Skip to main content

Energy-Rate Method

  • Chapter
  • First Online:
Approximation Methods in Science and Engineering
  • 465 Accesses

Abstract

Determination of the stability chart and transition curves of parametric differential equations are extremely important in design, optimization, and study of parametric systems. Besides several approximate methods that are capable of determining the stability chart of parametric systems, the energy-rate method is the most exact one. In this chapter we review this analytics-numerical method to determine stable, unstable, and periodic response of differential equations that their stability depends on relation between parameters. We will use the Mathieu equation as the principal example to develop the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Argyris, J., Faust, G., & Haase, M. (1994). An exploration of chaos. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Bolotin, V. V. (1964). The dynamic stability of elastic systems. San Francisco: Holden-Day.

    MATH  Google Scholar 

  • Brigham, E. O. (1974). The fast Fourier transform. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Christopherson, J., & Jazar, R. N. (2005). Optimization of classical hydraulic engine mounts based on RMS method. Journal of Shock and Vibration, 12(2), 119–147.

    Article  Google Scholar 

  • Christopherson, J., & Jazar, R. N. (2006). Dynamic behavior comparison of passive hydraulic engine mounts, part 1: Mathematical analysis. Journal of Sound and Vibration, 290(3–4), 1040–1070.

    Article  Google Scholar 

  • Cveticanin, L. (2014). Oscillators with time variable parameters. New York: Springer.

    Book  Google Scholar 

  • Cveticanin, L., & Kovacic, I. (2007). Parametrically excited vibrations of an oscillator with strong cubic negative nonlinearity. Journal of Sound and Vibration, 304(1–2), 201–212.

    Article  Google Scholar 

  • Esmailzadeh, E., & Jazar, R. N. (1997). Periodic solution of a Mathieu-Duffing type equation. International Journal of Nonlinear Mechanics, 32(5), 905–912.

    Article  MathSciNet  Google Scholar 

  • Esmailzadeh, E., Mehri, B., & Jazar, R. N. (1996). Periodic solution of a second order, autonomous, nonlinear system. Journal of Nonlinear Dynamics, 10(4), 307–316.

    Article  MathSciNet  Google Scholar 

  • Jazar, R. N. (2004). Stability chart of parametric vibrating systems using energy-rate method. International Journal of Non-Linear Mechanics, 39(8), 1319–1331.

    Article  Google Scholar 

  • Jazar, R. N. (2013). Advanced vibrations: A modern approach. New York: Springer.

    Book  Google Scholar 

  • Jazar, R. N., Mahinfalah, M., Mahmoudian, N., & Aagaah, M. R. (2009). Effects of nonlinearities on the steady state dynamic behavior of electric actuated microcantilever-based resonators. Journal of Vibration and Control, 15(9), 1283–1306.

    Article  MathSciNet  Google Scholar 

  • Jazar, R. N., Mahinfalah, M., Mahmoudian, N., Aagaah, M. R., & Shiari, B. (2006). Behavior of Mathieu equation in stable regions. International Journal for Mechanics and Solids, 1(1), 1–18.

    Google Scholar 

  • Jazar, R. N., Mahinfalah, M., Mahmoudian, N., & Rastgaar, M. A. (2008). Energy-rate method and stability chart of parametric vibrating systems. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30(3), 182–188.

    Article  Google Scholar 

  • Mahmoudian, N., Aagaah, M. R., Jazar, R. N., & Mahinfalah, M. (2004). Dynamics of a micro electro mechanical system (MEMS). In 2004 International Conference on MEMS, NANO, and Smart Systems (ICMENS 2004), Banff (pp. 688–693)

    Google Scholar 

  • McLachlan, N. W. (1947). Theory and application of Mathieu functions. Oxford, UK: Clarendon Press.

    MATH  Google Scholar 

  • Platonov, A. V. (2018). On the asymptotic stability of nonlinear time-varying switched systems. Journal of Computer and Systems Sciences International, 57(6), 854–863.

    Article  Google Scholar 

  • Sheikhlou, M., Rezazadeh, G., & Shabani, R. (2013). Stability and torsional vibration analysis of a micro-shaft subjected to an electrostatic parametric excitation using variational iteration method. Meccanica, 48(2), 259–274.

    Article  MathSciNet  Google Scholar 

  • Sochacki, W. (2008). The dynamic stability of a simply supported beam with additional discrete elements. Journal of Sound and Vibration, 314(1–2), 180–193.

    Article  Google Scholar 

  • Wilcox, R. M. (1967). Exponential operators and parameter differentiation in quantum physics. Journal of Mathematical Physics, 8(4), 962–982.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

N. Jazar, R. (2020). Energy-Rate Method. In: Approximation Methods in Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0480-9_6

Download citation

Publish with us

Policies and ethics