Skip to main content

Empirical Processes and p-variation

  • Chapter
  • First Online:
Selected Works of R.M. Dudley

Part of the book series: Selected Works in Probability and Statistics ((SWPS))

  • 1821 Accesses

Abstract

Remainder bounds in Fréchet differentiability of functionals for p-variation norms are found for empirical distribution functions. For \(1 \le p \le 2\) the p-variation of the empirical process \(n^{1/2} (F_n - F)\) is of order \(n^{1 - p/2} \) in probability up to a factor (log log n)p/2. For \((F,G) \mapsto \smallint FdG\) and for \((F,G) \mapsto F \circ G^{ - 1} \) this yields nearly optimal remainder bounds. Also, p-variation gives new proofs for the asymptotic distributions of the Cramér-von Mises-Rosenblatt and Watson two-sample statistics when the two sample sizes m, n go to infinity arbitrarily.

Mathematics Department, Massachusetts Institute of Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, S. (1981), ‘Asymptotic behavior of functionals of empirical distribution functions for the two-sample problem’, Annals of the Institute of Statistical Mathematics 33, 391–403.

    Article  MATH  MathSciNet  Google Scholar 

  • Andersen, P. K., Borgan, Ø, Gill, R. D. & Keiding, N. (1993), Statistical Models Based on Counting Processes, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Appell, J. & Zabrejko, P. P. (1990), Nonlinear Superposition Operators, Cambridge University Press.

    MATH  Google Scholar 

  • Beirlant, J. & Deheuvels, P. (1990), ‘On the approximation of P-P and Q-Q plot processes by Brownian bridges’, Statistics and Probability Letters 9, 241–251.

    Article  MATH  MathSciNet  Google Scholar 

  • Darling, D. A. (1957), ‘The Kolmogorov-Smirnov, Cramér-von Mises tests’, Annals of Mathematical Statistics 28, 823–838.

    Article  MATH  MathSciNet  Google Scholar 

  • Dixon, W. J. (1940), ‘A criterion for testing the hypothesis that two samples are from the same population’, Annals of Mathematical Statistics 11, 199–204.

    Article  MATH  MathSciNet  Google Scholar 

  • Dudley, R. M. (1985), ‘An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions’, Springer Lecture Notes in Mathematics 1153, 141–178.

    Article  MathSciNet  Google Scholar 

  • Dudley, R. M. (1992), ‘Fréchet differentiability, p-variation and uniform Donsker classes’, Annals of Probability 20, 1968–1982.

    Article  MATH  MathSciNet  Google Scholar 

  • Dudley, R. M. (1993), Real Analysis and Probability, Chapman and Hall, New York. Second printing, corrected.

    Google Scholar 

  • Dudley, R. M. (1994), ‘The order of the remainder in derivatives of composition and inverse operators for p-variation norms’, Annals of Statistics 22, 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  • Fernholz, L. T. (1983), von Mises Calculus for Statistical Functionals, Vol. 19 of Lecture Notes in Statistics, Springer, New York.

    Google Scholar 

  • Filippova, A. A. (1961), ‘[the von] mises theorem on the asymptotic behavior of functionals of empirical distribution functions and its statistical applications’, Theory of Probability and Its Applications 7, 24–57.

    Article  Google Scholar 

  • Fisz, M. (1960), ‘On a result by M. Rosenblatt concerning the von Mises-Smirnov test’, Annals of Mathematical Statistics 31, 427–429.

    Article  MATH  MathSciNet  Google Scholar 

  • Gill, R. D. (1989), ‘Non- and semi-parametric maximum likelihood estimators and the von Mises method’, Scandinavian Journal of Statistics 16, 97–128.

    MATH  MathSciNet  Google Scholar 

  • Huang, Y.-C. (1994), Empirical distribution function statistics, speed of convergence, and p-variation, PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Huang, Y.-C. (1995), Speed of convergence of classical empirical processes in p-variation norm, preprint, Academica Sinica, Taipei, Taiwan.

    Google Scholar 

  • Janson, S. (1984), ‘The asymptotic distributions of incomplete U-statistics’, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 66, 495–505.

    Article  MATH  MathSciNet  Google Scholar 

  • Kiefer, J.(1959), ‘K-sample analogues of the Kolmogorov-Smirnov and Cramér-v. Mises tests’, Annals of Mathematical Statistics 30, 420–447.

    Article  MATH  MathSciNet  Google Scholar 

  • Kiefer, J. (1970), Deviations between the sample quantile process and the sample df, in M. L. Puri, ed., ‘Nonparametric Techniques in Statistical Inference’, Cambridge University Press, pp. 299–319.

    Google Scholar 

  • Komlós, J., Major, P. & Tusnády, G. (1975), ‘An approximation of partial sums of independent RV’s, and the sample DF. I’, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 32, 111–131.

    Article  MATH  Google Scholar 

  • Lehmann, E. L. (1951), ‘Consistency and unbiasedness of certain nonpara-metric tests’, Annals of Mathematical Statistics 22, 165–179.

    Article  MATH  MathSciNet  Google Scholar 

  • Persson, T. (1979), ‘A new way to obtain Watson’s U 2, Scandinavian Journal of Statistics 6, 119–122.

    MATH  MathSciNet  Google Scholar 

  • Randies, R. H. & Wolfe, D. A. (1991), Introduction to the Theory of Nonparametric Statistics, Krieger, Malabar, FL. Reprinted with corrections.

    Google Scholar 

  • Reeds, J. A. (1976), On the definition of von Mises functionals, PhD thesis, Statistics, Harvard University.

    Google Scholar 

  • Rosenblatt, M. (1952), ‘Limit theorems associated with variants of the von Mises statistic’, Annals of Mathematical Statistics 23, 617–623.

    Article  MATH  MathSciNet  Google Scholar 

  • Taylor, S. J. (1972), ‘Exact asymptotic estimates of Brownian path variation’, Duke Mathematical Journal 39, 219–241.

    Article  MATH  MathSciNet  Google Scholar 

  • Watson, G. S. (1962), ‘Goodness-of-fit tests on a circle, II’, Biometrika 49, 57–63.

    MATH  MathSciNet  Google Scholar 

  • Young, L. C. (1936), ‘An inequality of the Hölder type, connected with Stieltjes integration’, Acta Mathematica (Djursholm) 67, 251–282.

    Article  MATH  Google Scholar 

  • Young, L. C. (1938), ‘General inequalities for Stieltjes integrals and the convergence of Fourier series’, Mathematische Annalen 115, 581–612.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dudley, R.M. (2010). Empirical Processes and p-variation. In: Giné, E., Koltchinskii, V., Norvaisa, R. (eds) Selected Works of R.M. Dudley. Selected Works in Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5821-1_23

Download citation

Publish with us

Policies and ethics