Skip to main content

What Is Memory-Guided Attention? How Past Experiences Shape Selective Visuospatial Attention in the Present

  • Chapter
  • First Online:
Processes of Visuospatial Attention and Working Memory

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 41))

Abstract

What controls our attention? It is historically thought that there are two primary factors that determine selective attention: the perceptual salience of the stimuli and the goals based on the task at hand. However, this distinction doesn’t neatly capture the varied ways our past experience can influence our ongoing mental processing. In this chapter, we aim to describe how past experience can be systematically characterized by different types of memory, and we outline experimental evidence suggesting how attention can then be guided by each of these different memory types. We highlight findings from human behavioral, neuroimaging, and neuropsychological work from the perspective of two related frameworks of human memory: the multiple memory systems (MMS) framework and the neural processing (NP) framework. The MMS framework underscores how memory can be separated based on consciousness (declarative and non-declarative memory), while the NP framework emphasizes different forms of memory as reflective of different brain processing modes (rapid encoding of flexible associations, slow encoding of rigid associations, and rapid encoding of single or unitized items). We describe how memory defined by these frameworks can guide our attention, even when they do not directly relate to perceptual salience or the goals concerning the current task. We close by briefly discussing theoretical implications as well as some interesting avenues for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we do not exhaustively cover the subcategories of non-declarative memories but rather focus on those that are most relevant to attentional guidance. Some studies further distinguish associative and nonassociative forms of memory within non-declarative memory. Here we do not stress this distinction as to provide more specific distinctions in terms of the relationship to attention literature.

  2. 2.

    Note that some of the studies discussed here contain more than a single encoding event, thus not meeting strict definitions of episodic memory which emphasize single exposure acquisition but do align with definitions which include multiple exposures (e.g., so-called “repisodic” memory (Neisser 1981)).

References

  • Aly M, Turk-Browne NB (2016a) Attention promotes episodic encoding by stabilizing hippocampal representations. Proc Natl Acad Sci 113(4):E420–E429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly M, Turk-Browne NB (2016b) Attention stabilizes representations in the human hippocampus. Cereb Cortex 26(2):783–796

    PubMed  Google Scholar 

  • Aly M, Turk-Browne NB (2017) How hippocampal memory shapes, and is shaped by, attention. In: The hippocampus from cells to systems. Springer, Cham, pp 369–403

    Chapter  Google Scholar 

  • Aly M, Ranganath C, Yonelinas A (2013) Detecting changes in scenes: the hippocampus is critical for strength-based perception. Neuron 78(6):1127–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslin RN (2007) What’s in a look? Dev Sci 10(1):48–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Awh E, Belopolsky AV, Theeuwes J (2012) Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends Cogn Sci 16(8):437–443

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett LF, Simmons WK (2015) Interoceptive predictions in the brain. Nat Rev Neurosci 16(7):419–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker SI (2008) The mechanism of priming: episodic retrieval or priming of pop-out? Acta Psychol (Amst) 127(2):324–339

    Article  Google Scholar 

  • Becker MW, Rasmussen IP (2008) Guidance of attention to objects and locations by long-term memory of natural scenes. J Exp Psychol Learn Mem Cogn 34(6):1325–1338

    Article  PubMed  Google Scholar 

  • Belke E, Humphreys GW, Watson DG, Meyer AS, Telling AL (2008) Top-down effects of semantic knowledge in visual search are modulated by cognitive but not perceptual load. Percept Psychophys 70(8):1444–1458

    Article  PubMed  Google Scholar 

  • Bichot NP, Schall JD (1999) Saccade target selection in macaque during feature and conjunction visual search. Vis Neurosci 16(1):81–89

    Article  CAS  PubMed  Google Scholar 

  • Bornstein MH (1985) Habituation of attention as a measure of visual information processing in human infants: summary, systematization, and synthesis. In: Measurement of audition and vision in the first year of postnatal life: a methodological overview. Ablex, Westport, CT, pp 253–300

    Google Scholar 

  • Broadbent DE (1958) Perception and communication. Pergamon Press, Elmsford, NY

    Book  Google Scholar 

  • Brockmole JR, Henderson JM (2006) Recognition and attention guidance during contextual cueing in real-world scenes: evidence from eye movements. Q J Exp Psychol 59(7):1177–1187

    Article  Google Scholar 

  • Carrasco M (2011) Visual attention: the past 25 years. Vision Res 51(13):1484–1525

    Article  PubMed  PubMed Central  Google Scholar 

  • Castelhano MS, Henderson JM (2007) Initial scene representations facilitate eye movement guidance in visual search. J Exp Psychol Hum Percept Perform 33(4):753–763

    Article  PubMed  Google Scholar 

  • Chanon VW, Hopfinger JB (2008) Memory’s grip on attention: the influence of item memory on the allocation of attention. Vis Cogn 16(2–3):325–340

    Article  Google Scholar 

  • Chun MM (2000) Contextual cueing of visual attention. Trends Cogn Sci 4(5):170–178

    Article  CAS  PubMed  Google Scholar 

  • Chun MM, Jiang Y (1998) Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cogn Psychol 36(1):28–71

    Article  CAS  PubMed  Google Scholar 

  • Chun MM, Jiang Y (1999) Top-down attentional guidance based on implicit learning of visual covariation. Psychol Sci 10(4):360–365

    Article  Google Scholar 

  • Chun MM, Jiang Y (2003) Implicit, long-term spatial contextual memory. J Exp Psychol Learn Mem Cogn 29(2):224–234

    Article  PubMed  Google Scholar 

  • Chun MM, Phelps EA (1999) Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nat Neurosci 2(9):844–847

    Article  CAS  PubMed  Google Scholar 

  • Chun MM, Turk-Browne NB (2007) Interactions between attention and memory. Curr Opin Neurobiol 17(2):177–184

    Article  CAS  PubMed  Google Scholar 

  • Chun MM, Turk-Browne NB (2008) Associative learning mechanisms in vision. In: Visual memory. Oxford University Press, New York, pp 209–245

    Chapter  Google Scholar 

  • Chun MM, Golomb JD, Turk-Browne NB (2011) A taxonomy of external and internal attention. Annu Rev Psychol 62(1):73–101

    Article  PubMed  Google Scholar 

  • Clark A (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci 36(3):181–204

    Article  PubMed  Google Scholar 

  • Cohen N, Squire L (1980) Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210(4466):207–210

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215

    Article  CAS  PubMed  Google Scholar 

  • Cowan N (1988) Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol Bull 104(2):163–191

    Article  CAS  PubMed  Google Scholar 

  • Davachi L, Goldman-Rakic PS (2001) Primate rhinal cortex participates in both visual recognition and working memory tasks: functional mapping with 2-DG. J Neurophysiol 85(6):2590–2601

    Article  CAS  PubMed  Google Scholar 

  • Davenport JL, Potter MC (2004) Scene consistency in object and background perception. Psychol Sci 15(8):559–564

    Article  PubMed  Google Scholar 

  • Degonda N, Mondadori CR, Bosshardt S, Schmidt CF, Boesiger P, Nitsch RM, Hock C, Henke K (2005) Implicit associative learning engages the hippocampus and interacts with explicit associative learning. Neuron 46(3):505–520

    Article  CAS  PubMed  Google Scholar 

  • Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci 93(24):13494–13499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18(1):193–222

    Article  CAS  PubMed  Google Scholar 

  • Dudukovic NM, Wagner AD (2006) Attending to remember and remembering to attend. Neuron 49(6):784–787

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H, Yonelinas AP, Ranganath C (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30(1):123–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott EM, Cowan N (2001) Habituation to auditory distractors in a cross-modal, colorword interference task. J Exp Psychol Learn Mem Cogn 27(3):654–667

    Article  CAS  PubMed  Google Scholar 

  • Fan JE, Turk-Browne NB (2016) Incidental biasing of attention from visual long-term memory. J Exp Psychol Learn Mem Cogn 42(6):970–977

    Article  PubMed  Google Scholar 

  • Fantz RL (1964) Visual experience in Infants: decreased attention to familiar patterns relative to novel ones. Science 146(3644):668–670

    Article  CAS  PubMed  Google Scholar 

  • Fecteau JH (2007) Priming of pop-out depends upon the current goals of observers. J Vis 7(6):1–1

    Article  PubMed  Google Scholar 

  • Flowers JH, Polansky ML, Kerl S (1981) Familiarity, redundancy, and the spatial control of visual attention. J Exp Psychol Hum Percept Perform 7(1):157–166

    Article  CAS  PubMed  Google Scholar 

  • Foerde K, Shohamy D (2011) The role of the basal ganglia in learning and memory: insight from Parkinsons disease. Neurobiol Learn Mem 96(4):624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folk CL, Remington R (1998) Selectivity in distraction by irrelevant featural singletons: evidence for two forms of attentional capture. J Exp Psychol Hum Percept Perform 24(3):847–858

    Article  CAS  PubMed  Google Scholar 

  • Gabrieli JDE (1998) Cognitive neuroscience of human memory. Annu Rev Psychol 49(1):87–115

    Article  CAS  PubMed  Google Scholar 

  • Gabrieli JD, Keane MM, Zarella MM, Poldrack RA (1997) Preservation of implicit memory for new associations in global amnesia. Psychol Sci 8(4):326–329

    Article  Google Scholar 

  • Geng JJ, Behrmann M (2005) Spatial probability as an attentional cue in visual search. Percept Psychophys 67(7):1252–1268

    Article  PubMed  Google Scholar 

  • Glanzer M, Cunitz AR (1966) Two storage mechanisms in free recall. J Verbal Learn Verbal Behav 5(4):351–360

    Article  Google Scholar 

  • Goldfarb EV, Chun MM, Phelps EA (2016) Memory-guided attention: independent contributions of the hippocampus and striatum. Neuron 89(2):317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goschy H, Bakos S, Mller HJ, Zehetleitner M (2014) Probability cueing of distractor locations: both intertrial facilitation and statistical learning mediate interference reduction. Front Psychol 5:1195

    Article  PubMed  PubMed Central  Google Scholar 

  • Goshen-Gottstein Y, Moscovitch M, Melo B (2000) Intact implicit memory for newly formed verbal associations in amnesic patients following single study trials. Neuropsychology 14(4):570–578

    Article  CAS  PubMed  Google Scholar 

  • Graf P, Schacter DL (1985) Implicit and explicit memory for new associations in normal and amnesic subjects. J Exp Psychol Learn Mem Cogn 11(3):501–518

    Article  CAS  PubMed  Google Scholar 

  • Greene AJ, Gross WL, Elsinger CL, Rao SM (2007) Hippocampal differentiation without recognition: an fMRI analysis of the contextual cueing task. Learn Mem 14(8):548–553

    Article  PubMed  Google Scholar 

  • Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci 10(1):14–23

    Article  PubMed  Google Scholar 

  • Hall N, Gjedde A, Kupers R (2008) Neural mechanisms of voluntary and involuntary recall: a PET study. Behav Brain Res 186(2):261–272

    Article  PubMed  Google Scholar 

  • Hannula DE, Ranganath C (2008) Medial temporal lobe activity predicts successful relational memory binding. J Neurosci 28(1):116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannula DE, Ranganath C (2009) The eyes have It: hippocampal activity predicts expression of memory in eye movements. Neuron 63(5):592–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannula DE, Ryan JD, Tranel D, Cohen NJ (2007) Rapid onset relational memory effects are evident in eye movement behavior, but not in hippocampal amnesia. J Cogn Neurosci 19(10):1690–1705

    Article  PubMed  Google Scholar 

  • Hayhoe M, Ballard D (2005) Eye movements in natural behavior. Trends Cogn Sci 9(4):188–194

    Article  PubMed  Google Scholar 

  • Henke K (2010) A model for memory systems based on processing modes rather than consciousness. Nat Rev Neurosci 11(7):523–532

    Article  CAS  PubMed  Google Scholar 

  • Henke K, Mondadori CRA, Treyer V, Nitsch RM, Buck A, Hock C (2003a) Nonconscious formation and reactivation of semantic associations by way of the medial temporal lobe. Neuropsychologia 41(8):863–876

    Article  PubMed  Google Scholar 

  • Henke K, Treyer V, Nagy ET, Kneifel S, Drsteler M, Nitsch RM, Buck A (2003b) Active hippocampus during nonconscious memories. Conscious Cogn 12(1):31–48

    Article  PubMed  Google Scholar 

  • Hillstrom AP (2000) Repetition effects in visual search. Percept Psychophys 62(4):800–817

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann J, Kunde W (1999) Location-specific target expectancies in visual search. J Exp Psychol Hum Percept Perform 25(4):1127–1141

    Article  Google Scholar 

  • Hollerman JR, Tremblay L, Schultz W (1998) Influence of reward expectation on behavior-related neuronal activity in primate striatum. J Neurophysiol 80(2):947–963

    Article  CAS  PubMed  Google Scholar 

  • Hollingworth A (2009) Two forms of scene memory guide visual search: memory for scene context and memory for the binding of target object to scene location. Vis Cogn 17(1–2):273–291

    Article  Google Scholar 

  • Huang L, Holcombe AO, Pashler H (2004) Repetition priming in visual search: episodic retrieval, not feature priming. Mem Cogn 32(1):12–20

    Article  Google Scholar 

  • Hutchinson JB, Turk-Browne NB (2012) Memory-guided attention: control from multiple memory systems. Trends Cogn Sci 16(12):576–579

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchinson JB, Pak SS, Turk-Browne NB (2015) Biased competition during long-term memory formation. J Cogn Neurosci 28(1):187–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang YV (2018) Habitual versus goal-driven attention. Cortex 102:107–120

    Article  PubMed  Google Scholar 

  • Jiang YV, Swallow KM (2013) Spatial reference frame of incidentally learned attention. Cognition 126(3):378–390

    Article  PubMed  Google Scholar 

  • Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modulates cognitive signals in the basal ganglia. Nat Neurosci 1(5):411–416

    Article  CAS  PubMed  Google Scholar 

  • Kelley TA, Yantis S (2009) Learning to attend: effects of practice on information selection. J Vis 9(7):16–16

    Article  PubMed  Google Scholar 

  • Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273(5280):1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI (2007) Fundamental components of attention. Annu Rev Neurosci 30(1):57–78

    Article  CAS  PubMed  Google Scholar 

  • Kristjnsson CG (2010) Where perception meets memory: a review of repetition priming in visual search tasks. Atten Percept Psychophys 72(1):5–18

    Article  Google Scholar 

  • Krueger LE (1970) Search time in a redundant visual display. J Exp Psychol 83(3, Pt. 1):391–399

    Article  CAS  PubMed  Google Scholar 

  • Kuhl BA, Johnson MK, Chun MM (2013) Dissociable neural mechanisms for goal-directed versus incidental memory reactivation. J Neurosci 33(41):16099–16109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauwereyns J, Watanabe K, Coe B, Hikosaka O (2002) A neural correlate of response bias in monkey caudate nucleus. Nature 418(6896):413–417

    Article  CAS  PubMed  Google Scholar 

  • Leber AB, Ji K, Gabari Y (2009) Long-term, abstract learning of attentional set. J Exp Psychol Hum Percept Perform 35(5):1385–1397

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H, Mozer MC, Vecera SP (2009) Mechanisms of priming of pop-out: stored representations or feature-gain modulations? Atten Percept Psychophys 71(5):1059–1071

    Article  PubMed  Google Scholar 

  • Leong YC, Radulescu A, Daniel R, DeWoskin V, Niv Y (2017) Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93(2):451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan GD (2002) An instance theory of attention and memory. Psychol Rev 109(2):376–400

    Article  PubMed  Google Scholar 

  • Mack SC, Eckstein MP (2011) Object co-occurrence serves as a contextual cue to guide and facilitate visual search in a natural viewing environment. J Vis 11(9):9–9

    Article  PubMed  Google Scholar 

  • Maljkovic V, Nakayama K (1994) Priming of pop-out: I. Role of features. Mem Cognit 22(6):657–672

    Article  CAS  PubMed  Google Scholar 

  • Maljkovic V, Nakayama K (1996) Priming of pop-out: II. The role of position. Percept Psychophys 58(7):977–991

    Article  CAS  PubMed  Google Scholar 

  • Maljkovic V, Nakayama K (2000) Priming of popout: III. A short-term implicit memory system beneficial for rapid target selection. Vis Cogn 7(5):571–595

    Article  Google Scholar 

  • McDonald RJ, White NM (1994) Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav Neural Biol 61(3):260–270

    Article  CAS  PubMed  Google Scholar 

  • McPeek RM, Maljkovic V, Nakayama K (1999) Saccades require focal attention and are facilitated by a short-term memory system. Vision Res 39(8):1555–1566

    Article  CAS  PubMed  Google Scholar 

  • Miller J (1988) Components of the location probability effect in visual search tasks. J Exp Psychol Hum Percept Perform 14(3):453–471

    Article  CAS  PubMed  Google Scholar 

  • Milner B (1962) Memory disturbance after bilateral hippocampal lesions. In: Cognitive processes and the brain. Van Nostrand, Princeton, NJ, pp 97–111

    Google Scholar 

  • Moores E, Laiti L, Chelazzi L (2003) Associative knowledge controls deployment of visual selective attention. Nat Neurosci 6(2):182–189

    Article  CAS  PubMed  Google Scholar 

  • Moray N (1959) Attention in dichotic listening: affective cues and the influence of instructions. Q J Exp Psychol 11(1):56–60

    Article  Google Scholar 

  • Moscovitch M, Winocur G, McLachlan D (1986) Memory as assessed by recognition and reading time in normal and memory-impaired people with Alzheimer’s disease and other neurological disorders. J Exp Psychol Gen 115(4):331–347

    Article  CAS  PubMed  Google Scholar 

  • Moscovitch M, Cabeza R, Winocur G, Nadel L (2016) Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu Rev Psychol 67(1):105–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Neider MB, Zelinsky GJ (2008) Exploring set size effects in scenes: identifying the objects of search. Vis Cogn 16(1):1–10

    Article  Google Scholar 

  • Neill WT, Beck JL, Bottalico KS, Molloy RD (1990) Effects of intentional versus incidental learning on explicit and implicit tests of memory. J Exp Psychol Learn Mem Cogn 16(3):457

    Article  Google Scholar 

  • Neisser U (1981) John Dean’s memory: a case study. Cognition 9(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Olivers CNL (2011) Long-term visual associations affect attentional guidance. Acta Psychol (Amst) 137(2):243–247

    Article  Google Scholar 

  • Olson IR, Moore KS, Stark M, Chatterjee A (2006a) Visual working memory is impaired when the medial temporal lobe Is damaged. J Cogn Neurosci 18(7):1087–1097

    Article  PubMed  Google Scholar 

  • Olson IR, Page K, Moore KS, Chatterjee A, Verfaellie M (2006b) Working memory for conjunctions relies on the medial temporal lobe. J Neurosci 26(17):4596–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packard MG, Hirsh R, White NM (1989) Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: evidence for multiple memory systems. J Neurosci 9(5):1465–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panichello MF, Cheung OS, Bar M (2013) Predictive feedback and conscious visual experience. Front Psychol 3

    Google Scholar 

  • Pashler HE (1998) The psychology of attention. MIT Press, Cambridge, MA

    Google Scholar 

  • Pavlov PI (1927) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press, London

    Google Scholar 

  • Poldrack RA, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41(3):245–251

    Article  PubMed  Google Scholar 

  • Ranganath C, Blumenfeld RS (2005) Doubts about double dissociations between short- and long-term memory. Trends Cogn Sci 9(8):374–380

    Article  PubMed  Google Scholar 

  • Ranganath C, D’Esposito M (2001) Medial temporal lobe activity associated with active maintenance of novel information. Neuron 31(5):865–873

    Article  CAS  PubMed  Google Scholar 

  • Ranganath C, Rainer G (2003) Cognitive neuroscience: neural mechanisms for detecting and remembering novel events. Nat Rev Neurosci 4(3):193–202

    Article  CAS  PubMed  Google Scholar 

  • Ranganath C, Cohen MX, Brozinsky CJ (2005) Working memory maintenance contributes to long-term memory formation: neural and behavioral evidence. J Cogn Neurosci 17(7):994–1010

    Article  PubMed  Google Scholar 

  • Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79–87

    Article  CAS  PubMed  Google Scholar 

  • Reicher GM, Snyder CR, Richards JT (1976) Familiarity of background characters in visual scanning. J Exp Psychol Hum Percept Perform 2(4):522–530

    Article  CAS  PubMed  Google Scholar 

  • Rosen ML, Stern CE, Somers DC (2014) Long-term memory guidance of visuospatial attention in a change-detection paradigm. Front Psychol 5

    Google Scholar 

  • Rosen ML, Stern CE, Michalka SW, Devaney KJ, Somers DC (2016) Cognitive control network contributions to memory-guided visual attention. Cereb Cortex 26(5):2059–2073

    Article  PubMed  Google Scholar 

  • Rothkopf CA, Ballard DH, Hayhoe MM (2007) Task and context determine where you look. J Vis 7(14):16–16

    Article  PubMed  Google Scholar 

  • Ryan JD, Hannula DE, Cohen NJ (2007) The obligatory effects of memory on eye movements. Memory 15(5):508–525

    Article  PubMed  Google Scholar 

  • Saffran JR, Aslin RN, Newport EL (1996) Statistical learning by 8-month-old infants. Science 274(5294):1926–1928

    Article  CAS  PubMed  Google Scholar 

  • Salovich NA, Remington RW, Jiang YV (2018) Acquisition of habitual visual attention and transfer to related tasks. Psychon Bull Rev 25(3):1052–1058

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato M, Hikosaka O (2002) Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. J Neurosci 22(6):2363–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schapiro A, Turk-Browne N (2015) Statistical learning. In: Brain mapping: an encyclopedic reference. Elsevier, Amsterdam, pp 501–506

    Chapter  Google Scholar 

  • Schapiro AC, Gregory E, Landau B, McCloskey M, Turk-Browne NB (2014) The necessity of the medial temporal lobe for statistical learning. J Cogn Neurosci 26(8):1736–1747

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz W (2016) Reward functions of the basal ganglia. J Neural Transm 123(7):679–693

    Article  PubMed  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidl-Rathkopf KN, Turk-Browne NB, Kastner S (2015) Automatic guidance of attention during real-world visual search. Atten Percept Psychophys 77(6):1881–1895

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw ML, Shaw P (1977) Optimal allocation of cognitive resources to spatial locations. J Exp Psychol Hum Percept Perform 3(2):201–211

    Article  CAS  PubMed  Google Scholar 

  • Shimamura AP, Squire LR (1989) Impaired priming of new associations in amnesia. J Exp Psychol Learn Mem Cogn 15(4):721–728

    Article  CAS  PubMed  Google Scholar 

  • Sisk CA, Remington RW, Jiang YV (2018) The risks of downplaying top-down control. J Cognit 1(1):23

    Article  Google Scholar 

  • Snyder KA, Blank MP, Marsolek CJ (2008) What form of memory underlies novelty preferences? Psychon Bull Rev 15(2):315–321

    Article  PubMed  Google Scholar 

  • Sokolov EN (1963) Higher nervous functions: the orienting reflex. Annu Rev Physiol 25(1):545–580

    Article  CAS  PubMed  Google Scholar 

  • Squire LR (1992) Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. J Cogn Neurosci 4(3):232–243

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 34(1):259–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squire LR, Knowlton B, Musen G (1993) The structure and organization of memory. Annu Rev Psychol 44(1):453–495

    Article  CAS  PubMed  Google Scholar 

  • Stokes MG, Atherton K, Patai EZ, Nobre AC (2012) Long-term memory prepares neural activity for perception. Proc Natl Acad Sci 109(6):E360–E367

    Article  CAS  PubMed  Google Scholar 

  • Summerfield JJ, Lepsien J, Gitelman DR, Mesulam MM, Nobre AC (2006) Orienting attention based on long-term memory experience. Neuron 49(6):905–916

    Article  CAS  PubMed  Google Scholar 

  • Theeuwes J (2018) Visual selection: usually fast and automatic; seldom slow and volitional. J Cognit 1(1):21

    Article  Google Scholar 

  • Theeuwes J, Burg EVD (2011) On the limits of top-down control of visual selection. Atten Percept Psychophys 73(7):2092

    Article  PubMed  PubMed Central  Google Scholar 

  • Torralba A, Oliva A, Castelhano MS, Henderson JM (2006) Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol Rev 113(4):766–786

    Article  PubMed  Google Scholar 

  • Tulving E, Markowitsch HJ, Craik FIM, Habib R, Houle S (1996) Novelty and familiarity activations in PET studies of memory encoding and retrieval. Cereb Cortex 6(1):71–79

    Article  CAS  PubMed  Google Scholar 

  • Turatto M, Pascucci D (2016) Short-term and long-term plasticity in the visual-attention system: evidence from habituation of attentional capture. Neurobiol Learn Mem 130:159–169

    Article  PubMed  Google Scholar 

  • Turatto M, Bonetti F, Pascucci D (2018) Filtering visual onsets via habituation: a context-specific long-term memory of irrelevant stimuli. Psychon Bull Rev 25(3):1028–1034

    Article  PubMed  Google Scholar 

  • Turk-browne NB, Jung JA, Scholl BJ (2005) The automaticity of visual statistical learning. J Exp Psychol Gen (134):552–564

    Article  Google Scholar 

  • Turk-Browne NB, Scholl BJ, Chun MM, Johnson MK (2008) Neural evidence of statistical learning: efficient detection of visual regularities without awareness. J Cogn Neurosci 21(10):1934–1945

    Article  Google Scholar 

  • Turk-Browne NB, Scholl BJ, Johnson MK, Chun MM (2010) Implicit perceptual anticipation triggered by statistical learning. J Neurosci 30(33):11177–11187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urgolites ZJ, Levy DA, Hopkins RO, Squire LR (2018) Spared perception of object geometry and object components after hippocampal damage. Learn Mem 25(7):330–334

    Article  PubMed  PubMed Central  Google Scholar 

  • Võ MLH, Wolfe JM (2015) The role of memory for visual search in scenes. Ann N Y Acad Sci 1339(1):72–81

    Article  PubMed Central  Google Scholar 

  • Watanabe K, Lauwereyns J, Hikosaka O (2003) Neural correlates of rewarded and unrewarded eye movements in the primate caudate nucleus. J Neurosci 23(31):10052–10057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waugh NC, Norman DA (1965) Primary memory. Psychol Rev 72(2):89–104

    Article  CAS  PubMed  Google Scholar 

  • Weaver MD, Lauwereyns J, Theeuwes J (2011) The effect of semantic information on saccade trajectory deviations. Vision Res 51(10):1124–1128

    Article  PubMed  Google Scholar 

  • Wheeler ME, Petersen SE, Buckner RL (2000) Memory’s echo: vivid remembering reactivates sensory-specific cortex. Proc Natl Acad Sci 97(20):11125–11129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe JM (2001) Asymmetries in visual search: an introduction. Percept Psychophys 63(3):381–389

    Article  CAS  PubMed  Google Scholar 

  • Woodman GF, Chun MM (2006) The role of working memory and long-term memory in visual search. Vis Cogn 14(4–8):808–830

    Article  Google Scholar 

  • Yarbus AL (1967) Eye movements during perception of complex objects. In: Eye movements and vision. Springer, Boston, MA, pp 171–211

    Chapter  Google Scholar 

  • Yu RQ, Zhao J (2015) The persistence of the attentional bias to regularities in a changing environment. Atten Percept Psychophys 77(7):2217–2228

    Article  PubMed  Google Scholar 

  • Zhao J, Al-Aidroos N, Turk-Browne NB (2013) Attention is spontaneously biased toward regularities. Psychol Sci 24(5):667–677

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Thomas M. Biba and Sarah DuBrow’s comments on an earlier version of this manuscript. We also thank the authors who provided their permission for use of their figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danlei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, D., Hutchinson, J.B. (2018). What Is Memory-Guided Attention? How Past Experiences Shape Selective Visuospatial Attention in the Present. In: Hodgson, T. (eds) Processes of Visuospatial Attention and Working Memory. Current Topics in Behavioral Neurosciences, vol 41. Springer, Cham. https://doi.org/10.1007/7854_2018_76

Download citation

Publish with us

Policies and ethics