hildebrandt P, Thomsen C, Stahlberg F, Joen T, Henriksen O. Quantification of aortic regurgitation by magnetic resonance velocity mapping. Am Heart J. 1993;125:1081–90.

    Article  PubMed  CAS  Google Scholar 

  68. Dulce MC, Mostbeck GH, O’Sullivan M, Cheitlin M, Caputo GR, Higgins CB. Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity-encoded cine MR imaging. Radiology. 1992;185:235–40.

    PubMed  CAS  Google Scholar 

  69. Schwartz ML, Gauvreau K, Geva T. Predictors of outcome of biventricular repair in infants with multiple left heart obstructive lesions. Circulation. 2001;104:682–7.

    Article  PubMed  CAS  Google Scholar 

  70. Shone JD, Sellers RD, Anderson RC, Adams Jr P, Lillehei CW, Edwards JE. The developmental complex of “parachute mitral valve,” supravalvular ring of left atrium, subaortic stenosis, and coarctation of aorta. Am J Cardiol. 1963;11:714–25.

    Article  PubMed  CAS  Google Scholar 

  71. Colan SD, McElhinney DB, Crawford EC, Keane JF, Lock JE. Validation and re-evaluation of a discriminant model predicting anatomic suitability for biventricular repair in neonates with aortic stenosis. J Am Coll Cardiol. 2006;47:1858–65.

    Article  PubMed  Google Scholar 

  72. Grosse-Wortmann L, Yun T-J, Al-Radi O, Kim S, Nii M, Lee K-J, Redington A, Yoo S-J, van Arsdell G. Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging. J Thorac Cardiovasc Surg. 2008;136:1429–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja Banka M.D. .

Editor information

Editors and Affiliations

9.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Cor triatriatum. Cine SSFP in a 4-chamber plane showing the cor triatriatum membrane dividing the left atrium into two chambers, a proximal chamber that receives the pulmonary veins and a distal chamber that communicates with the mitral valve and left atrial appendage (not shown) (AVI 21792 KB)

Cor triatriatum In-plane cine phase contrast flow mapping in the 4-chamber plane demonstrating accelerated flow across the defect in the cor triatriatum membrane (AVI 23325 KB)

218193_1_En_9_MOESM2_ESM.avi

Congenital mitral stenosis. Cine SSFP in a 4-chamber plane demonstrating a hypoplastic mitral valve annulus with thickened leaflets, restricted leaflet motion, and basal displacement of the papillary muscle. The left ventricle is also hypoplastic. Other findings include mitral regurgitation and an atrial septal defect (AVI 19296 KB)

Cleft mitral valve. Cine SSFP in a ventricular short-axis plane showing a cleft in the anterior leaflet of the mitral valve extending to the ventricular septum (AVI 34943 KB)

Cleft mitral valve. On 4-chamber view in a patient after atrioventricular canal defect repair, there is a posteriorly directed mitral regurgitation jet through residual cleft. Note also the medial tricuspid regurgitation jet (AVI 21640 KB)

Mitral valve prolapse. Cine SSFP in 4-chamber planes showing bileaflet mitral valve prolapse past the plane of the annulus and associated jet of mitral regurgitation (AVI 187456 KB)

218193_1_En_9_MOESM4b_ESM.avi

Mitral valve prolapse. Cine SSFP in ventricular 3-chamber planes showing bileaflet mitral valve prolapse past the plane of the annulus and associated jet of mitral regurgitation (AVI 13818 KB)

218193_1_En_9_MOESM5a_ESM.avi

Bicommissural aortic valve. Cine SSFP in a plane perpendicular to the aortic root demonstrating a bicuspid aortic valve with underdevelopment of the right-noncoronary commissure (AVI 20377 KB)

Bicommissural aortic valve. Cine phase contrast through-plane flow mapping perpendicular to the aortic valve demonstrating the eccentric antegrade flow jet across the bicuspid valve (AVI 16618 KB)

218193_1_En_9_MOESM6_ESM.avi

Supravalvar aortic stenosis. Cine SSFP in an oblique coronal plane parallel to the left ventricular outflow tract demonstrating supravalvar aortic stenosis with narrowing at the sinotubular junction (AVI 23338 KB)

218193_1_En_9_MOESM7_ESM.avi

Aortico-left ventricular tunnel. Cine SSFP in an oblique sagittal plane parallel to the left ventricular outflow tract and proximal aorta demonstrating a defect in the aortic wall (tunnel) with flow from the ascending aorta to the left ventricle, adjacent to the aortic valve. Note the prolapsnig right coronary cusp and associated central aortic regurgitation (AVI 22289 KB)-->

Movie 9.2

Congenital mitral stenosis. Cine SSFP in a 4-chamber plane demonstrating a hypoplastic mitral valve annulus with thickened leaflets, restricted leaflet motion, and basal displacement of the papillary muscle. The left ventricle is also hypoplastic. Other findings include mitral regurgitation and an atrial septal defect (AVI 19296 KB)

Movie 9.4b

Mitral valve prolapse. Cine SSFP in ventricular 3-chamber planes showing bileaflet mitral valve prolapse past the plane of the annulus and associated jet of mitral regurgitation (AVI 13818 KB)

Movie 9.5a

Bicommissural aortic valve. Cine SSFP in a plane perpendicular to the aortic root demonstrating a bicuspid aortic valve with underdevelopment of the right-noncoronary commissure (AVI 20377 KB)

Movie 9.6

Supravalvar aortic stenosis. Cine SSFP in an oblique coronal plane parallel to the left ventricular outflow tract demonstrating supravalvar aortic stenosis with narrowing at the sinotubular junction (AVI 23338 KB)

Movie 9.7

Aortico-left ventricular tunnel. Cine SSFP in an oblique sagittal plane parallel to the left ventricular outflow tract and proximal aorta demonstrating a defect in the aortic wall (tunnel) with flow from the ascending aorta to the left ventricle, adjacent to the aortic valve. Note the prolapsnig right coronary cusp and associated central aortic regurgitation (AVI 22289 KB)-->

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Banka, P., Geva, T. (2012). Abnormalities of Left Ventricular Inflow and Outflow. In: Syed, M., Mohiaddin, R. (eds) Magnetic Resonance Imaging of Congenital Heart Disease. Springer, London. https://doi.org/10.1007/978-1-4471-4267-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4267-6_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4266-9

  • Online ISBN: 978-1-4471-4267-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics