Skip to main content

Numerical Continued Fractions

  • Chapter
  • First Online:
Book cover Approximation Methods in Science and Engineering
  • 472 Accesses

Abstract

In this chapter we review the method of continued fractions to show its advantage and application. Convergence and its usefulness in working with irrational numbers, as well as converting a numerical series to continued fraction back and forth are the topics of this chapter. This review makes the reader ready to derive and work with solution of differential equations in continued fractions.

We will show that all real numbers may be divided into rational and irrational. They also may be divided into algebraic and transcendental. A rational number can be expressed by a fraction of the form p/q where p and q are integers. Numbers are also either algebraic or transcendental. The method expressing rational and irrational numbers by continued fractions will be covered in this chapter to make the reader ready to solve differential equations in continued fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aydin, N., & Hammoudi, L. (2019). Al-Kāshı̄’ās Miftā h. al-Hisab, Volume I: Arithmetic. Birkhäuser, Cham: Springer Nature.

    Book  Google Scholar 

  • Bailey, D. H., & Borwein, J. M. (2016). Pi: The next generation: A sourcebook on the recent history of Pi and its computation. Cham: Springer.

    MATH  Google Scholar 

  • Battin, R. H. (1999). An introduction to the mathematics and methods of astrodynamics. Reston, VA: American Institute of Aeronautics and Astronautics.

    MATH  Google Scholar 

  • Beckmann, P. (1971). A history ofπ(PI). New York: St. Martin’s Press.

    MATH  Google Scholar 

  • Ben-Dov, J., Horowitz, W., & Steele, J. M. (2012). Living the lunar calendar. Oxford, UK: Oxbow Books.

    Book  Google Scholar 

  • Borwein, J. M., & Bailey, D. (2008). Mathematics by experiment, plausible reasoning in the 21st century. New York: CRC Press.

    Book  Google Scholar 

  • Borwein, J. M., & Borwein, P. B. (1987). Pi and the AGM. New York: Wiley.

    MATH  Google Scholar 

  • Clawson, C. C. (1996). Mathematieal mysterles: The beauty and magie of numbers. New York: Springer.

    Book  Google Scholar 

  • Dershowitz, N., & Reingold, E. M. (2008). Calendrical calculations (3rd ed.). New York, USA: Cambridge University Press.

    MATH  Google Scholar 

  • Euler, L. (1988). Introduction to analysis of the infinite. New York: Springer. Euler’s work to 1800, Book I, Translated by J. D. Blanton.

    Google Scholar 

  • Feeney, D. (2007). Caesar’s calendar: Ancient time and the beginnings of history. Los Angeles, CA: University of California Press.

    Google Scholar 

  • Gray, L. H. (1907). On certain Persian and Armenian month-names as influenced by the Avesta calendar. Journal of the American Oriental Society, 28, 331–344.

    Article  Google Scholar 

  • Hannah, R. (2005). Greek and Roman calendars, constructions of time in the classical world. London, UK: Gerald Duckworth & Co. Ltd.

    Google Scholar 

  • Hardy, G. H., & Wright, E. M. (2008). An introduction to the theory of numbers (6th ed.). London, UK: Oxford University Press.

    MATH  Google Scholar 

  • Herz-Fischler, R. (1987). A mathematical history of the golden number. Mineola, NY: Dover.

    Google Scholar 

  • Idem. (1965). The Iranian calendar, in Zoroastrian studies (2nd ed., pp. 124–131). New York: AMS Press.

    Google Scholar 

  • Jonathan, M. B., & Chapman, S. T. (2015). I prefer Pi: A brief history and anthology of articles in the American mathematical monthly. The American Mathematical Monthly, 122(3), 195–216.

    Article  MathSciNet  Google Scholar 

  • Khinchin, A. Y. (1997). Continued fractions. New York: Dover.

    MATH  Google Scholar 

  • Khrushchev, S. (2008). Orthogonal polynomials and continued fractions. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Kline, M. (1972). Mathematical thought from ancient to modern times (Vol. 1). New York: Oxford University Press.

    MATH  Google Scholar 

  • Lorentzen, L., & Waadeland, H. (2008). Numerical computation of continued fractions. In Continued fractions. Atlantis studies in mathematics for engineering and science (Vol. 1). Atlantis Press.

    Google Scholar 

  • Lyusternik, L. A., & Yanupolskii, A. R. (1965). Mathematical analysis, functions, series, and continued functions. London, UK: Pergamon Press. Translated by D. E. Brwn.

    Google Scholar 

  • Merzbach, U. C., & Boyer, C. B. (2011). A history of mathematics (3rd ed.). Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Morony, M. (2012). ARAB II. Arab conquest of Iran. In Encyclopaedia Iranica (Vol. II, pp. 203–210).

    Google Scholar 

  • Müller, J. H. (1920). On the application of continued fractions to the evaluation of certain integrals, with special reference to the incomplete Beta function. Biometrika, 22, 284–297.

    Article  Google Scholar 

  • Olds, C. D. (1963). Continued fractions. New York: Random House.

    Book  Google Scholar 

  • Pacioli, L. (1509). De divina proportione (On the Divine Proportion), Venice: Alessandro and Paganino de’ Paganini, Republic of Venice.

    Google Scholar 

  • Panaino, A., Abdollahy, R., & Balland, D. (1990). Calendars. Encyclopaedia Iranica (Vol. IV, pp. 658–677), Fasc. 6–7.

    Google Scholar 

  • Philip, A. (1921). The calendar, its history, structure and improvement. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Pringsheim, A. I. (1898). Ueber die ersten Beweise der Irrationalität von e und π. Sitzungsberichte der Bayerischen Akademie der Wissenschaften Mathematisch-Physikalische Klasse, 28, 325–337.

    MATH  Google Scholar 

  • Rogers, L. J. (1893). On the expansion of some infinite products. Proceedings of the London Mathematical Society, 24, 337–352.

    Google Scholar 

  • Saha, M. N., & Lahiri, N. C. (1955). History of the calendar in different countries through the ages. New Delhi: Council of Scientific & Industrial Research.

    Google Scholar 

  • Shidlovskii, A. B. (1989). Transcendental numbers. New York: Walter de Gruyter.

    Book  Google Scholar 

  • Silverman, J. H. (2011). A friendly introduction to number theory (4th ed.). London, UK: Pearson Education.

    Google Scholar 

  • Stolz, O. (1885). Vorlesungen über allgemeine Arithmetik: nach den Neueren Ansichten (pp. 173–175). Leipzig: Teubners.

    Google Scholar 

  • Tabak, J. (2004). Numbers: Computers, philosophers, and the search for meaning. New York: Facts On File.

    Google Scholar 

  • Yanpolskii, L. A., & Lyusternik, A. R. (1965). Mathematical analysis. New York: Pergamon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

N. Jazar, R. (2020). Numerical Continued Fractions. In: Approximation Methods in Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-0480-9_3

Download citation

Publish with us

Policies and ethics