Skip to main content

Silicon Nanowires: From Empirical to First Principles Modeling

  • Chapter
  • First Online:
Book cover Trends in Computational Nanomechanics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 9))

  • 1309 Accesses

Abstract:

Silicon nanowires have been the subject of intense investigation over the last decade. The experimental realization of nanowire configurations with a wide range of diameters, lengths, and surface types leads us to envision a wealth of applications, running from selective sensors of rapid response to electronic devices. In this period, theoretical modeling has helped to understand the electronic, mechanical, optical and transport properties of nanowires and to explore applications of such properties in the context of the current electronic technologies. These modern theoretical calculations have reached a point where realistic description of materials properties are provided by computational simulations. Carefully constructed empirical potentials provide a good description of silicon-nanowire energetics, making possible investigations of the stability of silicon wires with different surface terminations (or facets) for a given family of nanowires. Simulations using empirical potentials have also been employed to examine the thermal and mechanical stability of silicon nanowires, and also the response under external load. In the latter case, there is and indication that the response under load of silicon nanowires is different from the bulk, to the extent that crack propagation is suppressed and healing at the crack is mediated by surface effects. Investigation of nanowire properties are also within the reach of tight-binding and first principles methodologies, that have been used to examine the effects of quantum confinement on the nanowire electronic, transport and structural properties, as well as the nature of their surface states. These methods have also been used to examine the possibility of structural transitions of very thin silicon wires, induced by surface effects

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campaño R, Molenkamp L, Paul DJ (eds) (1997) Technology Roadmap for Nanoelectronics in “European Commision for Future and Emerging Technologies”.

    Google Scholar 

  2. Morales AM, Lieber CM (1998) Science 279: 208.

    Article  CAS  Google Scholar 

  3. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Lieber Nature 415: 617.

    Article  CAS  Google Scholar 

  4. Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Science 300: 112.

    Article  CAS  Google Scholar 

  5. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) Adv Mater 15: 353.

    Article  CAS  Google Scholar 

  6. Lu W, Lieber CM (2007) Nat Mater 6: 841.

    Article  CAS  Google Scholar 

  7. Stone NJ, Ahmed H (1998) Appl Phys Lett 73: 2134.

    Article  CAS  Google Scholar 

  8. Stone NJ, Ahmed H (1998) Microeletr Eng 42: 511.

    Article  Google Scholar 

  9. Cui Y, Lieber CM (2001) Science 291: 851.

    Article  CAS  Google Scholar 

  10. Huang Y, Duan XF, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Science 294: 1313.

    Article  CAS  Google Scholar 

  11. Chung SW, Yu JY, Heath JR (2000) Appl Phys Lett 76: 2068.

    Article  CAS  Google Scholar 

  12. Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Nature 421: 241.

    Article  CAS  Google Scholar 

  13. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Science 292: 1897.

    Article  CAS  Google Scholar 

  14. Cui Y, Wei QQ, Park HK, Lieber CM (2001) Science 293: 1289.

    Article  CAS  Google Scholar 

  15. Zhou XT, Hu JQ, Li CP, Ma DDD, Lee CS, Lee ST (2003) Chem Phys Lett 369: 220.

    Article  CAS  Google Scholar 

  16. Patolsky F, Zheng GF, Lieber CM (2006) Nat Protoc 1: 1711.

    Article  CAS  Google Scholar 

  17. Iijima S, Ichihashi T (1993) Nature 363: 603.

    Article  CAS  Google Scholar 

  18. Cui Y, Zhong ZH, Wang DL, Wang WU, Lieber CM (2003) Nano Lett 3: 149.

    Article  CAS  Google Scholar 

  19. Lehmann V, Gosele U (1991) Appl Phys Lett 58: 856.

    Article  CAS  Google Scholar 

  20. Stucky GD, Macdougall JE (1990) Science 247: 669.

    Article  CAS  Google Scholar 

  21. Ridley BK (1991) Rep Prog Phys 54: 169.

    Article  Google Scholar 

  22. Liu HI, Biegelsen DK, Ponce FA, Johnson NM, Pease RFW (1994) Appl Phys Lett 64: 1383.

    Article  CAS  Google Scholar 

  23. Liu HI, Biegelsen DK, Johnson NM, Ponce FA, Pease RFW (1994) J Vac Sci Tech 11: 2532.

    Google Scholar 

  24. Namatsu H, Takahashi Y, Nagase M, Murase K (1995) J Vac Sci Tech B 13: 2166.

    Article  CAS  Google Scholar 

  25. Kurihara K, Iwadate K, Namatsu H, Nagase M, Takenaka H, Murase K (1995) Jn J Appl Phys 34: 6940.

    Google Scholar 

  26. Ono T, Saitoh H, Esashi M (1997) Appl Phys Lett 70: 1852.

    Article  CAS  Google Scholar 

  27. Almawlawi D, Liu CZ, Moskovits M (1994) J Mater Res 9: 1014.

    Article  CAS  Google Scholar 

  28. Coleman NRB, Morris MA, Spalding TR, Holmes JD (2001) J Am Chem Soc 123: 187.

    Article  CAS  Google Scholar 

  29. Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Appl Phys Lett 72: 1835.

    Article  CAS  Google Scholar 

  30. Wang N, Tang YH, Zhang YF, Lee CS, Lee ST (1998) Phys Rev B 58: 16024.

    Article  Google Scholar 

  31. Marsen B, Sattler K (1999) Phys Rev B 60: 11593.

    Article  CAS  Google Scholar 

  32. Yu DP, Bai ZG, Ding Y, Hang QL, Zhang HZ, Wang JJ, Zou YH, Qian W, Xiong GC, Zhou HT, Feng SQ (1998) Appl Phys Lett 72: 3458.

    Article  CAS  Google Scholar 

  33. Gole JL, Stout JD, Rauch WL, Wang ZL (2000) Appl Phys Lett 76: 2346.

    Article  CAS  Google Scholar 

  34. Zhang YF, Tang YH, Lam C, Wang N, Lee CS, Bello I, Lee ST (2000) J Cryst Growth 212: 115.

    Article  CAS  Google Scholar 

  35. Pan ZW, Dai ZR, Xu L, Lee ST, Wang ZL (2001) J Phys Chem 105: 2507.

    CAS  Google Scholar 

  36. Westwater J, Gosain DP, Tomiya S, Usui S, Ruda H (1997) J Vacc Sci Tech 15: 554.

    Article  CAS  Google Scholar 

  37. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287: 1471.

    Article  CAS  Google Scholar 

  38. Gudiksen MS, Lieber CM (2000) J Am Chem Soc 122: 8801.

    Article  CAS  Google Scholar 

  39. Kamins TI, Williams RS, Chen Y, Chang YL, Chang YA (2000) Appl Phys Lett 76: 562.

    Article  CAS  Google Scholar 

  40. Zhang RQ, Lifshitz Y, Lee ST (2003) Adv Mater 15: 635.

    Article  CAS  Google Scholar 

  41. Lu XM, Hanrath T, Johnston KP, Korgel BA (2003) Nano Lett 3: 93.

    Article  CAS  Google Scholar 

  42. Hanrath T, Korgel BA (2003) Adv Mater 15: 437.

    Article  CAS  Google Scholar 

  43. Hofmann S, Sharma R, Wirth CT, Cervantes-Sodi F, Ducati C, Kasama T, Dunin-Borkowski RE, Drucker J, Bennett P, Robertson J (2008) Nat Mater 7: 372.

    Article  CAS  Google Scholar 

  44. Kodambaka S, Tersoff J, Reuter MC, Ross FM (2006) Phys Rev Lett 96: 096105.

    Article  CAS  Google Scholar 

  45. Ross FM, Tersoff J, Reuter MC (2005) Phys Rev Lett 95: 146104.

    Article  CAS  Google Scholar 

  46. Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Science 299: 1874.

    Article  CAS  Google Scholar 

  47. Wu Y, Cui Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Nano Lett 4: 433.

    Article  CAS  Google Scholar 

  48. Jarrold MF, Constant VA (1991) Phys Rev Lett 67: 2994.

    Article  CAS  Google Scholar 

  49. Hunter JM, Fye JL, Jarrold MF, Bower JE (1994) Phys Rev Lett 73: 2063.

    Article  CAS  Google Scholar 

  50. Menon M, Richter E (1999) Phys Rev Lett 83: 792.

    Article  CAS  Google Scholar 

  51. Fagan SB, Baierle RJ, Mota R, da Silva AJR, Fazzio A (2000) Phys Rev B 61: 9994.

    Article  CAS  Google Scholar 

  52. Zhang RQ, Lee ST, Law CK, Li WK, Teo BK (2002) Chem Phys Lett 364: 251.

    Article  CAS  Google Scholar 

  53. Barnard AS, Russo SP (2003) J Phys Chem 107: 7577.

    CAS  Google Scholar 

  54. Zhang M, Kan YH, Zang OJ, Su ZM, Wang RS (2003) Chem Phys Lett 379: 81.

    Article  CAS  Google Scholar 

  55. Zhang RQ, Lee HL, Li WK, Teo BK (2005) J Phys Chem 109: 8605.

    CAS  Google Scholar 

  56. Pradhan P, Ray AK, (2006) J Comput Theor Nanosc 3: 128.

    CAS  Google Scholar 

  57. Kang JW, Seo JJ, Hwang HJ (2002) J Nanosci Nanotech 2: 687.

    Article  CAS  Google Scholar 

  58. Dumitrică T, Hua M, Yakobson BI (2004) Phys Rev B 70: 241303.

    Article  CAS  Google Scholar 

  59. Zhao MW, Zhang RQ, Xia YY, Song C, Lee ST (2007) J Phys Chem C 111: 1234.

    Article  CAS  Google Scholar 

  60. Yan BH, Zhou G, Wu J, Duan WH, Gu BL (2006) Phys Rev B 73: 155432.

    Article  CAS  Google Scholar 

  61. Yan BH, Zhou G, Zeng XC, Wu J, Gu BL, Duan WH (2007) Appl Phys Lett 91: 103107.

    Article  CAS  Google Scholar 

  62. Ni M, Luo GF, Lu J, Lai L, Wang L, Jing MW, Song W, Gao ZX, Li GP, Mei WN, Yu DP (2007) Nanotechnology 18: 505707.

    Article  CAS  Google Scholar 

  63. Zhang DB, Hua M, Dumitrică T (2008) J Chem Phys 128: 084104.

    Article  CAS  Google Scholar 

  64. Li BX, Cao PL, Zhang RQ, Lee ST (2002) Phys Rev B 65: 125305.

    Article  CAS  Google Scholar 

  65. Zhao YF, Yakobson BI (2003) Phys Rev Lett 91: 035501.

    Article  CAS  Google Scholar 

  66. Zhang RQ, Lifshitz Y, Ma DDD, Zhao YL, Frauenheim T, Lee ST, Tong SY (2005) J Chem Phys 123: 144703.

    Article  CAS  Google Scholar 

  67. Räthlisberger U, Andreoni W, Parrinello M (1994) Phys Rev Lett 72: 665.

    Article  Google Scholar 

  68. Landman U, Barnett RN, Scherbakov AG, Avouris P (2000) Phys Rev Lett 85: 1958.

    Article  CAS  Google Scholar 

  69. Ponomareva I, Menon M, Srivastava D, Andriotis AN (2005) Phys Rev Lett 95: 265502.

    Article  CAS  Google Scholar 

  70. Akiyama T, Nakamura K, Ito T (2006) Phys Rev B 74: 033307.

    Article  CAS  Google Scholar 

  71. Ponomareva I, Menon M, Richter E, Andriotis AN (2006) Phys Rev B 74: 125311.

    Article  CAS  Google Scholar 

  72. Liu SD, Jayanthi CS, Zhang ZY, Wu SY (2007) J Comput Theor Nanosci 4: 275.

    CAS  Google Scholar 

  73. Maeda S, Akiyama T, Nakamura K, Ito T (2007) J Cryst Growth 301: 871.

    Article  CAS  Google Scholar 

  74. Ng MF, Zhou LP, Yang SW, Sim LY, Tan VBC, Wu P (2007) Phys Rev B 76: 155435.

    Article  CAS  Google Scholar 

  75. Ponomareva I, Richter E, Andriotis AN, Menon M (2007) Nano Lett 7: 3424.

    Article  CAS  Google Scholar 

  76. Lu N, Ciobanu CV, Chan TL, Chuang FC, Wang CZ, Ho KM (2007) J Phys Chem 111: 7933.

    CAS  Google Scholar 

  77. Sorokin PB, Avramov PV, Kvashnin AG, Kvashnin DG, Ovchinnikov SG, Fedorov AS (2008) Phys Rev B 77: 235417.

    Article  CAS  Google Scholar 

  78. Ma L, Wang HG, Zhao JJ, Wang GH (2008) Chem Phys Lett 452: 183.

    Article  CAS  Google Scholar 

  79. Rurali R, Cartoixa X, Galvao DS (2008) Phys Rev B 77: 073403.

    Article  CAS  Google Scholar 

  80. Rurali R, Lorente N (2005) Phys Rev Lett 94: 026805.

    Article  CAS  Google Scholar 

  81. Wu ZG, Neaton JB, Grossman JC (2008) Phys Rev Lett 100: 246804.

    Article  CAS  Google Scholar 

  82. Hohenberg P, Kohn W (1964) Phys Rev 136: B864.

    Article  Google Scholar 

  83. Kohn W, Sham LJ (1965) Phys Rev 140: A1133.

    Article  Google Scholar 

  84. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64: 1045.

    Article  CAS  Google Scholar 

  85. Nguyen-Manh D, Vitek V, Horsfield AP (2007) Prog Mater Sci 52: 255.

    Article  CAS  Google Scholar 

  86. Beck TL (2000) Rev Mod Phys 72: 1041.

    Article  CAS  Google Scholar 

  87. Balamane H, Halicioglu T, Tiller WA (1992) Phys Rev B 46: 2250.

    Article  CAS  Google Scholar 

  88. Justo JF (2005) In: S. Yip (ed) Handbook of Materials Modeling, Springer, Dordrecht.

    Google Scholar 

  89. Stillinger FH, Weber TA (1985) Phys Rev B 31: 5262.

    Article  CAS  Google Scholar 

  90. Tersoff J (1988) Phys Rev B 37: 6991.

    Article  Google Scholar 

  91. Justo JF, Bazant MZ, Kaxiras E, Bulatov VV, Yip S (1998) Phys Rev B 58: 2539.

    Article  CAS  Google Scholar 

  92. Menezes RD, Justo JF, Assali LVC (2007) Phys Stat Solid A 204: 951.

    Article  CAS  Google Scholar 

  93. Carlsson AE (1990) In Ehrenreich H, Turnbull D (eds) Solid State Physics, vol. 43 Academic Press, San Diego, pp. 1-91.

    Google Scholar 

  94. Harrison WA (1989) In: Electronic Structure and the Properties of Solids, Dover Publications, New York.

    Google Scholar 

  95. Kwon I, Biswas R, Wang CZ, Ho KM, Soukoulis CM (1994) Phys Rev B 49: 7242.

    Article  CAS  Google Scholar 

  96. Tang MS, Wang CZ, Chan CT, Ho KM (1996) Phys Rev B 53: 979.

    Article  CAS  Google Scholar 

  97. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58: 7260.

    Article  CAS  Google Scholar 

  98. Lenosky TJ, Kress JD, Kwon I, Voter AF, Edwards B, Richards DF, Yang S, Adams JB (1997) Phys Rev B 55: 1528.

    Article  CAS  Google Scholar 

  99. Goedecker S (1999) Rev Mod Phys 71: 1085.

    Article  CAS  Google Scholar 

  100. Li XP, Nunes RW, Vanderbilt D (1993) Phys Rev B 47: 10891.

    Article  CAS  Google Scholar 

  101. Nunes RW, Vanderbilt D (1994) Phys Rev B 50: 17611.

    Article  CAS  Google Scholar 

  102. Herring C (1951) Phys Rev 82: 87.

    Article  CAS  Google Scholar 

  103. Zhao Y, Yakobson BI (2003) Phys Rev Lett 91: 035501.

    Article  CAS  Google Scholar 

  104. Justo JF, Menezes RD, Assali LVC (2007) Phys Rev B 75: 045303.

    Article  CAS  Google Scholar 

  105. Kagimura R, Nunes RW, Chacham H (2005) Phys Rev Lett 95: 115502.

    Article  CAS  Google Scholar 

  106. Kizuka T, Takatani Y, Asaka K, Yoshizaki R (2005) Phys Rev B 72: 035333.

    Article  CAS  Google Scholar 

  107. Stekolnikov AA, Bechstedt F (2005) Phys Rev B 72: 125326.

    Article  CAS  Google Scholar 

  108. Ismail-Beigi S, Arias T (1998) Phys Rev B 57: 11923.

    Article  CAS  Google Scholar 

  109. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77: 11593.

    Article  Google Scholar 

  110. Troullier N, Martins JL (1991) Phys Rev B 43: 1993.

    Article  CAS  Google Scholar 

  111. Kleinman L, Bylander DM (1991) Phys Rev Lett 48: 1425.

    Article  Google Scholar 

  112. Gonze X, Stumpf R, Scheffler M (1991) Phys Rev B 44: 8503.

    Article  CAS  Google Scholar 

  113. Ordejón P, Artacho E, Soler JM (1996) Phys Rev B 53: R10441.

    Article  Google Scholar 

  114. Moll N, Bockstedte M, Fuchs M, Pehlke E, Scheffler M (1995) Phys Rev B 52: 2550.

    Article  CAS  Google Scholar 

  115. Lee IH, Martin RM (1997) Phys Rev B 56: 7197.

    Article  CAS  Google Scholar 

  116. Cheng C (2003) Phys Rev B 67: 134109.

    Article  CAS  Google Scholar 

  117. Mujica A, Rubio A, Munoz A, Needs RJ (2003) Rev Mod Phys 75: 863.

    Article  CAS  Google Scholar 

  118. Gaál-Nagy K, Pavone P, Strauch D (2004) Phys Rev B 69: 134112.

    Article  CAS  Google Scholar 

  119. Poswal HK, Garg N, Sharma SM, Busetto E, Sikka SK, Gundiah G, Deepak FL, Rao CNR (2005) J Nanosci Nanotech 5: 729.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo W. Nunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nunes, R.W., Justo, J.F. (2010). Silicon Nanowires: From Empirical to First Principles Modeling. In: Dumitrica, T. (eds) Trends in Computational Nanomechanics. Challenges and Advances in Computational Chemistry and Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9785-0_7

Download citation

Publish with us

Policies and ethics