Skip to main content

Applications of Reactive Cysteine Profiling

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 420))

Abstract

Cysteine thiols are involved in a diverse set of biological transformations, including nucleophilic and redox catalysis, metal coordination and formation of both dynamic and structural disulfides. Often posttranslationally modified, cysteines are also frequently alkylated by electrophilic compounds, including electrophilic metabolites, drugs, and natural products, and are attractive sites for covalent probe and drug development. Quantitative proteomics combined with activity-based protein profiling has been applied to annotate cysteine reactivity, susceptibility to posttranslational modifications, and accessibility to chemical probes, uncovering thousands of functional and small-molecule targetable cysteines across a diverse set of proteins, proteome-wide in an unbiased manner. Reactive cysteines have been targeted by high-throughput screening and fragment-based ligand discovery efforts. New cysteine-reactive electrophiles and compound libraries have been synthesized to enable inhibitor discovery broadly and to minimize nonspecific toxicity and off-target activity of compounds. With the recent blockbuster success of several covalent inhibitors, and the development of new chemical proteomic strategies to broadly identify reactive, ligandable and posttranslationally modified cysteines, cysteine profiling is poised to enable the development of new potent and selective chemical probes and even, in some cases, new drugs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abegg D, Frei R, Cerato L, Prasad Hari D, Wang C, Waser J, Adibekian A (2015) Proteome-wide profiling of targets of cysteine reactive small molecules by using ethynyl benziodoxolone reagents. Angew Chem Int Ed Engl 54(37):10852–10857

    Article  CAS  PubMed  Google Scholar 

  • Abegg D, Gasparini G, Hoch DG, Shuster A, Bartolami E, Matile S, Adibekian A (2017) Strained cyclic disulfides enable cellular uptake by reacting with the transferrin receptor. J Am Chem Soc 139(1):231–238

    Article  CAS  PubMed  Google Scholar 

  • Abo M, Weerapana E (2015) A caged electrophilic probe for global analysis of cysteine reactivity in living cells. J Am Chem Soc 137(22):7087–7090

    Article  CAS  PubMed  Google Scholar 

  • Abo M, Bak DW, Weerapana E (2017a) Optimization of caged electrophiles for improved monitoring of cysteine reactivity in living cells. ChemBioChem 18(1):81–84

    Article  CAS  PubMed  Google Scholar 

  • Abo M, Li C, Weerapana E (2017) Isotopically-labeled iodoacetamide-alkyne probes for quantitative cysteine-reactivity profiling. Mol Pharm

    Google Scholar 

  • Alcock LJ, Farrell KD, Akol MT, Jones GH, Tierney MM, Kramer HB, Pukala TL, Bernardes GJL, Perkins MV, Chalker JM (2018) Norbornene probes for the study of cysteine oxidation. Tetrahedron 74(12):1220–1228

    Article  CAS  Google Scholar 

  • Andersson A, Hutlberg B, Lindgren A (2000) Redox status of plasma homocysteine and other plasma thiols in stroke patients. Atherosclerosis 151(2):535–539

    Article  CAS  PubMed  Google Scholar 

  • Ansbacher T, Chourasia M, Shurki A (2013) Copper-chaperones with dicoordinated Cu(I)–unique protection mechanism. Proteins 81(8):1411–1419

    Article  CAS  PubMed  Google Scholar 

  • Bachovchin DA, Brown SJ, Rosen H, Cravatt BF (2009) Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat Biotechnol 27(4):387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backus KM, Correia BE, Lum KM, Forli S, Horning BD, Gonzalez-Paez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson AJ, Wolan DW, Cravatt BF (2016) Proteome-wide covalent ligand discovery in native biological systems. Nature 534(7608):570–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak DW, Weerapana E (2015) Cysteine-mediated redox signalling in the mitochondria. Mol BioSyst 11(3):678–697

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Pace NJ, Brown DR, Weerapana E (2013) 1,3,5-Triazine as a modular scaffold for covalent inhibitors with streamlined target identification. J Am Chem Soc 135(7):2497–2500

    Article  CAS  PubMed  Google Scholar 

  • Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404(4):939–965

    Article  CAS  PubMed  Google Scholar 

  • Barglow KT, Cravatt BF (2006) Substrate mimicry in an activity-based probe that targets the nitrilase family of enzymes. Angew Chem Int Ed Engl 45(44):7408–7411

    Article  CAS  PubMed  Google Scholar 

  • Bar-Peled L, Kemper EK, Suciu RM, Vinogradova EV, Backus KM, Horning BD, Paul TA, Ichu TA, Svensson RU, Olucha J, Chang MW, Kok BP, Zhu Z, Ihle NT, Dix MM, Jiang P, Hayward MM, Saez E, Shaw RJ, Cravatt BF (2017) Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171(3):696–709 e623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrett AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamai M, Hanada K (1982) L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 201(1):189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu D, Richters A, Rauh D (2015) Structure-based design and synthesis of covalent-reversible inhibitors to overcome drug resistance in EGFR. Bioorg Med Chem 23(12):2767–2780

    Article  CAS  PubMed  Google Scholar 

  • Bateman LA, Zaro BW, Miller SM, Pratt MR (2013) An alkyne-aspirin chemical reporter for the detection of aspirin-dependent protein modification in living cells. J Am Chem Soc 135(39):14568–14573

    Article  CAS  PubMed  Google Scholar 

  • Bateman LA, Nguyen TB, Roberts AM, Miyamoto DK, Ku WM, Huffman TR, Petri Y, Heslin MJ, Contreras CM, Skibola CF, Olzmann JA, Nomura DK (2017) Chemoproteomics-enabled covalent ligand screen reveals a cysteine hotspot in reticulon 4 that impairs ER morphology and cancer pathogenicity. Chem Commun (Camb) 53(53):7234–7237

    Article  CAS  Google Scholar 

  • Baty JW, Hampton MB, Winterbourn CC (2002) Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis. Proteomics 2(9):1261–1266

    Article  CAS  PubMed  Google Scholar 

  • Bauer RA (2015) Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov Today 20(9):1061–1073

    Article  CAS  PubMed  Google Scholar 

  • Bechtold E, Reisz JA, Klomsiri C, Tsang AW, Wright MW, Poole LB, Furdui CM, King SB (2010) Water-soluble triarylphosphines as biomarkers for protein S-nitrosation. ACS Chem Biol 5(4):405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez LV, Allison WS (1974) The inactivation of the acyl phosphatase activity catalyzed by the sulfenic acid form of glyceraldehyde 3-phosphate dehydrogenase by dimedone and olefins. J Biol Chem 249(19):6234–6243

    Article  CAS  PubMed  Google Scholar 

  • Berg JM (1990) Zinc finger domains: hypotheses and current knowledge. Annu Rev Biophys Biophys Chem 19:405–421

    Article  CAS  PubMed  Google Scholar 

  • Bernardim B, Cal PMSD, Matos MJ, Oliveira BL, Martínez-Sáez N, Albuquerque IS, Perkins E, Corzana F, Burtoloso ACB, Jiménez-Osés G, Bernardes GJL (2016) Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nat Commun 7:13128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besancon M, Simon A, Sachs G, Shin JM (1997) Sites of reaction of the gastric H, K-ATPase with extracytoplasmic thiol reagents. J Biol Chem 272(36):22438–22446

    Article  CAS  PubMed  Google Scholar 

  • Bianco G, Forli S, Goodsell DS, Olson AJ (2016) Covalent docking using autodock: two-point attractor and flexible side chain methods. Protein Sci 25(1):295–301

    Article  CAS  PubMed  Google Scholar 

  • Blackinton J, Lakshminarasimhan M, Thomas KJ, Ahmad R, Greggio E, Raza AS, Cookson MR, Wilson MA (2009) Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. J Biol Chem 284(10):6476–6485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blewett M, Xie J, Zaro B, Backus KM, Olenchock BA, Patel H, Altman A, Teijaro JR, Cravatt BF (2016) Chemical proteomic map of dimethylfumarate-sensitive cysteine in primary human T cells. Sci Signal 9(445):rs10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3(10):668–677

    Article  CAS  PubMed  Google Scholar 

  • Böttcher T, Sieber SA (2010) Showdomycin as a versatile chemical tool for the detection of pathogenesis-associated enzymes in bacteria. J Am Chem Soc 132(20):6964–6972

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw JM, McFarland JM, Paavilainen VO, Bisconte A, Tam D, Phan VT, Romanov S, Finkle D, Shu J, Patel V, Ton T, Li X, Loughhead DG, Nunn PA, Karr DE, Gerritsen ME, Funk JO, Owens TD, Verner E, Brameld KA, Hill RJ, Goldstein DM, Taunton J (2015) Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat Chem Biol 11(7):525–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs KJ, Koivunen P, Cao S, Backus KM, Olenchock BA, Patel H, Zhang Q, Signoretti S, Gerfen GJ, Richardson AL, Witkiewicz AK, Cravatt BF, Clardy J, Kaelin WG Jr (2016) Paracrine induction of HIF by glutamate in breast cancer: EglN1 senses cysteine. Cell 166(1):126–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canet-Aviles RM, Wilson MA, Miller DW, Ahmad R, McLendon C, Bandyopadhyay S, Baptista MJ, Ringe D, Petsko GA, Cookson MR (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 101(24):9103–9108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso R, Love R, Nilsson CL, Bergqvist S, Nowlin D, Yan J, Liu KK, Zhu J, Chen P, Deng YL, Dyson HJ, Greig MJ, Brooun A (2012) Identification of Cys255 in HIF-1alpha as a novel site for development of covalent inhibitors of HIF-1alpha/ARNT PasB domain protein-protein interaction. Protein Sci 21(12):1885–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmi C, Lodola A, Rivara S, Vacondio F, Cavazzoni A, Alfieri RR, Ardizzoni A, Petronini PG, Mor M (2011) Epidermal growth factor receptor irreversible inhibitors: chemical exploration of the cysteine-trap portion. Mini Rev Med Chem 11(12):1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Carmi C, Mor M, Petronini PG, Alfieri RR (2012) Clinical perspectives for irreversible tyrosine kinase inhibitors in cancer. Biochem Pharmacol 84(11):1388–1399

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Dougherty WG (1988) A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc Natl Acad Sci U S A 85(10):3391–3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerda MM, Hammers MD, Earp MS, Zakharov LN, Pluth MD (2017) Applications of synthetic organic tetrasulfides as H2S Donors. Org Lett 19(9):2314–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalker JM, Gunnoo SB, Boutureira O, Gerstberger SC, Fernandez-Gonzalez M, Bernardes GJL, Griffin L, Hailu H, Schofield CJ, Davis BG (2011) Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci 2(9):1666–1676

    Article  CAS  Google Scholar 

  • Chalker JM, Lercher L, Rose NR, Schofield CJ, Davis BG (2012) Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications. Angew Chem Int Ed Engl 51(8):1835–1839

    Article  CAS  PubMed  Google Scholar 

  • Chan AI, McGregor LM, Jain T, Liu DR (2017) Discovery of a covalent kinase inhibitor from a DNA-encoded small-molecule library × protein library selection. J Am Chem Soc 139(30):10192–10195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468(7327):1115–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YC, Backus KM, Merkulova M, Yang C, Brown D, Cravatt BF, Zhang C (2017) Covalent modulators of the vacuolar ATPase. J Am Chem Soc 139(2):639–642

    Article  CAS  PubMed  Google Scholar 

  • Chung KK (2006) Say NO to neurodegeneration: role of S-nitrosylation in neurodegenerative disorders. Neurosignals 15(6):307–313

    Article  CAS  PubMed  Google Scholar 

  • Cohen MS, Zhang C, Shokat KM, Taunton J (2005) Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308(5726):1318–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen MS, Hadjivassiliou H, Taunton J (2007) A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat Chem Biol 3(3):156–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8(19):876–877

    Article  PubMed  Google Scholar 

  • Counihan JL, Duckering M, Dalvie E, Ku WM, Bateman LA, Fisher KJ, Nomura DK (2017) Chemoproteomic profiling of acetanilide herbicides reveals their role in inhibiting fatty acid oxidation. ACS Chem Biol 12(3):635–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couvertier SM, Weerapana E (2014) Cysteine-reactive chemical probes based on a modular 4-aminopiperidine scaffold. MedChemComm 5(3):358–362

    Article  CAS  Google Scholar 

  • Craven G, Affron D, Allen C, Matthies S, Greener J, Morgan R, Tate E, Armstrong A, Mann DJ (2018) High-throughput kinetic analysis for target-directed covalent ligand discovery. Angew Chem Int Ed Engl

    Google Scholar 

  • Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279(21):21749–21758

    Article  CAS  PubMed  Google Scholar 

  • Daguer JP, Zambaldo C, Abegg D, Barluenga S, Tallant C, Muller S, Adibekian A, Winssinger N (2015) Identification of covalent bromodomain binders through DNA display of small molecules. Angew Chem Int Ed Engl 54(20):6057–6061

    Article  CAS  PubMed  Google Scholar 

  • Dayon L, Hainard A, Licker V, Turck N, Kuhn K, Hochstrasser DF, Burkhard PR, Sanchez JC (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal Chem 80(8):2921–2931

    Article  CAS  PubMed  Google Scholar 

  • De Cesco S, Kurian J, Dufresne C, Mittermaier AK, Moitessier N (2017) Covalent inhibitors design and discovery. Eur J Med Chem 138:96–114

    Article  PubMed  CAS  Google Scholar 

  • Dennehy MK, Richards KA, Wernke GR, Shyr Y, Liebler DC (2006) Cytosolic and nuclear protein targets of thiol-reactive electrophiles. Chem Res Toxicol 19(1):20–29

    Article  CAS  PubMed  Google Scholar 

  • Dickens F (1933) Interaction of halogenacetates and SH compounds: the reaction of halogenacetic acids with glutathione and cysteine. the mechanism of iodoacetate poisoning of glyoxalase. Biochem J 27(4):1141–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon MB, Bachovchin DA, Brown SJ, Finn MG, Rosen H, Cravatt BF, Mowen KA (2012) Novel inhibitors for PRMT1 discovered by high-throughput screening using activity-based fluorescence polarization. ACS Chem Biol 7(7):1198–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Kim S, Dorsam RT, Jin J, Kunapuli SP (2003) Inactivation of the human P2Y12 receptor by thiol reagents requires interaction with both extracellular cysteine residues, Cys17 and Cys270. Blood 101(10):3908–3914

    Article  CAS  PubMed  Google Scholar 

  • Doerr A (2014) DIA mass spectrometry. Nat Methods 12:35

    Article  CAS  Google Scholar 

  • Drahl C, Cravatt BF, Sorensen EJ (2005) Protein-reactive natural products. Angew Chem Int Ed Engl 44(36):5788–5809

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Gaffrey MJ, Qian WJ (2017) Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Mol BioSyst 13(5):816–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyson HJ, Jeng MF, Tennant LL, Slaby I, Lindell M, Cui DS, Kuprin S, Holmgren A (1997) Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Biochemistry 36(9):2622–2636

    Article  CAS  PubMed  Google Scholar 

  • Eaton P (2006) Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic Biol Med 40(11):1889–1899

    Article  CAS  PubMed  Google Scholar 

  • Ekkebus R, van Kasteren SI, Kulathu Y, Scholten A, Berlin I, Geurink PP, de Jong A, Goerdayal S, Neefjes J, Heck AJ, Komander D, Ovaa H (2013) On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J Am Chem Soc 135(8):2867–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis HR, Poole LB (1997) Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36(48):15013–15018

    Article  CAS  PubMed  Google Scholar 

  • Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989

    Article  CAS  PubMed  Google Scholar 

  • Eom KS, Cheong JS, Lee SJ (2016) Structural analyses of zinc finger domains for specific interactions with DNA. J Microbiol Biotechnol 26(12):2019–2029

    Article  CAS  PubMed  Google Scholar 

  • Erlanson DA, Hansen SK (2004) Making drugs on proteins: site-directed ligand discovery for fragment-based lead assembly. Curr Opin Chem Biol 8(4):399–406

    Article  CAS  PubMed  Google Scholar 

  • Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA (2000a) Site-directed ligand discovery. Proc Natl Acad Sci 97(17):9367–9372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA (2000b) Site-directed ligand discovery. Proc Natl Acad Sci U S A 97(17):9367–9372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erlanson DA, Wells JA, Braisted AC (2004) TETHERING: fragment-based drug discovery. Annu Rev Biophys Biomol Struct 33(1):199–223

    Article  CAS  PubMed  Google Scholar 

  • Eschenburg S, Priestman M, Schönbrunn E (2005) Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem 280(5):3757–3763

    Article  CAS  PubMed  Google Scholar 

  • Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA (2004) Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Morris GM, Wu J, Olson AJ, Sorensen EJ, Cravatt BF (2007) Mechanistic and structural requirements for active site labeling of phosphoglycerate mutase by spiroepoxides. Mol BioSyst 3(7):495–506

    Article  CAS  PubMed  Google Scholar 

  • Flanagan ME, Abramite JA, Anderson DP, Aulabaugh A, Dahal UP, Gilbert AM, Li C, Montgomery J, Oppenheimer SR, Ryder T, Schuff BP, Uccello DP, Walker GS, Wu Y, Brown MF, Chen JM, Hayward MM, Noe MC, Obach RS, Philippe L, Shanmugasundaram V, Shapiro MJ, Starr J, Stroh J, Che Y (2014) Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors. J Med Chem 57(23):10072–10079

    Article  CAS  PubMed  Google Scholar 

  • Foloppe N (2011) The benefits of constructing leads from fragment hits. Future Med Chem 3(9):1111–1115

    Article  CAS  PubMed  Google Scholar 

  • Ford B, Bateman LA, Gutierrez-Palominos L, Park R, Nomura DK (2017) Mapping proteome-wide targets of glyphosate in mice. Cell Chem Biol 24(2):133–140

    Article  CAS  PubMed  Google Scholar 

  • Forrester MT, Thompson JW, Foster MW, Nogueira L, Moseley MA, Stamler JS (2009) Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat Biotechnol 27(6):557–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox JH, Connor T, Stiles M, Kama J, Lu Z, Dorsey K, Lieberman G, Sapp E, Cherny RA, Banks M, Volitakis I, DiFiglia M, Berezovska O, Bush AI, Hersch SM (2011) Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. J Biol Chem 286(20):18320–18330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frei R, Wodrich MD, Hari DP, Borin PA, Chauvier C, Waser J (2014) Fast and highly chemoselective alkynylation of thiols with hypervalent iodine reagents enabled through a low energy barrier concerted mechanism. J Am Chem Soc 136(47):16563–16573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan ZR, Wells WW (1987) Identification and reactivity of the catalytic site of pig liver thioltransferase. J Biol Chem 262(14):6704–6707

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Mfuh A, Amako Y, Woo CM (2018) Small molecule interactome mapping by photoaffinity labeling reveals binding site hotspots for the NSAIDs. J Am Chem Soc 140(12):4259–4268

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pineres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, Pahl HL, Merfort I (2001) Cysteine 38 in p65/NF-kappaB plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J Biol Chem 276(43):39713–39720

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Santamarina S, Boronat S, Domenech A, Ayte J, Molina H, Hidalgo E (2014) Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry. Nat Protoc 9(5):1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Garske AL, Peters U, Cortesi AT, Perez JL, Shokat KM (2011) Chemical genetic strategy for targeting protein kinases based on covalent complementarity. Proc Natl Acad Sci U S A 108(37):15046–15052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gartner CA, Elias JE, Bakalarski CE, Gygi SP (2007) Catch-and-release reagents for broadscale quantitative proteomics analyses. J Proteome Res 6(4):1482–1491

    Article  CAS  PubMed  Google Scholar 

  • Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong LT, Falgueyret JP, Kimmel DB, Lamontagne S, Leger S, LeRiche T, Li CS, Masse F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Therien M, Truong VL, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC (2008) The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 18(3):923–928

    Article  CAS  PubMed  Google Scholar 

  • Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9(6):1683–1695

    Article  CAS  PubMed  Google Scholar 

  • Gersch M, Kreuzer J, Sieber SA (2012) Electrophilic natural products and their biological targets. Nat Prod Rep 29(6):659–682

    Article  CAS  PubMed  Google Scholar 

  • Giles GI, Jacob C (2002) Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 383(3–4):375–388

    CAS  PubMed  Google Scholar 

  • Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111 016717

    Article  CAS  Google Scholar 

  • Go Y-M, Chandler JD, Jones DP (2015) The cysteine proteome. Free Radic Biol Med 84:227–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorelenkova Miller O, Cole KS, Emerson CC, Allimuthu D, Golczak M, Stewart PL, Weerapana E, Adams DJ, Mieyal JJ (2017) Novel chloroacetamido compound CWR-J02 is an anti-inflammatory glutaredoxin-1 inhibitor. PLoS ONE 12(11):e0187991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grauschopf U, Winther JR, Korber P, Zander T, Dallinger P, Bardwell JC (1995) Why is DsbA such an oxidizing disulfide catalyst? Cell 83(6):947–955

    Article  CAS  PubMed  Google Scholar 

  • Green NM (1990) Avidin and streptavidin. Meth Enzymol 184:51–67

    Article  CAS  Google Scholar 

  • Grossman EA, Ward CC, Spradlin JN, Bateman LA, Huffman TR, Miyamoto DK, Kleinman JI, Nomura DK (2017) Covalent ligand discovery against druggable hotspots targeted by anti-cancer natural products. Cell Chem Biol 24(11):1368–1376 e1364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo CJ, Chang FY, Wyche TP, Backus KM, Acker TM, Funabashi M, Taketani M, Donia MS, Nayfach S, Pollard KS, Craik CS, Cravatt BF, Clardy J, Voigt CA, Fischbach MA (2017) Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168(3):517–526 e518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta V, Carroll KS (2016) Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles. Chem Commun (Camb) 52(16):3414–3417

    Article  CAS  Google Scholar 

  • Gupta V, Yang J, Liebler DC, Carroll KS (2017) Diverse redoxome reactivity profiles of carbon nucleophiles. J Am Chem Soc 139(15):5588–5595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  PubMed  Google Scholar 

  • Hacker SM, Backus KM, Lazear MR, Forli S, Correia BE, Cravatt BF (2017) Global profiling of lysine reactivity and ligandability in the human proteome. Nat Chem 9(12):1181–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn Y-I, Kim S-J, Choi B-Y, Cho K-C, Bandu R, Kim KP, Kim D-H, Kim W, Park JS, Han BW, Lee J, Na H-K, Cha Y-N, Surh Y-J (2018) Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci Rep 8(1):6409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han J, Adman ET, Beppu T, Codd R, Freeman HC, Huq LL, Loehr TM, Sanders-Loehr J (1991) Resonance Raman spectra of plastocyanin and pseudoazurin: evidence for conserved cysteine ligand conformations in cupredoxins (blue copper proteins). Biochemistry 30(45):10904–10913

    Article  CAS  PubMed  Google Scholar 

  • Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, Burlingame AL (2003) Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol Cell Proteomics 2(5):299–314

    Article  CAS  PubMed  Google Scholar 

  • Hansen RE, Ostergaard H, Winther JR (2005) Increasing the reactivity of an artificial dithiol-disulfide pair through modification of the electrostatic milieu. Biochemistry 44(15):5899–5906

    Article  CAS  PubMed  Google Scholar 

  • Hao G, Derakhshan B, Shi L, Campagne F, Gross SS (2006) SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc Natl Acad Sci U S A 103(4):1012–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 11(11):2807–2850

    Article  CAS  PubMed  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166

    Article  CAS  PubMed  Google Scholar 

  • Hing ZA, Fung HY, Ranganathan P, Mitchell S, El-Gamal D, Woyach JA, Williams K, Goettl VM, Smith J, Yu X, Meng X, Sun Q, Cagatay T, Lehman AM, Lucas DM, Baloglu E, Shacham S, Kauffman MG, Byrd JC, Chook YM, Garzon R, Lapalombella R (2016) Next-generation XPO1 inhibitor shows improved efficacy and in vivo tolerability in hematological malignancies. Leukemia 30(12):2364–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman S, Nolin J, McMillan D, Wouters E, Janssen-Heininger Y, Reynaert N (2015) Thiol redox chemistry: role of protein cysteine oxidation and altered redox homeostasis in allergic inflammation and asthma. J Cell Biochem 116(6):884–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffstrom BG, Kaplan A, Letso R, Schmid RS, Turmel GJ, Lo DC, Stockwell BR (2010) Inhibitors of protein disulfide isomerase suppress apoptosis induced by misfolded proteins. Nat Chem Biol 6(12):900–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421

    Article  CAS  PubMed  Google Scholar 

  • Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75(24):6843–6852

    Article  CAS  PubMed  Google Scholar 

  • Iqbalsyah TM, Moutevelis E, Warwicker J, Errington N, Doig AJ (2006) The CXXC motif at the N terminus of an alpha-helical peptide. Protein Sci 15(8):1945–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobi A, Huber-Wunderlich M, Hennecke J, Glockshuber R (1997) Elimination of all charged residues in the vicinity of the active-site helix of the disulfide oxidoreductase DsbA. Influence of electrostatic interactions on stability and redox properties. J Biol Chem 272(35):21692–21699

    Article  CAS  PubMed  Google Scholar 

  • Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, Chen Y, Babbar A, Firdaus SJ, Darjania L, Feng J, Chen JH, Li S, Li S, Long YO, Thach C, Liu Y, Zarieh A, Ely T, Kucharski JM, Kessler LV, Wu T, Yu K, Wang Y, Yao Y, Deng X, Zarrinkar PP, Brehmer D, Dhanak D, Lorenzi MV, Hu-Lowe D, Patricelli MP, Ren P, Liu Y (2018) Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell 172(3):578–589 e517

    Article  PubMed  CAS  Google Scholar 

  • Jang BC, Munoz-Najar U, Paik JH, Claffey K, Yoshida M, Hla T (2003) Leptomycin B, an inhibitor of the nuclear export receptor CRM1, inhibits COX-2 expression. J Biol Chem 278(5):2773–2776

    Article  CAS  PubMed  Google Scholar 

  • Jeffery DA, Bogyo M (2003) Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol 14(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SC, Burke PJ, Lyon RP, Meyer DW, Sussman D, Anderson M, Hunter JH, Leiske CI, Miyamoto JB, Nicholas ND, Okeley NM, Sanderson RJ, Stone IJ, Zeng W, Gregson SJ, Masterson L, Tiberghien AC, Howard PW, Thurston DE, Law CL, Senter PD (2013) A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug Chem 24(7):1256–1263

    Article  CAS  PubMed  Google Scholar 

  • Jhoti H, Williams G, Rees DC, Murray CW (2013) The ‘rule of three’ for fragment-based drug discovery: where are we now? Nat Rev Drug Discov 12(8):644–645

    Article  CAS  PubMed  Google Scholar 

  • Johnson DS, Weerapana E, Cravatt BF (2010) Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem 2(6):949–964

    Article  CAS  PubMed  Google Scholar 

  • Kallis GB, Holmgren A (1980) Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli. J Biol Chem 255(21):10261–10265

    Article  CAS  PubMed  Google Scholar 

  • Kathman SG, Statsyuk AV (2016) Covalent tethering of fragments for covalent probe discovery. Medchemcomm 7(4):576–585

    Article  CAS  PubMed  Google Scholar 

  • Kathman SG, Xu Z, Statsyuk AV (2014) A fragment-based method to discover irreversible covalent inhibitors of cysteine proteases. J Med Chem 57(11):4969–4974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Vihinen M (2007) Spectrum of disease-causing mutations in protein secondary structures. BMC Struct Biol 7(1):56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267(16):4928–4944

    Article  CAS  PubMed  Google Scholar 

  • Klomsiri C, Karplus PA, Poole LB (2011) Cysteine-based redox switches in enzymes. Antioxid Redox Signal 14(6):1065–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knuckley B, Causey CP, Jones JE, Bhatia M, Dreyton CJ, Osborne TC, Takahara H, Thompson PR (2010a) Substrate specificity and kinetic studies of PADs 1, 3, and 4 identify potent and selective inhibitors of protein arginine deiminase 3. Biochemistry 49(23):4852–4863

    Article  CAS  PubMed  Google Scholar 

  • Knuckley B, Jones JE, Bachovchin DA, Slack J, Causey CP, Brown SJ, Rosen H, Cravatt BF, Thompson PR (2010b) A fluopol-ABPP HTS assay to identify PAD inhibitors. Chem Commun (Camb) 46(38):7175–7177

    Article  CAS  Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021

    Article  CAS  PubMed  Google Scholar 

  • Kortemme T, Creighton TE (1995) Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J Mol Biol 253(5):799–812

    Article  CAS  PubMed  Google Scholar 

  • Kranz RG, Richard-Fogal C, Taylor J-S, Frawley ER (2009) Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev: MMBR 73(3):510–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan S, Miller RM, Tian B, Mullins RD, Jacobson MP, Taunton J (2014) Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J Am Chem Soc 136(36):12624–12630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krysiak JM, Kreuzer J, Macheroux P, Hermetter A, Sieber SA, Breinbauer R (2012) Activity-based probes for studying the activity of flavin-dependent oxidases and for the protein target profiling of monoamine oxidase inhibitors. Angew Chem Int Ed Engl 51(28):7035–7040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Zhou B, Liang F, Wang WQ, Huang Z, Zhang ZY (2004) Activity-based probes for protein tyrosine phosphatases. Proc Natl Acad Sci U S A 101(21):7943–7948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo YH, Konopko AM, Borotto NB, Majmudar JD, Haynes SE, Martin BR (2017) Profiling protein S-sulfination with maleimide-linked probes. ChemBioChem 18(20):2028–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanning BR, Whitby LR, Dix MM, Douhan J, Gilbert AM, Hett EC, Johnson TO, Joslyn C, Kath JC, Niessen S, Roberts LR, Schnute ME, Wang C, Hulce JJ, Wei B, Whiteley LO, Hayward MM, Cravatt BF (2014) A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat Chem Biol 10(9):760–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapalombella R, Sun Q, Williams K, Tangeman L, Jha S, Zhong Y, Goettl V, Mahoney E, Berglund C, Gupta S, Farmer A, Mani R, Johnson AJ, Lucas D, Mo X, Daelemans D, Sandanayaka V, Shechter S, McCauley D, Shacham S, Kauffman M, Chook YM, Byrd JC (2012) Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood 120(23):4621–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavergne SN, Park BK, Naisbitt DJ (2008) The roles of drug metabolism in the pathogenesis of T-cell-mediated drug hypersensitivity. Curr Opin Allergy Clin Immunol 8(4):299–307

    Article  CAS  PubMed  Google Scholar 

  • Lea WA, Simeonov A (2011) Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov 6(1):17–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105(24):8197–8202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin Y, Bahn S (2010) Quantification of proteins by label-free LC-MS/MS. Methods Mol Biol 658:217–231

    Article  CAS  PubMed  Google Scholar 

  • Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9(6):1696–1719

    Article  CAS  PubMed  Google Scholar 

  • Lin VS, Lippert AR, Chang CJ (2013) Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H2O2-dependent H2S production. Proc Natl Acad Sci U S A 110(18):7131–7135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin VS, Chen W, Xian M, Chang CJ (2015a) Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev 44(14):4596–4618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin VS, Lippert AR, Chang CJ (2015b) Azide-based fluorescent probes: imaging hydrogen sulfide in living systems. Methods Enzymol 554:63–80

    Article  CAS  PubMed  Google Scholar 

  • Lindemann C, Lupilova N, Muller A, Warscheid B, Meyer HE, Kuhlmann K, Eisenacher M, Leichert LI (2013) Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress. J Biol Chem 288(27):19698–19714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Link AJ, Hays LG, Carmack EB, Yates JR 3rd (1997) Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis 18(8):1314–1334

    Article  CAS  PubMed  Google Scholar 

  • Lippert AR (2014) Designing reaction-based fluorescent probes for selective hydrogen sulfide detection. J Inorg Biochem 133:136–142

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5(2):160–170

    Article  CAS  PubMed  Google Scholar 

  • Liu CT, Benkovic SJ (2013) Capturing a sulfenic acid with arylboronic acids and benzoxaborole. J Am Chem Soc 135(39):14544–14547

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Barrett JE, Schultz PG, Santi DV (1999) Tyrosine 146 of Thymidylate Synthase Assists Proton Abstraction from the 5-Position of 2′-Deoxyuridine 5′-Monophosphate. Biochemistry 38(2):848–852

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS (2013) Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol 20(2):146–159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95(12):6803–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Conte M, Carroll KS (2013) The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem 288(37):26480–26488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Conte M, Lin J, Wilson MA, Carroll KS (2015) A chemical approach for the detection of protein sulfinylation. ACS Chem Biol 10(8):1825–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • London N, Miller RM, Krishnan S, Uchida K, Irwin JJ, Eidam O, Gibold L, Cimermancic P, Bonnet R, Shoichet BK, Taunton J (2014) Covalent docking of large libraries for the discovery of chemical probes. Nat Chem Biol 10(12):1066–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowther WT, McMillen DA, Orville AM, Matthews BW (1998) The anti-angiogenic agent fumagillin covalently modifies a conserved active-site histidine in the <em> Escherichia coli </em> methionine aminopeptidase. Proc Natl Acad Sci 95(21):12153–12157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKintosh RW, Dalby KN, Campbell DG, Cohen PT, Cohen P, MacKintosh C (1995) The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett 371(3):236–240

    Article  CAS  PubMed  Google Scholar 

  • Majmudar JD, Konopko AM, Labby KJ, Tom CTMB, Crellin JE, Prakash A, Martin BR (2016) Harnessing redox cross-reactivity to profile distinct cysteine modifications. J Am Chem Soc 138(6):1852–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino SM, Gladyshev VN (2010) Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol 404(5):902–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maron BA, Tang SS, Loscalzo J (2013) S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antioxid Redox Signal 18(3):270–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martell J, Seo Y, Bak DW, Kingsley SF, Tissenbaum HA, Weerapana E (2016) Global cysteine-reactivity profiling during impaired insulin/IGF-1 signaling in C. elegans Identifies uncharacterized mediators of longevity. Cell Chem Biol 23(8):955–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O’Rourke B, Lowenstein JM, Pevsner J, Wagner DD, Lowenstein CJ (2003) Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115(2):139–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer A, Zeyher C, Amin B, Kalbacher H (2013) A periodate-cleavable linker for functional proteomics under slightly acidic conditions: application for the analysis of intracellular aspartic proteases. J Proteome Res 12(1):199–207

    Article  CAS  PubMed  Google Scholar 

  • McDonald WH, Yates JR 3rd (2002) Shotgun proteomics and biomarker discovery. Dis Markers 18(2):99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner T, Krause E, Vinkemeier U (2004) Ratjadone and leptomycin B block CRM1-dependent nuclear export by identical mechanisms. FEBS Lett 576(1–2):27–30

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Paavilainen VO, Krishnan S, Serafimova IM, Taunton J (2013) Electrophilic fragment-based design of reversible covalent kinase inhibitors. J Am Chem Soc 135(14):5298–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17(8):1232–1239

    Article  CAS  PubMed  Google Scholar 

  • Mittag S, Valenta T, Weiske J, Bloch L, Klingel S, Gradl D, Wetzel F, Chen Y, Petersen I, Basler K, Huber O (2016) A novel role for the tumour suppressor Nitrilase1 modulating the Wnt/β-catenin signalling pathway. Cell Discov 2:15039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller S, Chaikuad A, Gray NS, Knapp S (2015) The ins and outs of selective kinase inhibitor development. Nat Chem Biol 11(11):818–821

    Article  CAS  PubMed  Google Scholar 

  • Muth A, Subramanian V, Beaumont E, Nagar M, Kerry P, McEwan P, Srinath H, Clancy K, Parelkar S, Thompson PR (2017) Development of a selective inhibitor of protein arginine deiminase 2. J Med Chem 60(7):3198–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JW, Creighton TE (1994) Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33(19):5974–5983

    Article  CAS  PubMed  Google Scholar 

  • Nielsen ML, Vermeulen M, Bonaldi T, Cox J, Moroder L, Mann M (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5(6):459–460

    Article  CAS  PubMed  Google Scholar 

  • Niessen S, Dix MM, Barbas S, Potter ZE, Lu S, Brodsky O, Planken S, Behenna D, Almaden C, Gajiwala KS, Ryan K, Ferre R, Lazear MR, Hayward MM, Kath JC, Cravatt BF (2017) Proteome-wide map of targets of T790M-EGFR-directed covalent inhibitors. Cell Chem Biol 24(11):1388–1400 e1387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nonoo RH, Armstrong A, Mann DJ (2012) Kinetic template-guided tethering of fragments. ChemMedChem 7(12):2082–2086

    Article  CAS  PubMed  Google Scholar 

  • Oballa RM, Truchon JF, Bayly CI, Chauret N, Day S, Crane S, Berthelette C (2007) A generally applicable method for assessing the electrophilicity and reactivity of diverse nitrile-containing compounds. Bioorg Med Chem Lett 17(4):998–1002

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi K, Irie K, Murakami A (2009) In vitro covalent binding proteins of zerumbone, a chemopreventive food factor. Biosci Biotechnol Biochem 73(8):1905–1907

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi K, Ohkura S, Nakahata E, Ishisaka A, Kawai Y, Terao J, Mori T, Ishii T, Nakayama T, Kioka N, Matsumoto S, Ikeda Y, Akiyama M, Irie K, Murakami A (2013) Non-specific protein modifications by a phytochemical induce heat shock response for self-defense. PLoS ONE 8(3):e58641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olejnik J, Sonar S, Krzymañska-Olejnik E, Rothschild KJ (1995) Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proc Natl Acad Sci 92(16):7590–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong SE, Mann M (2007) Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol Biol 359:37–52

    Article  CAS  PubMed  Google Scholar 

  • Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503(7477):548–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang X, Zhou S, Su CT, Ge Z, Li R, Kwoh CK (2013) CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J Comput Chem 34(4):326–336

    Article  CAS  PubMed  Google Scholar 

  • Pace NJ, Weerapana E (2014a) A competitive chemical-proteomic platform to identify zinc-binding cysteines. ACS Chem Biol 9(1):258–265

    Article  CAS  PubMed  Google Scholar 

  • Pace NJ, Weerapana E (2014b) Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules 4(2):419–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan Z, Scheerens H, Li S-J, Schultz BE, Sprengeler PA, Burrill LC, Mendonca RV, Sweeney MD, Scott KCK, Grothaus PG, Jeffery DA, Spoerke JM, Honigberg LA, Young PR, Dalrymple SA, Palmer JT (2007) Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem 2(1):58–61

    Article  CAS  PubMed  Google Scholar 

  • Patricelli MP, Janes MR, Li LS, Hansen R, Peters U, Kessler LV, Chen Y, Kucharski JM, Feng J, Ely T, Chen JH, Firdaus SJ, Babbar A, Ren P, Liu Y (2016) Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov 6(3):316–329

    Article  CAS  PubMed  Google Scholar 

  • Paul BD, Snyder SH (2015) Protein sulfhydration. Methods Enzymol 555:79–90

    Article  CAS  PubMed  Google Scholar 

  • Paulsen CE, Carroll KS (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113(7):4633–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, Carroll KS (2011) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8(1):57–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pels K, Dickson P, An H, Kodadek T (2018) DNA-compatible solid-phase combinatorial synthesis of beta-cyanoacrylamides and related electrophiles. ACS Comb Sci 20(2):61–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  CAS  PubMed  Google Scholar 

  • Persson C, Sjoblom T, Groen A, Kappert K, Engstrom U, Hellman U, Heldin CH, den Hertog J, Ostman A (2004) Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases. Proc Natl Acad Sci U S A 101(7):1886–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce A, Unwin RD, Evans CA, Griffiths S, Carney L, Zhang L, Jaworska E, Lee CF, Blinco D, Okoniewski MJ, Miller CJ, Bitton DA, Spooncer E, Whetton AD (2008) Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol Cell Proteomics 7(5):853–863

    Article  CAS  PubMed  Google Scholar 

  • Pitscheider M, Mausbacher N, Sieber SA (2012) Antibiotic activity and target discovery of three-membered natural product-derived heterocycles in pathogenic bacteria. Chem Sci 3(6):2035–2041

    Article  CAS  Google Scholar 

  • Pliura DH, Bonaventura BJ, Smith RA, Coles PJ, Krantz A (1992) Comparative behaviour of calpain and cathepsin B toward peptidyl acyloxymethyl ketones, sulphonium methyl ketones and other potential inhibitors of cysteine proteinases. Biochem J 288(Pt 3):759–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ploger M, Sendker J, Langer K, Schmidt TJ (2015) Covalent modification of human serum albumin by the natural sesquiterpene lactone parthenolide. Molecules 20(4):6211–6223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, Keating MJ, O’Brien S, Chiorazzi N, Burger JA (2012) The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119:1182–1189. https://doi.org/10.1182/blood-2011-10-38641

  • Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12(1):18–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole TH, Reisz JA, Zhao W, Poole LB, Furdui CM, King SB (2014) Strained cycloalkynes as new protein sulfenic acid traps. J Am Chem Soc 136(17):6167–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinarakis E, Chantzoura E, Thanos D, Spyrou G (2008) S-glutathionylation of IRF3 regulates IRF3-CBP interaction and activation of the IFN beta pathway. EMBO J 27(6):865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Martell J, Pace NJ, Ballard TE, Johnson DS, Weerapana E (2013) An isotopically tagged azobenzene-based cleavable linker for quantitative proteomics. ChemBioChem 14(12):1410–1414

    Article  CAS  PubMed  Google Scholar 

  • Ricci G, Bello ML, Caccuri AM, Pastore A, Nuccetelli M, Parker MW, Federici G (1995) Site-directed mutagenesis of human glutathione transferase P1-1: mutation of Cys-47 induces a positive cooperativity in glutathione transferase P1-1. J Biol Chem 270(3):1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Roberts AM, Miyamoto DK, Huffman TR, Bateman LA, Ives AN, Akopian D, Heslin MJ, Contreras CM, Rape M, Skibola CF, Nomura DK (2017a) Chemoproteomic screening of covalent ligands reveals UBA5 as a novel pancreatic cancer target. ACS Chem Biol 12(4):899–904

    Article  CAS  PubMed  Google Scholar 

  • Roberts LS, Yan P, Bateman LA, Nomura DK (2017b) Mapping novel metabolic nodes targeted by anti-cancer drugs that impair triple-negative breast cancer pathogenicity. ACS Chem Biol 12(4):1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Robertson JG (2005) Mechanistic basis of enzyme-targeted drugs. Biochemistry 44(15):5561–5571

    Article  CAS  PubMed  Google Scholar 

  • Rogers LK, Leinweber BL, Smith CV (2006) Detection of reversible protein thiol modifications in tissues. Anal Biochem 358(2):171–184

    Article  CAS  PubMed  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Rost HL, Rosenberger G, Navarro P, Gillet L, Miladinovic SM, Schubert OT, Wolski W, Collins BC, Malmstrom J, Malmstrom L, Aebersold R (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32(3):219–223

    Article  PubMed  CAS  Google Scholar 

  • Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM, Schubert OT, Wolski W, Collins BC, Malmström J, Malmström L, Aebersold R (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky JD, Burlingame MA, Wolan DW, McClendon CL, Jacobson MP, Wells JA (2011) Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc Natl Acad Sci U S A 108(15):6056–6061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajadimajd S, Khazaei M (2017) Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug Targets

    Google Scholar 

  • Segovia-Mendoza M, González-González ME, Barrera D, Díaz L, García-Becerra R (2015) Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. Am J Cancer Res 5(9):2531–2561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serafimova IM, Pufall MA, Krishnan S, Duda K, Cohen MS, Maglathlin RL, McFarland JM, Miller RM, Frodin M, Taunton J (2012) Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat Chem Biol 8(5):471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethuraman M, McComb ME, Heibeck T, Costello CE, Cohen RA (2004a) Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols. Mol Cell Proteomics 3(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Sethuraman M, McComb ME, Huang H, Huang S, Heibeck T, Costello CE, Cohen RA (2004b) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 3(6):1228–1233

    Article  CAS  PubMed  Google Scholar 

  • Shannon DA, Banerjee R, Webster ER, Bak DW, Wang C, Weerapana E (2014) Investigating the proteome reactivity and selectivity of aryl halides. J Am Chem Soc 136(9):3330–3333

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93(25):14440–14445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534

    Article  CAS  PubMed  Google Scholar 

  • Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5(1):144–156

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Petter RC, Baillie TA, Whitty A (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10(4):307–317

    Article  CAS  PubMed  Google Scholar 

  • Slee EA, Zhu H, Chow SC, MacFarlane M, Nicholson DW, Cohen GM (1996) Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J 315(Pt 1):21–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AJ, Zhang X, Leach AG, Houk KN (2009) Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J Med Chem 52(2):225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer S, Weikart ND, Linne U, Mootz HD (2013) Covalent inhibition of SUMO and ubiquitin-specific cysteine proteases by an in situ thiol-alkyne addition. Bioorg Med Chem 21(9):2511–2517

    Article  CAS  PubMed  Google Scholar 

  • Speers AE, Cravatt BF (2004) Profiling enzyme activities in vivo using click chemistry methods. Chem Biol 11(4):535–546

    Article  CAS  PubMed  Google Scholar 

  • Speers AE, Cravatt BF (2005) A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J Am Chem Soc 127(28):10018–10019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiger AK, Yang Y, Royzen M, Pluth MD (2017) Bio-orthogonal “click-and-release” donation of caged carbonyl sulfide (COS) and hydrogen sulfide (H2S). Chem Commun (Camb) 53(8):1378–1380

    Article  CAS  Google Scholar 

  • Sun J, Xin C, Eu JP, Stamler JS, Meissner G (2001) Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A 98(20):11158–11162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sussman D, Westendorf L, Meyer DW, Leiske CI, Anderson M, Okeley NM, Alley SC, Lyon R, Sanderson RJ, Carter PJ, Benjamin DR (2018) Engineered cysteine antibodies: an improved antibody-drug conjugate platform with a novel mechanism of drug-linker stability. Protein Eng Des Sel 31(2):47–54

    Article  CAS  PubMed  Google Scholar 

  • Swinney DC (2009) The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Devel 12(1):31–39

    CAS  PubMed  Google Scholar 

  • Szychowski J, Mahdavi A, Hodas JJL, Bagert JD, Ngo JT, Landgraf P, Dieterich DC, Schuman EM, Tirrell DA (2010) Cleavable biotin probes for labeling of biomolecules via azide–alkyne cycloaddition. J Am Chem Soc 132(51):18351–18360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaya J, Mio K, Shiraishi T, Kurokawa T, Otsuka S, Mori Y, Uesugi M (2015) A potent and site-selective agonist of TRPA1. J Am Chem Soc 137(50):15859–15864

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Nishida K, Sugita K, Yoshioka T (1999) Antitumor efficacy of hypothemycin, a new Ras-signaling inhibitor. Jpn J Cancer Res 90(10):1139–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The M, MacCoss MJ, Noble WS, Käll L (2016) Fast and accurate protein false discovery rates on large-scale proteomics data sets with percolator 3.0. J Am Soc Mass Spectrom 27(11):1719–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Thornberry NA, Peterson EP, Zhao JJ, Howard AD, Griffin PR, Chapman KT (1994) Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33(13):3934–3940

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Sun R, Liu K, Fu L, Liu X, Zhou W, Yang Y, Yang J (2017) Multiplexed thiol reactivity profiling for target discovery of electrophilic natural products. Cell Chem Biol 24(11):1416–1427 e1415

    Article  PubMed  CAS  Google Scholar 

  • Tonge PJ (2018) Drug-target kinetics in drug discovery. ACS Chem Neurosci 9(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Truong TH, Ung PM, Palde PB, Paulsen CE, Schlessinger A, Carroll KS (2016) Molecular basis for redox activation of epidermal growth factor receptor kinase. Cell Chem Biol 23(7):837–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uetrecht J (2009) Immune-mediated adverse drug reactions. Chem Res Toxicol 22(1):24–34

    Article  CAS  PubMed  Google Scholar 

  • Uzozie AC, Aebersold R (2018) Advancing translational research and precision medicine with targeted proteomics. J Proteomics

    Google Scholar 

  • Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52(4):609–623

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova EV, Zhang C, Spokoyny AM, Pentelute BL, Buchwald SL (2015) Organometallic palladium reagents for cysteine bioconjugation. Nature 526(7575):687–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher M, Arkin MR, Dansen TB (2016) Covalent targeting of acquired cysteines in cancer. Curr Opin Chem Biol 30:61–67

    Article  CAS  PubMed  Google Scholar 

  • Wachnowsky C, Wesley NA, Fidai I, Cowan JA (2017) Understanding the molecular basis of multiple mitochondrial dysfunctions syndrome 1 (MMDS1)-impact of a disease-causing Gly208Cys substitution on structure and activity of NFU1 in the Fe/S cluster biosynthetic pathway. J Mol Biol 429(6):790–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Xian M (2008) Fast reductive ligation of S-nitrosothiols. Angew Chem Int Ed Engl 47(35):6598–6601

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Udeshi ND, O’Malley M, Shabanowitz J, Hunt DF, Hart GW (2010) Enrichment and site mapping of O-Linked N-Acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9(1):153–160

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Weerapana E, Blewett MM, Cravatt BF (2014) A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat Meth 11(1):79–85

    Article  CAS  Google Scholar 

  • Wang C, Abegg D, Hoch DG, Adibekian A (2016) Chemoproteomics-enabled discovery of a potent and selective inhibitor of the DNA repair protein MGMT. Angew Chem Int Ed Engl 55(8):2911–2915

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Chen X, Li C, Liu Y, Yang F, Wang C (2018) Sequence-based prediction of cysteine reactivity using machine learning. Biochemistry 57(4):451–460

    Article  CAS  PubMed  Google Scholar 

  • Ward RA, Anderton MJ, Ashton S, Bethel PA, Box M, Butterworth S, Colclough N, Chorley CG, Chuaqui C, Cross DA, Dakin LA, Debreczeni JE, Eberlein C, Finlay MR, Hill GB, Grist M, Klinowska TC, Lane C, Martin S, Orme JP, Smith P, Wang F, Waring MJ (2013) Structure- and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR). J Med Chem 56(17):7025–7048

    Article  CAS  PubMed  Google Scholar 

  • Ward CC, Kleinman JI, Nomura DK (2017) NHS-esters As versatile reactivity-based probes for mapping proteome-wide ligandable hotspots. ACS Chem Biol 12(6):1478–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Washburn MP (2015) The H-index of ‘an approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database’. J Am Soc Mass Spectrom 26(11):1799–1803

    Article  CAS  PubMed  Google Scholar 

  • Weerapana E, Speers AE, Cravatt BF (2007) Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat Protoc 2(6):1414–1425

    Article  CAS  PubMed  Google Scholar 

  • Weerapana E, Simon GM, Cravatt BF (2008) Disparate proteome reactivity profiles of carbon electrophiles. Nat Chem Biol 4(7):405–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468(7325):790–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitby LR, Obach RS, Simon GM, Hayward MM, Cravatt BF (2017) Quantitative chemical proteomic profiling of the in vivo targets of reactive drug metabolites. ACS Chem Biol 12(8):2040–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wissner A, Overbeek E, Reich MF, Floyd MB, Johnson BD, Mamuya N, Rosfjord EC, Discafani C, Davis R, Shi X, Rabindran SK, Gruber BC, Ye F, Hallett WA, Nilakantan R, Shen R, Wang Y-F, Greenberger LM, Tsou H-R (2003) Synthesis and structure–activity relationships of 6,7-disubstituted 4-Anilinoquinoline-3-carbonitriles. The design of an orally active, irreversible inhibitor of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor-2 (HER-2). J Med Chem 46(1):49–63

    Article  CAS  PubMed  Google Scholar 

  • Withers SG, Aebersold R (1995) Approaches to labeling and identification of active site residues in glycosidases. Protein Sci 4(3):361–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt AC, Lakshminarasimhan M, Remington BC, Hasim S, Pozharski E, Wilson MA (2008) Cysteine pKa depression by a protonated glutamic acid in human DJ-1. Biochemistry 47(28):7430–7440

    Article  CAS  PubMed  Google Scholar 

  • Wolters DA, Washburn MP, Yates JR 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73(23):5683–5690

    Article  CAS  PubMed  Google Scholar 

  • Wong HL, Liebler DC (2008) Mitochondrial protein targets of thiol-reactive electrophiles. Chem Res Toxicol 21(4):796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Wright AT, Song JD, Cravatt BF (2009) A Suite of Activity-based probes for human cytochrome P450 enzymes. J Am Chem Soc 131(30):10692–10700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright FA, Lu JP, Sliter DA, Dupre N, Rouleau GA, Wojcikiewicz RJ (2015) A point mutation in the ubiquitin ligase RNF170 that causes autosomal dominant sensory ataxia destabilizes the protein and impairs inositol 1,4,5-Trisphosphate receptor-mediated Ca2+ signaling. J Biol Chem 290(22):13948–13957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Parrott AM, Liu T, Jain MR, Yang Y, Sadoshima J, Li H (2011) Distinction of thioredoxin transnitrosylation and denitrosylation target proteins by the ICAT quantitative approach. J Proteomics 74(11):2498–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff JE, Siegrist R, Myers AG (2007) The natural product avrainvillamide binds to the oncoprotein nucleophosmin. J Am Chem Soc 129(46):14444–14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia YF, Ye BQ, Li YD, Wang JG, He XJ, Lin X, Yao X, Ma D, Slungaard A, Hebbel RP, Key NS, Geng JG (2004) Andrographolide attenuates inflammation by inhibition of NF-kappa B activation through covalent modification of reduced cysteine 62 of p50. J Immunol 173(6):4207–4217

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Park SK, Venable JD, Wohlschlegel JA, Diedrich JK, Cociorva D, Lu B, Liao L, Hewel J, Han X, Wong CCL, Fonslow B, Delahunty C, Gao Y, Shah H, Yates JR 3rd (2015) ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J Proteomics 129:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Verhelst SHL (2013) Cleavable trifunctional biotin reagents for protein labelling, capture and release. Chem Commun 49(47):5366–5368

    Article  CAS  Google Scholar 

  • Yang J, Gupta V, Tallman KA, Porter NA, Carroll KS, Liebler DC (2015) Global, in situ, site-specific analysis of protein S-sulfenylation. Nat Protoc 10(7):1022–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Carroll KS, Liebler DC (2016) The expanding landscape of the thiol redox proteome. Mol Cell Proteomics 15(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Yi EC, Li XJ, Cooke K, Lee H, Raught B, Page A, Aneliunas V, Hieter P, Goodlett DR, Aebersold R (2005) Increased quantitative proteome coverage with (13)C/(12)C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics 5(2):380–387

    Article  CAS  PubMed  Google Scholar 

  • Yu L-R, Conrads TP, Uo T, Issaq HJ, Morrison RS, Veenstra TD (2004) Evaluation of the acid-cleavable isotope-coded affinity tag reagents: application to camptothecin-treated cortical neurons. J Proteome Res 3(3):469–477

    Article  CAS  PubMed  Google Scholar 

  • Yver A (2016) Osimertinib (AZD9291)-a science-driven, collaborative approach to rapid drug design and development. Ann Oncol 27(6):1165–1170

    Article  CAS  PubMed  Google Scholar 

  • Zaro BW, Whitby LR, Lum KM, Cravatt BF (2016) Metabolically labile fumarate esters impart kinetic selectivity to irreversible inhibitors. J Am Chem Soc 138(49):15841–15844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Sioma CS, Wang S, Regnier FE (2001) Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem 73(21):5142–5149

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9(1):28–39

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Bourne PE (2018) Progress with covalent small-molecule kinase inhibitors. Drug Discov Today 23(3):727–735

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Bolton SG, Pluth MD (2017a) Light-activated COS/H2S donation from photocaged thiocarbamates. Org Lett 19(9):2278–2281

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Henthorn HA, Pluth MD (2017b) Kinetic insights into hydrogen sulfide delivery from caged-carbonyl sulfide isomeric donor platforms. J Am Chem Soc 139(45):16365–16376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Ranish JA, Watts JD, Aebersold R (2002) Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol 20(5):512–515

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Ercan D, Chen L, Yun CH, Li D, Capelletti M, Cortot AB, Chirieac L, Iacob RE, Padera R, Engen JR, Wong KK, Eck MJ, Gray NS, Janne PA (2009) Novel mutant-selective EGFR kinase inhibitors against EGFR T790 M. Nature 462(7276):1070–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou WY, Zheng H, Du XL, Yang JL (2016) Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients. Cancer Biol Med 13(2):260–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu K, Borrelli KW, Greenwood JR, Day T, Abel R, Farid RS, Harder E (2014) Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. J Chem Inf Model 54(7):1932–1940

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann G, Rieder U, Bajic D, Vanetti S, Chaikuad A, Knapp S, Scheuermann J, Mattarella M, Neri D (2017) A specific and covalent JNK-1 ligand selected from an encoded self-assembling chemical library. Chemistry 23(34):8152–8155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keriann M. Backus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Backus, K.M. (2018). Applications of Reactive Cysteine Profiling. In: Cravatt, B., Hsu, KL., Weerapana, E. (eds) Activity-Based Protein Profiling. Current Topics in Microbiology and Immunology, vol 420. Springer, Cham. https://doi.org/10.1007/82_2018_120

Download citation

Publish with us

Policies and ethics