Skip to main content

Latent Variables, Topographic Mappings and Data Visualization

  • Conference paper
Neural Nets WIRN VIETRI-97

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 127 Accesses

Abstract

Most pattern recognition tasks, such as regression, classification and novelty detection, can be viewed in terms of probability density estimation. A powerful approach to probabilistic modelling is to represent the observed variables in terms of a number of hidden, or latent, variables. One well-known example of a hidden variable model is the mixture distribution in which the hidden variable is the discrete component label. In the case of continuous latent variables we obtain models such as factor analysis. In this paper we provide an overview of latent variable models, and we show how a particular form of linear latent variable model can be used to provide a probabilistic formulation of the well-known technique of principal components analysis (PCA). By extending this technique to mixtures, and hierarchical mixtures, of probabilistic PCA models we are led to a powerful interactive algorithm for data visualization. We also show how the probabilistic PCA approach can be generalized to non-linear latent variable models leading to the Generative Topographic Mapping algorithm (GTM). Finally, we show how GTM can itself be extended to model temporal data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. New York: John Wiley.

    MATH  Google Scholar 

  • Anderson, T. W. (1963). Asymptotic theory for principal component analysis. Annals of Mathematical Statistics 34, 122 - 148.

    Article  MATH  MathSciNet  Google Scholar 

  • Bartholomew, D. J. (1987). Latent Variable Models and Factor Analysis. London: Charles Griffin & Co. Ltd.

    MATH  Google Scholar 

  • Basilevsky, A. (1994). Statistical Factor Analysis and Related Methods. New York: Wiley.

    Book  MATH  Google Scholar 

  • Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

    Google Scholar 

  • Bishop, C. M., G. E. Hinton, and I. G. D. Strachan (1997). GTM through time. Accepted for publication in Proceedings IEE Fifth International Conference on Artificial Neural Networks, Cambridge, U.K.

    Google Scholar 

  • Bishop, C. M. and G. D. James (1993). Analysis of multiphase flows using dual-energy gamma densitometry and neural networks. Nuclear Instruments and Methods in Physics Research A327, 580 - 593.

    Article  Google Scholar 

  • Bishop, C. M., M. Svensen, and C. K. I. Williams (1996). Magnification factors for the GTM algorithm. To appear in Proceedings Fifth IEE International Conference on Artificial Neural Networks.

    Google Scholar 

  • Bishop, C. M., M. Svensen, and C. K. I. Williams (1997). GTM: the generative topographic mapping. Accepted for publication in Neural Computation. Available as NCRG/96/015 from http: //www. ncrg. aston. ac. uk/.

    Google Scholar 

  • Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B 39 (1), 1–38.

    MATH  MathSciNet  Google Scholar 

  • Hinton, G. E., P. Dayan, and M. Revow (1997). Modeling the manifolds of images of handwritten digits. IEEE Transactions on Neural Networks 8 (1), 65–74.

    Article  Google Scholar 

  • Hinton, G. E., C. K. I. Williams, and M. D. Revow (1992). Adaptive elastic models for hand-printed character recognition. In J. E. Moody, S. J. Hanson, and R. P. Lippmann (Eds.), Advances in Neural Information Processing Systems, Volume 4, pp. 512–519. Morgan KaufFmann.

    Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24, 417–441.

    Article  Google Scholar 

  • Hull, J. J. (1994). A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 550–554.

    Article  Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Kohonen, T. (1995). Self-Organizing Maps. Berlin: Springer-Verlag.

    Google Scholar 

  • Krzanowski, W. J. and F. H. C. Marriott (1994). Multivariate Analysis Part I: Distributions, Ordination and Inference. London: Edward Arnold.

    MATH  Google Scholar 

  • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Sixth Series 2, 559–572.

    Google Scholar 

  • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77 (2), 257– 285.

    Google Scholar 

  • Rao, C. R. (1955). Estimation and tests of significance in factor analysis. Psychometrika 20, 93–111.

    Article  MATH  MathSciNet  Google Scholar 

  • Rubin, D. B. and D. T. Thayer (1982). EM algorithms for ML factor analysis. Psychometrika 47 (1), 69–76.

    Article  MATH  MathSciNet  Google Scholar 

  • Tipping, M. E. and C. M. Bishop (1996). Hierarchical latent variable models for data visualization. Technical Report NCRG/96/028, Neural Computing Research Group, Aston University, Birmingham, UK. Submitted to IEEE PAMI.

    Google Scholar 

  • Tipping, M. E. and C. M. Bishop (1997a). Mixtures of principal component analysers. Technical Report NCRG/97/003, Neural Computing Research Group, Aston University, Birmingham, UK. Submitted to Neural Computation.

    Google Scholar 

  • Tipping, M. E. and C. M. Bishop (1997b). Probabilistic principal component analysis. Technical report, Neural Computing Research Group, Aston University, Birmingham, UK. Submitted to Journal of the Royal Statistical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Bishop, C.M. (1998). Latent Variables, Topographic Mappings and Data Visualization. In: Marinaro, M., Tagliaferri, R. (eds) Neural Nets WIRN VIETRI-97. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-1520-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1520-5_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1522-9

  • Online ISBN: 978-1-4471-1520-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics