Skip to main content

The Polyploid Origin of Maize

  • Chapter

Maize has exhibited a remarkable level of genetic variation leading to the assumption that continuous breeding of a rich repertoire of haplotypes facilitated its success as a major crop worldwide. Now, with genomic sequences of two close relatives, rice and sorghum, and a gene-dense physical map of maize chromosomes at hand, we can use DNA sequence alignments to further our understanding of the molecular basis of its genetic variability and the origin of its chromosomes. There are two striking features emerging from such studies, one is polyploidy, the other is recent chromosome expansion and contraction. Based on synteny, collinear arrangement of chromosomal segments, rice and sorghum match maize at a ratio of 1:2, which is typical for a whole-genome duplication event. Because meiosis offers a strong selection against polyploidy, different pathways have evolved to stabilize chromosome structure. It appears that, in case of maize, polyploidy has triggered chromosome breakage and fusion events reshaping today's maize chromosomes relative to its predecessors. Diploidization, a process to transition a genome from polyploid to diploid status, seems to have benefited from the uneven expansion of maize chromosomes by retrotransposition, thereby preventing pairing of homoeologous chromosomal segments during meiosis. In addition, loss of orthologous gene copies was followed by “copy and paste” of paralogous gene copies enhancing non-collinearity in syntenic regions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, S., and Tanksley, S.D. (1993). Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90, 7980–7984.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, E., and Cutler, H.C. (1942). Races of Zea Mays: I. Their Recognition and Classification. Annals of the Missouri Botanical Garden 29, 69–88.

    Google Scholar 

  • Arabidopsis-Genome-Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  • Bennett, M.D., and Leitch, I.J. (2005). Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot (Lond) 95, 45–90.

    Article  CAS  Google Scholar 

  • Clausius, R. (1868). On the Mechanical Theory of Heat. Philos Mag 40, 122.

    Google Scholar 

  • Du, C., Swigonova, Z., and Messing, J. (2006). Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 6, 62.

    Article  PubMed  CAS  Google Scholar 

  • Falkow, S. (2004). Molecular Koch's postulates applied to bacterial pathogenicity—a personal recollection 15 Years later. Nat Rev Microbiol 2, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Gaut, B.S., and Doebley, J.F. (1997). DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci U S A 94, 6809–6814.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M.M., and Brown, W.L. (1988). Races of corn. In Corn and corn improvement, G.F. Sprague and J.W. Dudley, eds (Madison: Amer. Soc. Agron), pp. pp. 33–79.

    Google Scholar 

  • Goodman, M.M., Stuber, C.W., Newton, K., and Weissinger, H.H. (1980). Linkage Relationships of 19 Enzyme Loci in Maize. Genetics 96, 697–710.

    PubMed  CAS  Google Scholar 

  • Gregory, T.R. (2005). The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot (Lond) 95, 133–146.

    Article  CAS  Google Scholar 

  • Griffiths, S., Sharp, R., Foote, T.N., Bertin, I., Wanous, M., Reader, S., Colas, I., and Moore, G. (2006). Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439, 749–752.

    Article  PubMed  CAS  Google Scholar 

  • Guo, M., and Birchler, J.A. (1994). Trans-Acting Dosage Effects on the Expression of Model Gene Systems in Maize Aneuploids. Science 1999–2002.

    Google Scholar 

  • Haberer, G., Young, S., Bharti, A.K., Gundlach, H., Raymond, C., Fuks, G., Butler, E., Wing, R.A., Rounsley, S., Birren, B., Nusbaum, C., Mayer, K.F., and Messing, J. (2005). Structure and architecture of the maize genome. Plant Physiol 139, 1612–1624.

    Article  PubMed  CAS  Google Scholar 

  • Heidecker, G., and Messing, J. (1986). Structural Analysis of Plant Genes. Annual Review of Plant Physiology 37, 439–466.

    Article  CAS  Google Scholar 

  • Helentjaris, T., Weber, D., and Wright, S. (1988). Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphism. Genetics 118, 353–363.

    PubMed  CAS  Google Scholar 

  • International-Rice-Genome-Sequencing-Project. (2005). The map-based sequence of the rice genome. Nature 436, 793–800.

    Article  Google Scholar 

  • Jaenicke-Despres, V., Buckler, E.S., Smith, B.D., Gilbert, M.T., Cooper, A., Doebley, J., and Paabo, S. (2003). Early allelic selection in maize as revealed by ancient DNA. Science 302, 1206–1208.

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov, V.V., and Jurka, J. (2001). Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A 98, 8714–8719.

    Article  PubMed  CAS  Google Scholar 

  • Kashkush, K., Feldman, M., and Levy, A.A. (2003). Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33, 102–106.

    Article  PubMed  CAS  Google Scholar 

  • Kellis, M., Birren, B.W., and Lander, E.S. (2004). Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H., San Miguel, P., Nelson, W., Collura, K., Wissotski, M., Walling, J.G., Kim, J.P., Jackson, S.A., Soderlund, C., and Wing, R.A. (2007). Comparative physical mapping between Oryza sativa (AA genome type) and O. punctata (BB genome type). Genetics 176, 379–390.

    Article  PubMed  CAS  Google Scholar 

  • Lai, J., Ma, J., Swigonova, Z., Ramakrishna, W., Linton, E., Llaca, V., Tanyolac, B., Park, Y.J., Jeong, O.Y., Bennetzen, J.L., and Messing, J. (2004). Gene loss and movement in the maize genome. Genome Res 14, 1924–1931.

    Article  PubMed  CAS  Google Scholar 

  • Liu, B., Brubaker, C.L., Mergeai, G., Cronn, R.C., and Wendel, J.F. (2001). Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44, 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Matzke M.A., and Birchler, J.A. (2005). RNAi-mediated pathways in the nucleus. Nat Rev Genet 6, 24 35.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. (1930). A cytological demonstration of the location of an interchange between two non-homologous chromosomes of Zea mays. Proc Natl Acad Sci U S A 16, 791–796.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B. (1984). The significance of responses of the genome to challenge. Science 226, 792–801.

    Article  PubMed  CAS  Google Scholar 

  • Messing, J., Bharti, A.K., Karlowski, W.M., Gundlach, H., Kim, H.R., Yu, Y., Wei, F., Fuks, G., Soderlund, C.A., Mayer, K.F., and Wing, R.A. (2004). Sequence composition and genome organization of maize. Proc Natl Acad Sci U S A 101, 14349–14354.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, B.C., Tingey, S.V., and Morgante, M. (2001). Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11, 1660–1676.

    Article  PubMed  CAS  Google Scholar 

  • Molina, M.d.C., and Naranjo, C.A. (1987). Cytogenetic studies in the genus Zea. TAG Theoretical and Applied Genetics 73, 542–550.

    Article  Google Scholar 

  • Moore, G., Devos, K., Wang, Z., and Gale, M.D. (1995). Grasses, line up and form a circle. Curr Biol 5, 737–739.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, W.M., Bharti, A.K., Butler, E., Wei, F., Fuks, G., Kim, H.-R., Wing, R.A., Messing, J., and Soderlund, C. (2005). Whole-Genome Validation of High-Information-Content Fingerprinting. Plant Physiol. 139, 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Rice-Chromosomes-11-and-12-Sequencing-Consortia. (2005). The sequence of rice chromosomes 11 and 12 rich in disease resistance genes and recent gene duplications. BMC Biol 3, 20.

    Article  Google Scholar 

  • Roman, H. (1947). Mitotic Nondisjunction in the Case of Interchanges Involving the B-Type Chromosome in Maize. Genetics 32, 391–409.

    PubMed  CAS  Google Scholar 

  • Sanmiguel, P., and Bennetzen, J.L. (1998). Evidence that a Recent Increase in Maize Genome Size was Caused by the Massive Amplification of Intergene Retrotransposons. Annals of Botany 82, 37.

    Article  CAS  Google Scholar 

  • SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y., and Bennetzen, J.L. (1998). The paleontology of intergene retrotransposons of maize. Nat Genet 20, 43–45.

    Article  PubMed  CAS  Google Scholar 

  • Song, R., and Messing, J. (2002). Contiguous genomic DNA sequence comprising the 19-kD zein gene family from maize. Plant Physiol 130, 1626–1635.

    Article  PubMed  CAS  Google Scholar 

  • Song, R., and Messing, J. (2003). Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A 100, 9055–9060.

    Article  PubMed  CAS  Google Scholar 

  • Song, R., Llaca, V., and Messing, J. (2002). Mosaic organization of orthologous sequences in grass genomes. Genome Res 12, 1549–1555.

    Article  PubMed  CAS  Google Scholar 

  • Song, R., Llaca, V., Linton, E., and Messing, J. (2001). Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family. Genome Res 11, 1817–1825.

    PubMed  CAS  Google Scholar 

  • Swigonova, Z., Bennetzen, J.L., and Messing, J. (2005). Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169, 891–906.

    Article  PubMed  CAS  Google Scholar 

  • Swigonova, Z., Lai, J., Ma, J., Ramakrishna, W., Llaca, V., Bennetzen, J.L., and Messing, J. (2004). Close split of sorghum and maize genome progenitors. Genome Res 14, 1916–1923.

    Article  PubMed  CAS  Google Scholar 

  • Thuriaux, P. (1977). Is recombination confined to structural genes on the eukaryotic genome? Nature 268, 460–462.

    Article  PubMed  CAS  Google Scholar 

  • Wei, F., Coe, E., Nelson, W., Bharti, A.K., Engler, F., Butler, E., Kim, H., Goicoechea, J.L., Chen, M., Lee, S., Fuks, G., Sanchez-Villeda, H., Schroeder, S., Fang, Z., McMullen, M., Davis, G., Bowers, J.E., Paterson, A.H., Schaeffer, M., Gardiner, J., Cone, K., Messing, J., Soderlund, C., and Wing, R.A. (2007). Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History. PLoS Genet 3, e123.

    Google Scholar 

  • Wendel, J.F., Stuber, C.W., Edwards, M.D., and Goodman, M.M. (1986). Duplicated chromosomal segments in Zea mays L.: Further evidence from Hexokinase isozymes. Theor Appl Genet 72, 178–185.

    Article  CAS  Google Scholar 

  • Whitkus, R., Doebley, J., and Lee, M. (1992). Comparative genome mapping of Sorghum and maize. Genetics 132, 1119–1130.

    PubMed  CAS  Google Scholar 

  • Wilson, C.M., Spraque, G.F., and Nelsen, T.C. (1989). Linkages among zein genes determined by isoelectric focusing. Theor. Appl. Genet. 77, 217–226.

    Article  CAS  Google Scholar 

  • Wolfe, K.H. (2001). Yesterday's polyploids and the mystery of diploidization. Nat Rev Genet 2, 333–341.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J.H., and Messing, J. (2006). Maize haplotype with a helitron-amplified cytidine deaminase gene copy. BMC Genet 7, 52.

    Article  PubMed  Google Scholar 

  • Xu, J.H., and Messing, J. (2008). Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species. Proc Natl Acad Sci U S A 105, 14330–14335.

    Article  PubMed  CAS  Google Scholar 

  • Zupan, J., Muth, T.R., Draper, O., and Zambryski, P. (2000). The transfer of DNA from agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23, 11–28.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Messing, J. (2009). The Polyploid Origin of Maize. In: Bennetzen, J.L., Hake, S. (eds) Handbook of Maize. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77863-1_11

Download citation

Publish with us

Policies and ethics