Skip to main content

Special Invited Paper

Central Limit Theorems for Empirical Measures

  • Chapter
  • First Online:
Book cover Selected Works of R.M. Dudley

Part of the book series: Selected Works in Probability and Statistics ((SWPS))

  • 1820 Accesses

Abstract

The statistics used in Kolmogorov-Smirnov test are suprema of normalized empirical measures \({n^\frac{1}{2}\left(P_n-P\right)}\) or \(\left(mn\right)^\frac{1}{2}{\left({m+n}\right)}^{-\frac{1}{2}}\left({P_m}-{Q_n}\right)\) over a class \(\mathcal{C}\) of sets, namely the interval \(]-{\infty},a],a \in {\mathbb{R}}.\) Donsker (1952) Showed here that \({n^\frac{1}{2}\left(P_n-P\right)}\) converges in law, in the spacel \(l^{\infty}\left({\mathcal{C}}\right)\) of all bounded functions products of interval parallel to the axes in \(\mathbb{R}^k\) (Dudley (1966), (1967a)). Since \(\ell^\infty\mathcal{C}\) in the supremum norm is nonseparable, some measurablity problems (overlooked by Dansker) had to be trated. Recently Révész (1976) proved an iterated logarithm law for a much more general class of sets

$$\bigcap_{1\leq i\leq k}\left\{x:{f}_i\left\{\left(x_j:\neq i\right)\right\}< {x}_i < {g}_i\left(\left\{ {x_j:j\neq i}\right\}\right)\right\}$$

where \({f}_i\) and g i have a fixed bound on their partial derivatives of orders \(\leq k,\) and \(\mathbf{P}\) is the uniform measure on the unit cube. This paper will consider extensions of Donsker’s theorem to suitable classes of sets in general probability spaces.

Received June 15, 1977; revised

This reserach was partially supported by National Science Foundation Grant MCS76-07211 A01.

AMS 1970 subject classification. Primary 60F05; Secondary 60B10, 60G17, 28A05, 28A40.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aumann, R. J. (1961). Borel structures for function spaces. Illinois J. Math. 5 614–630.

    MATH  MathSciNet  Google Scholar 

  • Bennett, G. (1962). Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 57 33–45.

    Article  MATH  Google Scholar 

  • Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

    MATH  Google Scholar 

  • Bolthausen, E. (1976). On weak convergence of an empirical process indexed by the closed convex subsets of.2. (Preprint).

    Google Scholar 

  • Chernoff, H. (1952). A measure of asymptotic efficiency for tests based on the sum of observations. Ann. Math. Statist. 23 493–507.

    Article  MATH  MathSciNet  Google Scholar 

  • Christensen, J. P. R. (1971). On some properties of Effros Borel structure on spaces of closed subsets. Math. Ann. 195 17–23.

    Article  MATH  MathSciNet  Google Scholar 

  • Christensen, J. P. R. (1974). Topology and Borel Structure. North-Holland, Amsterdam; American Elsevier, New York.

    MATH  Google Scholar 

  • Clements, G. F. (1963). Entropies of several sets of real valued functions. Pacific J. Math. 13 1085–1095.

    MATH  MathSciNet  Google Scholar 

  • Cover, T. M. (1965). Geometric and statistical properties of systems of linear inequalities with applications to pattern recognition. IEEE Trans. Elec. Comp. EC-14 326–334.

    Article  Google Scholar 

  • Dehardt, J. (1971). Generalizations of the Glivenko-Cantelli theorem. Ann. Math. Statist. 42 2050– 2055.

    Article  MATH  MathSciNet  Google Scholar 

  • Donsker, M. D. (1952). Justification and extension of Doob’s heuristic approach to the Kolmogorov- Smirnov theorems. Ann. Math. Statist. 23 277–281.

    Article  MATH  MathSciNet  Google Scholar 

  • Dudley, R. M. (1966). Weak convergence of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10 109–126.

    MATH  MathSciNet  Google Scholar 

  • Dudley, R. M. (1967a). Measures on non-separable metric spaces. Illinois J. Math. 11 449–453.

    MATH  MathSciNet  Google Scholar 

  • Dudley, R. M. (1967b). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Functional Analysis 1 290–330.

    Article  MATH  MathSciNet  Google Scholar 

  • Dudley, R. M. (1973). Sample functions of the Gaussian process. Ann. Probability 1 66–103.

    Article  MATH  MathSciNet  Google Scholar 

  • Dudley, R. M. (1974). Metric entropy of some classes of sets with differentiable boundaries. J. Approximation Theory 10 227–236.

    Article  MATH  MathSciNet  Google Scholar 

  • Effros, E. G. (1965). Convergence of closed subsets in a topological space. Proc. Amer. Math. Soc. 16 929–931.

    MATH  MathSciNet  Google Scholar 

  • Federer, H. (1969). Geometric Measure Theory. Springer, Berlin.

    MATH  Google Scholar 

  • Freedman, D. (1966). On two equivalence relations between measures. Ann. Math. Statist. 37 686–689.

    Article  MATH  MathSciNet  Google Scholar 

  • Harding, E. F. (1967). The number of partitions of a set of N points in k dimensions induced by hyperplanes. Proc. Edinburgh Math. Soc. (Ser. II) 15 285–289.

    Article  MATH  MathSciNet  Google Scholar 

  • Håusdorff, F. (1937). Set Theory, 3rd ed. Transl. by J. Aumann et al. (New York, Chelsea, 1962).

    Google Scholar 

  • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13–30.

    Article  MATH  MathSciNet  Google Scholar 

  • Jogdeo, K. and Samuels, S. M. (1968). Monotone convergence of binomial probabilities and a generalization of Ramanujan’s equation. Ann. Math. Statist. 39 1191–1195.

    Article  MATH  Google Scholar 

  • Kelley, J. L. (1955). General Topology. Van Nostrand, Princeton.

    MATH  Google Scholar 

  • Kolmogorov, A. N. (1956). On Skorohod convergence. Theor. Probability Appl. 1 215–222. (Teor. Verojatnost. i Primenen. 1 239–247, in Russian.)

    Article  Google Scholar 

  • Kolmogorov, A. N. and Tihomirov, V. M. (1959). ε-entropy and ε-capacity of sets in functional spaces. Uspehi Mat. Nauk 14, #2 (86), 3–86 (in Russian); (1961) Amer. Math. Soc. Transl. (Ser. 2), 17 277–364.

    MathSciNet  Google Scholar 

  • Kuratowski, K. (1966). Topology, 1. Academic Press, New York.

    Google Scholar 

  • McShane, E. J. (1934). Extension of range of functions. Bull. Amer. Math. Soc. 40 837–842.

    Article  MathSciNet  Google Scholar 

  • Neuhaus, G. (1971). On weak convergence of stochastic processes with multidimensional time parameter. Ann. Math. Statist. 42 1285–1295.

    Article  MATH  MathSciNet  Google Scholar 

  • Okamoto, Masashi (1958). Some inequalities relating to the partial sum of binomial probabilities. Ann. Inst. Statist. Math. 10 29–35.

    Article  MATH  MathSciNet  Google Scholar 

  • Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Academic Press, New York.

    MATH  Google Scholar 

  • Philipp, W. (1973). Empirical distribution functions and uniform distribution mod 1. In Diophantine Approximation and its Applications (C. F. Osgood, ed.) 211–234. Academic Press, New York.

    Google Scholar 

  • Pyke, R. and Shorack, G. (1968). Weak convergence of a two-sample empirical process and a new approach to Chernoff-Savage theorems. Ann. Math. Statist. 39 755–771.

    Article  MATH  MathSciNet  Google Scholar 

  • Rao, B. V. (1971). Borel structures for function spaces. Colloq. Math. 23 33–38.

    MATH  MathSciNet  Google Scholar 

  • Révész, P. (1976). Three theorems of multivariate empirical process. Lecture Notes in Math. 566 106–126.

    Article  Google Scholar 

  • Schläfli, Ludwig (1901, posth.). Theorie der vielfachen Kontinuität, in Gesammelte Math. Abhandlungen I (Basel, Birkhäuser, 1950).

    Google Scholar 

  • Sion, M. (1960). On uniformization of sets in topological spaces. Trans. Amer. Math. Soc. 96 237–245.

    MATH  MathSciNet  Google Scholar 

  • Skorohod, A. V. (1955). On passage to the limit from sequences of sums of independent random variables to a homogeneous random process with independent increments. Dokl. Akad. Nauk. SSSR 104 364–367 (in Russian).

    MathSciNet  Google Scholar 

  • Steele, J. M. (1978). Empirical discrepancies and subadditive processes. Ann. Probability 6 118–127.

    Article  MATH  MathSciNet  Google Scholar 

  • Steiner, J. (1826). Einige Gesetze über die Theilung der Ebene und des Raumes. J. Reine Angew. Math. 1 349–364.

    MATH  Google Scholar 

  • Stone, A. H. (1962). Non-separable Borel sets. Rozprawy Mat. 28 (41 pp.).

    Google Scholar 

  • Straf, M. L. (1972). Weak convergence of stochastic processes with several parameters. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2 187–221. Univ. of California Press.

    MathSciNet  Google Scholar 

  • Sun, Tze-Gong (1976). Ph.D. dissertation, Dept. of Mathematics, Univ. of Washington, Seattle.

    Google Scholar 

  • Szpilrajn, E. (1938). Ensembles indépendants et mesures non séparables. C. R. Acad. Sci. Paris 207 768–770.

    Google Scholar 

  • Talagrand, M. (1978). Les boules peuvent elles engendrer la tribu borélienne d’un espace métrisable non séparable? (Preprint).

    Google Scholar 

  • Uhlmann, W. (1966). Vergleich der hypergeometrischen mit der Binomial-Verteilung. Metrika 10 145–158.

    Article  MATH  MathSciNet  Google Scholar 

  • Vapnik, V. N. and Cervonenkis, A. Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theor. Probability Appl. 16 264–280. (Teor. Verojatnost. i Primenen. 16 264–279, in Russian.)

    Article  MATH  MathSciNet  Google Scholar 

  • Vapnik, V. N. and Cervonenkis, A. Ya. (1974). Theory of Pattern Recognition (in Russian). Nauka, Moscow.

    Google Scholar 

  • Watson, D. (1969). On partitions of n points. Proc. Edinburgh Math. Soc. 16 263–264.

    Article  MATH  MathSciNet  Google Scholar 

  • Wichura, Michael J. (1970). On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Ann. Math. Statist. 41 284–291.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dudley, R.M. (2010). Special Invited Paper. In: Giné, E., Koltchinskii, V., Norvaisa, R. (eds) Selected Works of R.M. Dudley. Selected Works in Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5821-1_16

Download citation

Publish with us

Policies and ethics