Skip to main content

Genomic and Imaging Biomarkers in Schizophrenia

  • Chapter
  • First Online:
Biomarkers in Psychiatry

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 40))

Abstract

Recent large-scale genomic studies have confirmed that schizophrenia is a polygenic syndrome and have implicated a number of biological pathways in its aetiology. Both common variants individually of small effect and rarer but more penetrant genetic variants have been shown to play a role in the pathogenesis of the disorder. No simple Mendelian forms of the condition have been identified, but progress has been made in stratifying risk on the basis of the polygenic burden of common variants individually of small effect, and the contribution of rarer variants of larger effect such as Copy Number Variants (CNVs). Pathway analysis of risk-associated variants has begun to identify specific biological processes implicated in risk for the disorder, including elements of the glutamatergic NMDA receptor complex and post synaptic density, voltage-gated calcium channels, targets of the Fragile X Mental Retardation Protein (FMRP targets) and immune pathways. Genetic studies have also been used to drive genomic imaging approaches to the investigation of brain markers associated with risk for the disorder. Genomic imaging approaches have been applied both to investigate the effect of polygenic risk and to study the impact of individual higher-penetrance variants such as CNVs. Both genomic and genomic imaging approaches offer potential for the stratification of patients and at-risk groups and the development of better biomarkers of risk and treatment response; however, further research is needed to integrate this work and realise the full potential of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allardyce J et al (2018) Association between schizophrenia-related polygenic liability and the occurrence and level of mood-incongruent psychotic symptoms in bipolar disorder. JAMA Psychiat 75(1):28–35

    Google Scholar 

  • Andersson F et al (2008) Impaired activation of face processing networks revealed by functional magnetic resonance imaging in 22q11.2 deletion syndrome. Biol Psychiatry 63(1):49–57

    CAS  PubMed  Google Scholar 

  • Arnone D et al (2008) Meta-analysis of magnetic resonance imaging studies of the corpus callosum in bipolar disorder. Acta Psychiatr Scand 118(5):357–362

    CAS  PubMed  Google Scholar 

  • Atkinson RJ et al (2012) Duration mismatch negativity and P3a in first-episode psychosis and individuals at ultra-high risk of psychosis. Biol Psychiatry 71(2):98–104

    PubMed  Google Scholar 

  • Azuma R et al (2009) Visuospatial working memory in children and adolescents with 22q11.2 deletion syndrome; an fMRI study. J Neurodev Disord 1(1):46

    PubMed  PubMed Central  Google Scholar 

  • Baker K et al (2005) COMT Val108/158Met modifies mismatch negativity and cognitive function in 22q11 deletion syndrome. Biol Psychiatry 58(1):23–31

    CAS  PubMed  Google Scholar 

  • Bakker G et al (2016) Cortical morphology differences in subjects at increased vulnerability for developing a psychotic disorder: a comparison between subjects with ultra-high risk and 22q11.2 deletion syndrome. PLoS One 11(11):e0159928

    PubMed  PubMed Central  Google Scholar 

  • Barnea-Goraly N et al (2003) Investigation of white matter structure in velocardiofacial syndrome: a diffusion tensor imaging study. Am J Psychiatr 160(10):1863–1869

    PubMed  Google Scholar 

  • Bearden CE et al (2006) Mapping cortical thickness in children with 22q11.2 deletions. Cereb Cortex 17(8):1889–1898

    PubMed  Google Scholar 

  • Bearden CE et al (2008) Alterations in midline cortical thickness and gyrification patterns mapped in children with 22q11.2 deletions. Cereb Cortex 19(1):115–126

    PubMed  PubMed Central  Google Scholar 

  • Bergen SE et al (2012) Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 17(9):880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernier R et al (2016) Clinical phenotype of the recurrent 1q21. 1 copy-number variant. Genet Med 18(4):341

    PubMed  Google Scholar 

  • Blackmon K et al (2017) Focal cortical anomalies and language impairment in 16p11. 2 deletion and duplication syndrome. Cereb Cortex:1–9. https://doi.org/10.1093/cercor/bhx143

    Google Scholar 

  • Blackwood DHR et al (2001) Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 69(2):428–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw NJ, Porteous DJ (2012) DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology 62(3):1230–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulik-Sullivan BK et al (2015) LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47(3):291–295. https://doi.org/10.1038/ng.3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter CS et al (2017) Enhancing the informativeness and replicability of imaging genomics studies. Biol Psychiatry 82(3):157–164. https://doi.org/10.1016/j.biopsych.2016.08.019

    Article  CAS  PubMed  Google Scholar 

  • Catts SV et al (1995) Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatry 152(2):213

    CAS  PubMed  Google Scholar 

  • Chang H et al (2017) Rare and common variants at 16p11.2 are associated with schizophrenia. Schizophr Res 184:105–108

    PubMed  Google Scholar 

  • Chen J et al (2018a) Shared genetic risk of schizophrenia and gray matter reduction in 6p22.1. Schizophr Bull. https://doi.org/10.1093/schbul/sby010

    PubMed Central  Google Scholar 

  • Chen Q et al (2018b) Schizophrenia polygenic risk score predicts mnemonic hippocampal activity. Brain 141(4):1218–1228

    PubMed  PubMed Central  Google Scholar 

  • Cheniaux E et al (2009) The diagnoses of schizophrenia, schizoaffective disorder, bipolar disorder and unipolar depression: interrater reliability and congruence between DSM-IV and ICD-10. Psychopathology 42(5):293–298

    PubMed  Google Scholar 

  • Chow EWC et al (1999) Qualitative MRI findings in adults with 22q11 deletion syndrome and schizophrenia. Biol Psychiatry 46(10):1436–1442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chubb JE et al (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13(1):36

    CAS  PubMed  Google Scholar 

  • Coman IL et al (2010) The effects of gender and catechol O-methyltransferase (COMT) Val108/158Met polymorphism on emotion regulation in velo-cardio-facial syndrome (22q11.2 deletion syndrome): an fMRI study. NeuroImage 53(3):1043–1050

    CAS  PubMed  Google Scholar 

  • Corbin LJ et al (2018) Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nat Commun 9(1):711. https://doi.org/10.1038/s41467-018-03109-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove D et al (2018) Effects of MiR-137 genetic risk score on brain volume and cortical measures in patients with schizophrenia and controls. Am J Med Genet B Neuropsychiatr Genet 177(3):369–376. https://doi.org/10.1002/ajmg.b.32620

    Article  CAS  PubMed  Google Scholar 

  • da Silva Alves F et al (2011a) Proton magnetic resonance spectroscopy in 22q11 deletion syndrome. PLoS One 6(6):e21685

    PubMed  PubMed Central  Google Scholar 

  • da Silva Alves F et al (2011b) White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia. Schizophr Res 132(1):75–83

    PubMed  Google Scholar 

  • Debbané M et al (2008) Source monitoring for actions in adolescents with 22q11.2 deletion syndrome (22q11DS). Psychol Med 38(6):811–820

    PubMed  Google Scholar 

  • Debbané M et al (2010) Monitoring of self-generated speech in adolescents with 22q11.2 deletion syndrome. Br J Clin Psychol 49(3):373–386

    PubMed  Google Scholar 

  • Debbané M et al (2012) Resting-state networks in adolescents with 22q11.2 deletion syndrome: associations with prodromal symptoms and executive functions. Schizophr Res 139(1):33–39

    PubMed  Google Scholar 

  • Devine MJ et al (2016) DISC1 is a coordinator of intracellular trafficking to shape neuronal development and connectivity. J Physiol 594(19):5459–5469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 9(3):e1003348. https://doi.org/10.1371/journal.pgen.1003348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehara H et al (2005) Pachygyria and polymicrogyria in 22q11 deletion syndrome. Am J Med Genet A 136((2):224–224

    Google Scholar 

  • Eliez S et al (2000) Children and adolescents with velocardiofacial syndrome: a volumetric MRI study. Am J Psychiatr 157(3):409–415

    CAS  PubMed  Google Scholar 

  • Erk S et al (2014) Replication of brain function effects of a genome-wide supported psychiatric risk variant in the CACNA1C gene and new multi-locus effects. NeuroImage 94:147–154. https://doi.org/10.1016/j.neuroimage.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  • Erk S et al (2017) Functional neuroimaging effects of recently discovered genetic risk loci for schizophrenia and polygenic risk profile in five RDoC subdomains. Transl Psychiatry 7(1):e997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flahault A et al (2012) Hippocampal volume reduction in chromosome 22q11.2 deletion syndrome (22q11.2DS): a longitudinal study of morphometry and symptomatology. Psychiatry Res Neuroimaging 203(1):1–5

    CAS  Google Scholar 

  • Franke B et al (2016) Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nat Neurosci 19(3):420–431. https://doi.org/10.1038/nn.4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromer M et al (2014) De novo mutations in schizophrenia implicate synaptic networks. Nature 506(7487):179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gage SH et al (2017) Investigating causality in associations between smoking initiation and schizophrenia using Mendelian randomization. Sci Rep 7:40653. https://doi.org/10.1038/srep40653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghariani S et al (2002) Polymicrogyria in chromosome 22q11 deletion syndrome. Eur J Paediatr Neurol 6(1):73–77

    PubMed  Google Scholar 

  • Gothelf D et al (2007a) Abnormal cortical activation during response inhibition in 22q11.2 deletion syndrome. Hum Brain Mapp 28(6):533–542

    PubMed  PubMed Central  Google Scholar 

  • Gothelf D et al (2007b) Developmental trajectories of brain structure in adolescents with 22q11.2 deletion syndrome: a longitudinal study. Schizophr Res 96(1):72–81

    PubMed  PubMed Central  Google Scholar 

  • Gothelf D et al (2011) Developmental changes in multivariate neuroanatomical patterns that predict risk for psychosis in 22q11.2 deletion syndrome. J Psychiatr Res 45(3):322–331

    PubMed  PubMed Central  Google Scholar 

  • Gottesman II, Shields J (1967) A polygenic theory of schizophrenia. Proc Natl Acad Sci U S A 58(1):199–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottesman II, Shields J (1972) A polygenic theory of schizophrenia. Int J Ment Health 1(1–2):107–115

    Google Scholar 

  • Hagenaars SP et al (2016) Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N = 112 151) and 24 GWAS consortia. Mol Psychiatry 21:1624–1632. https://doi.org/10.1038/mp.2015.225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall J et al (2015) Genetic risk for schizophrenia: convergence on synaptic pathways involved in plasticity. Biol Psychiatry 77(1):52–58. https://doi.org/10.1016/j.biopsych.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  • Harrell W et al (2017) Frontal hypoactivation during a working memory task in children with 22q11 deletion syndrome. J Child Neurol 32(1):94–99

    PubMed  Google Scholar 

  • Harris JM et al (2004) Abnormal cortical folding in high-risk individuals: a predictor of the development of schizophrenia? Biol Psychiatry 56(3):182–189

    PubMed  Google Scholar 

  • Harrisberger F et al (2016) Impact of polygenic schizophrenia-related risk and hippocampal volumes on the onset of psychosis. Transl Psychiatry 6(8):e868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry JC et al (2002) An investigation of the neuropsychological profile in adults with velo-cardio-facial syndrome (VCFS). Neuropsychologia 40(5):471–478

    CAS  PubMed  Google Scholar 

  • International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455(7210):237

    Google Scholar 

  • International Schizophrenia Consortium et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752. https://doi.org/10.1038/nature08185

    Article  CAS  PubMed Central  Google Scholar 

  • Jalbrzikowski M et al (2013) Structural abnormalities in cortical volume, thickness, and surface area in 22q11.2 microdeletion syndrome: relationship with psychotic symptoms. NeuroImage Clin 3:405–415

    PubMed  PubMed Central  Google Scholar 

  • Jalbrzikowski M et al (2014) Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome. Front Behav Neurosci 8:393

    PubMed  PubMed Central  Google Scholar 

  • Javitt DC et al (2008) Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov 7(1):68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen F et al (2001) Amplitude reduction of the mismatch negativity in first-degree relatives of patients with schizophrenia. Neurosci Lett 309(3):185–188

    CAS  PubMed  Google Scholar 

  • Jones HJ et al (2016) Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. JAMA Psychiat 73(3):221–228. https://doi.org/10.1001/jamapsychiatry.2015.3058

    Article  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuro-Psychopharmacol Biol Psychiatry 27(7):1081–1090

    CAS  Google Scholar 

  • Kates WR et al (2001) Regional cortical white matter reductions in velocardiofacial syndrome: a volumetric MRI analysis. Biol Psychiatry 49(8):677–684

    CAS  PubMed  Google Scholar 

  • Kates WR et al (2007) The neural correlates of non-spatial working memory in velocardiofacial syndrome (22q11.2 deletion syndrome). Neuropsychologia 45(12):2863–2873

    PubMed  PubMed Central  Google Scholar 

  • Kates WR et al (2011) Neuroanatomic predictors to prodromal psychosis in velocardiofacial syndrome (22q11.2 deletion syndrome): a longitudinal study. Biol Psychiatry 69(10):945–952

    CAS  PubMed  Google Scholar 

  • Kates WR et al (2015) White matter microstructural abnormalities of the cingulum bundle in youths with 22q11.2 deletion syndrome: associations with medication, neuropsychological function, and prodromal symptoms of psychosis. Schizophr Res 161(1):76–84

    PubMed  Google Scholar 

  • Kauppi K et al (2014) Polygenic risk for schizophrenia associated with working memory-related prefrontal brain activation in patients with schizophrenia and healthy controls. Schizophr Bull 41(3):736–743

    PubMed  PubMed Central  Google Scholar 

  • Kikinis Z et al (2012) Reduced fractional anisotropy and axial diffusivity in white matter in 22q11.2 deletion syndrome: a pilot study. Schizophr Res 141(1):35–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kikinis Z et al (2017) Abnormalities in brain white matter in adolescents with 22q11.2 deletion syndrome and psychotic symptoms. Brain Imaging Behav 11(5):1353–1364

    PubMed  PubMed Central  Google Scholar 

  • Kirov G et al (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry 17(2):142

    CAS  PubMed  Google Scholar 

  • Kirov G et al (2014) The penetrance of copy number variations for schizophrenia and developmental delay. Biol Psychiatry 75(5):378–385

    CAS  PubMed  Google Scholar 

  • Kirov G et al (2015) What a psychiatrist needs to know about copy number variants. BJPsych Adv 21(3):157–163

    Google Scholar 

  • Klar AJS (2002) The chromosome 1; 11 translocation provides the best evidence supporting genetic etiology for schizophrenia and bipolar affective disorders. Genetics 160(4):1745–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koolen DA et al (2004) Chromosome 22q11 deletion and pachygyria characterized by array-based comparative genomic hybridization. Am J Med Genet A 131(3):322–324

    PubMed  Google Scholar 

  • Kunwar A et al (2012) Cortical gyrification in velo-cardio-facial (22q11.2 deletion) syndrome: a longitudinal study. Schizophr Res 137(1):20–25

    PubMed  PubMed Central  Google Scholar 

  • Lancaster TM et al (2016a) Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals. Hum Brain Mapp 37(2):491–500

    PubMed  Google Scholar 

  • Lancaster TM et al (2016b) Polygenic risk of psychosis and ventral striatal activation during reward processing in healthy adolescents. JAMA Psychiat 73(8):852–861

    Google Scholar 

  • Lancaster T et al (2018) Structural and functional neuroimaging of polygenic risk for schizophrenia. Schizophr Bull. https://doi.org/10.1093/schbul/sby037

  • Larøi F et al (2004) The effects of emotional salience, cognitive effort and meta-cognitive beliefs on a reality monitoring task in hallucination-prone subjects. Br J Clin Psychol 43(3):221–233

    PubMed  Google Scholar 

  • Larsen KM et al (2017) 22q11.2 deletion syndrome is associated with impaired auditory steady-state gamma response. Schizophr Bull 44(2):388–397

    PubMed Central  Google Scholar 

  • Larsen KM et al (2018) Altered auditory processing and effective connectivity in 22q11.2 deletion syndrome. Schizophr Res. https://doi.org/10.1016/j.schres.2018.01.026

    PubMed  Google Scholar 

  • Lee SH et al (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 45(9):ng-2711

    Google Scholar 

  • Lin A et al (2017) Mapping 22q11.2 gene dosage effects on brain morphometry. J Neurosci 37(26):3759–3716

    Google Scholar 

  • Liu M et al (2017) Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci. Psychol Med 47(6):1116–1125

    CAS  PubMed  Google Scholar 

  • Maillard AM et al (2015) The 16p11. 2 locus modulates brain structures common to autism, schizophrenia and obesity. Mol Psychiatry 20(1):140

    CAS  PubMed  Google Scholar 

  • Marshall CR et al (2017) Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat Genet 49(1):27

    CAS  PubMed  Google Scholar 

  • Mattiaccio LM et al (2016) Atypical functional connectivity in resting-state networks of individuals with 22q11.2 deletion syndrome: associations with neurocognitive and psychiatric functioning. J Neurodev Disord 8(1):2

    PubMed  PubMed Central  Google Scholar 

  • McIntosh AM et al (2013) Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biol Psychiatry 73(10):938–943. https://doi.org/10.1016/j.biopsych.2013.01.011

    Article  PubMed  Google Scholar 

  • Meechan DW et al (2012) Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome. Proc Natl Acad Sci 109(45):18601–18606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michie PT (2001) What has MMN revealed about the auditory system in schizophrenia? Int J Psychophysiol 42(2):177–194

    CAS  PubMed  Google Scholar 

  • Michie PT et al (2002) Duration mismatch negativity in biological relatives of patients with schizophrenia spectrum disorders. Biol Psychiatry 52(7):749–758

    PubMed  Google Scholar 

  • Miller JA et al (2017) Effects of schizophrenia polygenic risk scores on brain activity and performance during working memory subprocesses in healthy young adults. Schizophr Bull. https://doi.org/10.1093/schbul/sbx140

    PubMed Central  Google Scholar 

  • Mistry S et al (2017) The use of polygenic risk scores to identify phenotypes associated with genetic risk of schizophrenia: systematic review. Schizophr Res. https://doi.org/10.1016/j.schres.2017.10.037

    PubMed  Google Scholar 

  • Moghaddam B, Javitt D (2012) From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 37(1):4–15

    CAS  PubMed  Google Scholar 

  • Mokhtari R, Lachman HM (2016) The major histocompatibility complex (MHC) in schizophrenia: a review. J Clin Cell Immunol 7(6). https://doi.org/10.4172/2155-9899

  • Murphy KC et al (1999) High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 56(10):940–945

    CAS  PubMed  Google Scholar 

  • Näätänen R, Kähkönen S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol 12(1):125–135

    PubMed  Google Scholar 

  • Natarajan P et al (2017) Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 135(22):2091–2101

    PubMed  PubMed Central  Google Scholar 

  • Neilson E et al (2017) Effects of environmental risks and polygenic loading for schizophrenia on cortical thickness. Schizophr Res 184:128–136

    PubMed  Google Scholar 

  • Nguyen HT et al (2017) Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Med 9(1):114

    PubMed  PubMed Central  Google Scholar 

  • Niarchou M et al (2014) Psychopathology and cognition in children with 22q11.2 deletion syndrome. Br J Psychiatry 204(1):46–54

    PubMed  PubMed Central  Google Scholar 

  • Nuninga JO et al (2017) White matter abnormalities in 22q11.2 deletion syndrome patients showing cognitive decline. Psychol Med:1–9. https://doi.org/10.1017/S0033291717003142

    PubMed  Google Scholar 

  • O’Donovan MC et al (2008) Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 40(9):1053

    PubMed  Google Scholar 

  • Oertel-Knöchel V et al (2015) Schizophrenia risk variants modulate white matter volume across the psychosis spectrum: evidence from two independent cohorts. NeuroImage Clin 7:764–770

    PubMed  PubMed Central  Google Scholar 

  • Ohi K et al (2014) Genetic risk variants of schizophrenia associated with left superior temporal gyrus volume. Cortex 58:23–26

    PubMed  Google Scholar 

  • Olszewski AK et al (2017) The social brain network in 22q11.2 deletion syndrome: a diffusion tensor imaging study. Behav Brain Funct 13(1):4

    PubMed  PubMed Central  Google Scholar 

  • Oskarsdottir S et al (2004) Incidence and prevalence of the 22q11 deletion syndrome: a population-based study in western Sweden. Arch Dis Child 89(2):148–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ottet M-C et al (2013) Graph theory reveals dysconnected hubs in 22q11DS and altered nodal efficiency in patients with hallucinations. Front Hum Neurosci 7:402

    PubMed  PubMed Central  Google Scholar 

  • Owen MJ et al (2016) Schizophrenia. Lancet 388(10039):86–97. https://doi.org/10.1016/S0140-6736(15)01121-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Padula MC et al (2015) Structural and functional connectivity in the default mode network in 22q11.2 deletion syndrome. J Neurodev Disord 7(1):23

    PubMed  PubMed Central  Google Scholar 

  • Papiol S et al (2014) Polygenic determinants of white matter volume derived from GWAS lack reproducibility in a replicate sample. Transl Psychiatry 4(2):e362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pardiñas AF et al (2018) Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet 50(3):381–389

    PubMed  PubMed Central  Google Scholar 

  • Pergola G et al (2017) DRD2 co-expression network and a related polygenic index predict imaging, behavioral and clinical phenotypes linked to schizophrenia. Transl Psychiatry 7(1):e1006. https://doi.org/10.1038/tp.2016.253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlstein MD et al (2014) White matter abnormalities in 22q11.2 deletion syndrome: preliminary associations with the Nogo-66 receptor gene and symptoms of psychosis. Schizophr Res 152(1):117–123

    PubMed  Google Scholar 

  • Pickard BS (2015) Schizophrenia biomarkers: translating the descriptive into the diagnostic. J Psychopharmacol 29(2):138–143

    PubMed  Google Scholar 

  • Pickard BS et al (2005) Cytogenetics and gene discovery in psychiatric disorders. Pharmacogenomics J 5(2):81

    CAS  PubMed  Google Scholar 

  • Pocklington AJ et al (2015) Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron 86(5):1203–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poletti M et al (2017) Schizophrenia polygenic risk score and psychotic risk detection. Lancet Psychiatry 4(3):188

    PubMed  Google Scholar 

  • Purcell SM et al (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506(7487):185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi AY et al (2014) Opposing brain differences in 16p11. 2 deletion and duplication carriers. J Neurosci 34(34):11199–11211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radoeva PD et al (2012) Atlas-based white matter analysis in individuals with velo-cardio-facial syndrome (22q11.2 deletion syndrome) and unaffected siblings. Behav Brain Funct 8(1):38

    PubMed  PubMed Central  Google Scholar 

  • Ranlund S et al (2018) A polygenic risk score analysis of psychosis endophenotypes across brain functional, structural, and cognitive domains. Am J Med Genet B Neuropsychiatr Genet 177(1):21–34

    PubMed  Google Scholar 

  • Rees E et al (2014a) Evidence that duplications of 22q11.2 protect against schizophrenia. Mol Psychiatry 19(1):37

    CAS  PubMed  Google Scholar 

  • Rees E et al (2014b) Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry 204(2):108–114

    PubMed  PubMed Central  Google Scholar 

  • Rees E et al (2015) Genetics of schizophrenia. Curr Opinion Behav Sci 2:8–14

    Google Scholar 

  • Rees E et al (2016) Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA Psychiat 73(9):963–969

    Google Scholar 

  • Ripke S et al (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421

    CAS  PubMed Central  Google Scholar 

  • Roalf DR et al (2017) White matter microstructural deficits in 22q11.2 deletion syndrome. Psychiatry Res Neuroimaging 268:35–44

    PubMed  Google Scholar 

  • Roussos P et al (2015) The relationship of common risk variants and polygenic risk for schizophrenia to sensorimotor gating. Biol Psychiatry. https://doi.org/10.1016/j.biopsych.2015.06.019

    PubMed  Google Scholar 

  • Sallet PC et al (2003) Reduced cortical folding in schizophrenia: an MRI morphometric study. Am J Psychiatr 160(9):1606–1613

    PubMed  Google Scholar 

  • Scariati E et al (2014) Identifying 22q11.2 deletion syndrome and psychosis using resting-state connectivity patterns. Brain Topogr 27(6):808–821

    PubMed  Google Scholar 

  • Schaer M et al (2006) Abnormal patterns of cortical gyrification in velo-cardio-facial syndrome (deletion 22q11.2): an MRI study. Psychiatry Res Neuroimaging 146(1):1–11

    Google Scholar 

  • Schaer M et al (2009) Deviant trajectories of cortical maturation in 22q11.2 deletion syndrome (22q11DS): a cross-sectional and longitudinal study. Schizophr Res 115(2):182–190

    PubMed  Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427. https://doi.org/10.1038/nature13595

    Article  CAS  PubMed Central  Google Scholar 

  • Schneider M et al (2012) Comparing the neural bases of self-referential processing in typically developing and 22q11.2 adolescents. Dev Cogn Neurosci 2(2):277–289

    PubMed  PubMed Central  Google Scholar 

  • Schneider M et al (2014) Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the international consortium on brain and behavior in 22q11.2 deletion syndrome. Am J Psychiatr 171(6):627–639

    PubMed  Google Scholar 

  • Schreiner MJ et al (2013) Default mode network connectivity and reciprocal social behavior in 22q11.2 deletion syndrome. Soc Cogn Affect Neurosci 9(9):1261–1267

    PubMed  PubMed Central  Google Scholar 

  • Sekar A et al (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530(7589):177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shashi V et al (2004) Abnormalities of the corpus callosum in nonpsychotic children with chromosome 22q11 deletion syndrome. NeuroImage 21(4):1399–1406

    PubMed  Google Scholar 

  • Shashi V et al (2012a) Increased corpus callosum volume in children with chromosome 22q11.2 deletion syndrome is associated with neurocognitive deficits and genetic polymorphisms. Eur J Hum Genet 20(10):1051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shashi V et al (2012b) Altered development of the dorsolateral prefrontal cortex in chromosome 22q11.2 deletion syndrome: an in vivo proton spectroscopy study. Biol Psychiatry 72(8):684–691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon TJ et al (2005) Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11.2 deletion syndrome: an integrative study. NeuroImage 25(1):169–180

    PubMed  Google Scholar 

  • Simon TJ et al (2008) Atypical cortical connectivity and visuospatial cognitive impairments are related in children with chromosome 22q11.2 deletion syndrome. Behav Brain Funct 4(1):25

    PubMed  PubMed Central  Google Scholar 

  • Singh T et al (2016) Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nat Neurosci 19(4):571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh T et al (2017) The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat Genet 49(8):1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smeland OB et al (2017) Genetic overlap between schizophrenia and volumes of hippocampus, putamen, and intracranial volume indicates shared molecular genetic mechanisms. Schizophr Bull. https://doi.org/10.1093/schbul/sbx148

    PubMed Central  Google Scholar 

  • Srivastava S et al (2012) Atypical developmental trajectory of functionally significant cortical areas in children with chromosome 22q11.2 deletion syndrome. Hum Brain Mapp 33(1):213–223

    PubMed  Google Scholar 

  • Stefansson H et al (2014) CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 505(7483):361

    CAS  PubMed  Google Scholar 

  • Sullivan PF et al (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187–1192

    PubMed  Google Scholar 

  • Sullivan PF (2017) Schizophrenia and the dynamic genome. Genome Med 9(1):22

    PubMed  PubMed Central  Google Scholar 

  • Sundram F et al (2010) White matter microstructure in 22q11 deletion syndrome: a pilot diffusion tensor imaging and voxel-based morphometry study of children and adolescents. J Neurodev Disord 2(2):77

    PubMed  PubMed Central  Google Scholar 

  • Szatkiewicz JP et al (2014) Copy number variation in schizophrenia in Sweden. Mol Psychiatry 19(7):762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sztriha L et al (2004) Clinical, MRI, and pathological features of polymicrogyria in chromosome 22q11 deletion syndrome. Am J Med Genet A 127(3):313–317

    Google Scholar 

  • Tan GM et al (2009) Meta-analysis of magnetic resonance imaging studies in chromosome 22q11.2 deletion syndrome (velocardiofacial syndrome). Schizophr Res 115(2):173–181

    PubMed  Google Scholar 

  • Thompson PM et al (2017) ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide. NeuroImage 145(Pt B):389–408. https://doi.org/10.1016/j.neuroimage.2015.11.057

    Article  PubMed  Google Scholar 

  • Thuné H et al (2016) The 40-Hz auditory steady-state response in patients with schizophrenia: a meta-analysis. JAMA Psychiat 73(11):1145–1153

    Google Scholar 

  • Tomescu MI et al (2014) Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr Res 157(1):175–181

    PubMed  Google Scholar 

  • Tylee DS et al (2017) Machine-learning classification of 22q11.2 deletion syndrome: a diffusion tensor imaging study. NeuroImage Clin 15:832–842

    PubMed  PubMed Central  Google Scholar 

  • Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76(1):1–23

    PubMed  Google Scholar 

  • Van Amelsvoort T et al (2001) Structural brain abnormalities associated with deletion at chromosome 22q11: quantitative neuroimaging study of adults with velo-cardio-facial syndrome. Br J Psychiatry 178(5):412–419

    PubMed  Google Scholar 

  • Van Amelsvoort T et al (2008) Effects of a functional COMT polymorphism on brain anatomy and cognitive function in adults with velo-cardio-facial syndrome. Psychol Med 38(1):89–100

    PubMed  Google Scholar 

  • Van der Auwera S et al (2015) No association between polygenic risk for schizophrenia and brain volume in the general population. Biol Psychiatry 78(11):e41-e42

    Google Scholar 

  • Van Duin EDA et al (2016) Neural correlates of reward processing in adults with 22q11 deletion syndrome. J Neurodev Disord 8(1):25

    PubMed  PubMed Central  Google Scholar 

  • van Erp TG et al (2015) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. https://doi.org/10.1038/mp.2015.118

    PubMed  PubMed Central  Google Scholar 

  • van Os J et al (2010) The environment and schizophrenia. Nature 468(7321):203

    PubMed  Google Scholar 

  • van Scheltinga AFT et al (2013) Genetic schizophrenia risk variants jointly modulate total brain and white matter volume. Biol Psychiatry 73(6):525–531

    Google Scholar 

  • Villalon-Reina J et al (2013) White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or turner syndrome as evidenced by diffusion tensor imaging. NeuroImage 81:441–454

    CAS  PubMed  Google Scholar 

  • Vingerhoets C et al (2018) Dopamine in high-risk populations: a comparison of subjects with 22q11.2 deletion syndrome and subjects at ultra high-risk for psychosis. Psychiatry Res Neuroimaging 272:65–70

    PubMed  Google Scholar 

  • Walton E et al (2012) Cumulative genetic risk and prefrontal activity in patients with schizophrenia. Schizophr Bull 39(3):703–711

    PubMed  PubMed Central  Google Scholar 

  • Walton E et al (2013) Prefrontal inefficiency is associated with polygenic risk for schizophrenia. Schizophr Bull 40(6):1263–1271

    PubMed  PubMed Central  Google Scholar 

  • Wang T et al (2017) Polygenic risk for five psychiatric disorders and cross-disorder and disorder-specific neural connectivity in two independent populations. Neuroimage Clin 14:441–449. https://doi.org/10.1016/j.nicl.2017.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenger TL et al (2016) 22q11.2 duplication syndrome: elevated rate of autism spectrum disorder and need for medical screening. Mol Autism 7(1):27

    PubMed  PubMed Central  Google Scholar 

  • Whalley HC et al (2015) Impact of cross-disorder polygenic risk on frontal brain activation with specific effect of schizophrenia risk. Schizophr Res 161(2):484–489

    PubMed  PubMed Central  Google Scholar 

  • Wimberley T et al (2017) Polygenic risk score for schizophrenia and treatment-resistant schizophrenia. Schizophr Bull 43(5):1064–1069

    PubMed  PubMed Central  Google Scholar 

  • Zarchi O et al (2013) Schizophrenia-like neurophysiological abnormalities in 22q11.2 deletion syndrome and their association to COMT and PRODH genotypes. J Psychiatr Res 47(11):1623–1629

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddaway, J.T., Doherty, J.L., Lancaster, T., Linden, D., Walters, J.T., Hall, J. (2018). Genomic and Imaging Biomarkers in Schizophrenia. In: Pratt, J., Hall, J. (eds) Biomarkers in Psychiatry. Current Topics in Behavioral Neurosciences, vol 40. Springer, Cham. https://doi.org/10.1007/7854_2018_52

Download citation

Publish with us

Policies and ethics