Skip to main content

Orexin/Hypocretin Signaling

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 33))

Abstract

Orexin/hypocretin peptide (orexin-A and orexin-B) signaling is believed to take place via the two G-protein-coupled receptors (GPCRs), named OX1 and OX2 orexin receptors, as described in the previous chapters. Signaling of orexin peptides has been investigated in diverse endogenously orexin receptor-expressing cells – mainly neurons but also other types of cells – and in recombinant cells expressing the receptors in a heterologous manner. Findings in the different systems are partially convergent but also indicate cellular background-specific signaling. The general picture suggests an inherently high degree of diversity in orexin receptor signaling.

In the current chapter, I present orexin signaling on the cellular and molecular levels. Discussion of the connection to (potential) physiological orexin responses is only brief since these are in focus of other chapters in this book. The same goes for the post-synaptic signaling mechanisms, which are dealt with in Burdakov: Postsynaptic actions of orexin. The current chapter is organized according to the tissue type, starting from the central nervous system. Finally, receptor signaling pathways are discussed across tissues, cell types, and even species.

This is a preview of subscription content, log in via an institution.

Abbreviations

2-AG:

2-Arachidonoyl glycerol

σ1:

Sigma 1 receptor

κOR:

κ Opioid receptor

AC:

Adenylyl cyclase

ACTH:

Adrenocorticotropic hormone

BRET and FRET:

Bioluminescence and fluorescence/Förster resonance energy transfer, respectively

CHO:

Chinese hamster ovary (cells)

CNS:

Central nervous system

CRF and CRF1:

Corticotropin-releasing factor and corticotropin-releasing factor receptor 1, respectively

DAG:

Diacylglycerol

ER:

Endoplasmic reticulum

GEF:

Guanine nucleotide exchange factor

GPCR:

G-protein-coupled receptor

Gαβγ, Gα and Gβγ:

Heterotrimeric G-protein heterotrimeric complex, α-subunit, and the βγ-subunit complex, respectively

IP3:

Inositol-1,4,5-trisphosphate

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MEF:

Mouse embryonic fibroblast

mTORC1:

Mammalian target of rapamycin complex 1

NCX:

Na+/Ca2+-exchanger

NSCC:

Non-selective cation channel

p70S6K:

p70 ribosomal S6 kinase

p90RSK:

p90 ribosomal S6 kinase

PI3K:

Phosphoinositide-3-kinase

PIP2:

Phosphatidylinositol-4,5-bisphosphate

PKA, PKB, and PKC:

Protein kinase A, B, and C, respectively

PLA2, PLC, and PLD:

Phospholipase A2, C, and D, respectively

PP5:

Protein phosphatase 5

TRP:

Transient receptor potential (channel)

VTA:

Ventral tegmental area

References

  1. Kukkonen JP (2004) Regulation of receptor-coupling to (multiple) G-proteins. A challenge for basic research and drug discovery. Receptors Channels 10(5-6):167–183. doi:10.1080/10606820490926151

    Article  CAS  PubMed  Google Scholar 

  2. Lambert NA (2008) Dissociation of heterotrimeric g proteins in cells. Sci Signal 1(25):re5. doi:10.1126/scisignal.125re5

  3. Hansen SB (2015) Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. Biochim Biophys Acta 1851(5):620–628. doi:10.1016/j.bbalip.2015.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC (2015) Phosphoinositides regulate ion channels. Biochim Biophys Acta 1851(6):844–856. doi:10.1016/j.bbalip.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  5. Liu C, Montell C (2015) Forcing open TRP channels: mechanical gating as a unifying activation mechanism. Biochem Biophys Res Commun 460(1):22–25. doi:10.1016/j.bbrc.2015.02.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Inanobe A, Kurachi Y (2014) Membrane channels as integrators of G-protein-mediated signaling. Biochim Biophys Acta 1838(2):521–531. doi:10.1016/j.bbamem.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  7. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22(7):368–376. doi:10.1016/S0165-6147(00)01678-3

    Article  CAS  PubMed  Google Scholar 

  8. Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147(Suppl 1):S46–S55. doi:10.1038/sj.bjp.0706405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suzuki N, Hajicek N, Kozasa T (2009) Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals 17(1):55–70. doi:10.1159/000186690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shenoy SK, Lefkowitz RJ (2011) beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32(9):521–533. doi:10.1016/j.tips.2011.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Magalhaes AC, Dunn H, Ferguson SS (2012) Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol 165(6):1717–1736. doi:10.1111/j.1476-5381.2011.01552.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ritter SL, Hall RA (2009) Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 10(12):819–830. doi:10.1038/nrm2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kenakin T (2014) What is pharmacological ‘affinity’? Relevance to biased agonism and antagonism. Trends Pharmacol Sci 35(9):434–441. doi:10.1016/j.tips.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  14. Dalrymple MB, Jaeger WC, Eidne KA, Pfleger KD (2011) Temporal profiling of orexin receptor-arrestin-ubiquitin complexes reveals differences between receptor subtypes. J Biol Chem 286(19):16726–16733. doi:10.1074/jbc.M111.223537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Milasta S, Evans NA, Ormiston L, Wilson S, Lefkowitz RJ, Milligan G (2005) The sustainability of interactions between the orexin-1 receptor and beta-arrestin-2 is defined by a single C-terminal cluster of hydroxy amino acids and modulates the kinetics of ERK MAPK regulation. Biochem J 387(Pt 3):573–584. doi:10.1042/BJ20041745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kukkonen JP, Leonard CS (2014) Orexin/hypocretin receptor signalling cascades. Br J Pharmacol 171(2):294–313. doi:10.1111/bph.12324

    Article  CAS  PubMed  Google Scholar 

  17. Leonard CS, Kukkonen JP (2014) Orexin/hypocretin receptor signalling: a functional perspective. Br J Pharmacol 171(2):294–313. doi:10.1111/bph.12296

    Article  CAS  PubMed  Google Scholar 

  18. Bayer L, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Muhlethaler M, Serafin M (2002) Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J Neurosci 22(18):7835–7839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hwang LL, Chen CT, Dun NJ (2001) Mechanisms of orexin-induced depolarizations in rat dorsal motor nucleus of vagus neurones in vitro. J Physiol 537(Pt 2):511–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ivanov A, Aston-Jones G (2000) Hypocretin/orexin depolarizes and decreases potassium conductance in locus coeruleus neurons. Neuroreport 11(8):1755–1758

    Article  CAS  PubMed  Google Scholar 

  21. Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90(2):559–605. doi:10.1152/physrev.00029.2009

    Article  CAS  PubMed  Google Scholar 

  22. Logothetis DE, Mahajan R, Adney SK, Ha J, Kawano T, Meng XY, Cui M (2015) Unifying mechanism of controlling Kir3 channel activity by G proteins and phosphoinositides. Int Rev Neurobiol 123:1–26. doi:10.1016/bs.irn.2015.05.013

    Article  CAS  PubMed  Google Scholar 

  23. Doroshenko P, Renaud LP (2009) Acid-sensitive TASK-like K+ conductances contribute to resting membrane potential and to orexin-induced membrane depolarization in rat thalamic paraventricular nucleus neurons. Neuroscience 158(4):1560–1570. doi:10.1016/j.neuroscience.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  24. Hoang QV, Bajic D, Yanagisawa M, Nakajima S, Nakajima Y (2003) Effects of orexin (hypocretin) on GIRK channels. J Neurophysiol 90(2):693–702

    Article  CAS  PubMed  Google Scholar 

  25. Hoang QV, Zhao P, Nakajima S, Nakajima Y (2004) Orexin (hypocretin) effects on constitutively active inward rectifier K+ channels in cultured nucleus basalis neurons. J Neurophysiol 92(6):3183–3191. doi:10.1152/jn.01222.2003

    Article  CAS  PubMed  Google Scholar 

  26. Brown RE, Sergeeva O, Eriksson KS, Haas HL (2001) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40(3):457–459

    Article  CAS  PubMed  Google Scholar 

  27. Burlet S, Tyler CJ, Leonard CS (2002) Direct and indirect excitation of laterodorsal tegmental neurons by Hypocretin/Orexin peptides: implications for wakefulness and narcolepsy. J Neurosci 22(7):2862–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van den Pol AN, Ghosh PK, Liu RJ, Li Y, Aghajanian GK, Gao XB (2002) Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP-expressing locus coeruleus. J Physiol 541(Pt 1):169–185

    PubMed  PubMed Central  Google Scholar 

  29. Yang B, Ferguson AV (2002) Orexin-A depolarizes dissociated rat area postrema neurons through activation of a nonselective cationic conductance. J Neurosci 22(15):6303–6308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burdakov D, Liss B, Ashcroft FM (2003) Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium--calcium exchanger. J Neurosci 23(12):4951–4957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eriksson KS, Sergeeva O, Brown RE, Haas HL (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 21(23):9273–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu M, Zhang Z, Leranth C, Xu C, van den Pol AN, Alreja M (2002) Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition. J Neurosci 22(17):7754–7765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lytton J (2007) Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem J 406(3):365–382. doi:10.1042/BJ20070619

    Article  CAS  PubMed  Google Scholar 

  34. Kukkonen JP (2011) A ménage à trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium 50(1):9–26. doi:10.1016/j.ceca.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  35. Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66(3):676–814. doi:10.1124/pr.113.008268

    Article  CAS  PubMed  Google Scholar 

  36. Kolaj M, Zhang L, Renaud LP (2014) Novel coupling between TRPC-like and KNa channels modulates low threshold spike-induced afterpotentials in rat thalamic midline neurons. Neuropharmacology 86:88–96. doi:10.1016/j.neuropharm.2014.06.023

    Article  CAS  PubMed  Google Scholar 

  37. Kukkonen JP (2014) Lipid signaling cascades of orexin/hypocretin receptors. Biochimie 96:158–165. doi:10.1016/j.biochi.2013.06.015

  38. Acuna-Goycolea C, van den Pol AN (2009) Neuroendocrine proopiomelanocortin neurons are excited by hypocretin/orexin. J Neurosci 29(5):1503–1513. doi:10.1523/JNEUROSCI.5147-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aracri P, Banfi D, Pasini ME, Amadeo A, Becchetti A (2015) Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex. Cereb Cortex 25(5):1330–1347. doi:10.1093/cercor/bht326

    Article  PubMed  Google Scholar 

  40. Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Chou J, Chen BT, Bonci A (2009) Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 29(36):11215–11225. doi:10.1523/JNEUROSCI.6096-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borgland SL, Storm E, Bonci A (2008) Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. Eur J Neurosci 28(8):1545–1556. doi:10.1111/j.1460-9568.2008.06397.x

    Article  CAS  PubMed  Google Scholar 

  42. Davis SF, Williams KW, Xu W, Glatzer NR, Smith BN (2003) Selective enhancement of synaptic inhibition by hypocretin (orexin) in rat vagal motor neurons: implications for autonomic regulation. J Neurosci 23(9):3844–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dergacheva O, Bateman R, Byrne P, Mendelowitz D (2012) Orexinergic modulation of GABAergic neurotransmission to cardiac vagal neurons in the brain stem nucleus ambiguus changes during development. Neuroscience 209:12–20. doi:10.1016/j.neuroscience.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Gao XB, Sakurai T, van den Pol AN (2002) Hypocretin/Orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36(6):1169–1181

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Xu Y, van den Pol AN (2013) Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons. J Neurophysiol 109(6):1571–1578. doi:10.1152/jn.00522.2012

    Article  CAS  PubMed  Google Scholar 

  46. Ono K, Kai A, Honda E, Inenaga K (2008) Hypocretin-1/orexin-A activates subfornical organ neurons of rats. Neuroreport 19(1):69–73. doi:10.1097/WNR.0b013e3282f32d64

    Article  CAS  PubMed  Google Scholar 

  47. Palus K, Chrobok L, Lewandowski MH (2015) Orexins/hypocretins modulate the activity of NPY-positive and -negative neurons in the rat intergeniculate leaflet via OX1 and OX2 receptors. Neuroscience 300:370–380. doi:10.1016/j.neuroscience.2015.05.039

    Article  CAS  PubMed  Google Scholar 

  48. Smith BN, Davis SF, Van Den Pol AN, Xu W (2002) Selective enhancement of excitatory synaptic activity in the rat nucleus tractus solitarius by hypocretin 2. Neuroscience 115(3):707–714

    Article  CAS  PubMed  Google Scholar 

  49. van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB (1998) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci 18(19):7962–7971

    Article  PubMed  PubMed Central  Google Scholar 

  50. Selbach O, Bohla C, Barbara A, Doreulee N, Eriksson KS, Sergeeva OA, Haas HL (2010) Orexins/hypocretins control bistability of hippocampal long-term synaptic plasticity through co-activation of multiple kinases. Acta Physiol (Oxf) 198(3):277–285. doi:10.1111/j.1748-1716.2009.02021.x

    Article  CAS  PubMed  Google Scholar 

  51. Selbach O, Doreulee N, Bohla C, Eriksson KS, Sergeeva OA, Poelchen W, Brown RE, Haas HL (2004) Orexins/hypocretins cause sharp wave- and theta-related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling. Neuroscience 127(2):519–528

    Article  CAS  PubMed  Google Scholar 

  52. Yang L, Zou B, Xiong X, Pascual C, Xie J, Malik A, Xie J, Sakurai T, Xie XS (2013) Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. J Neurosci 33(12):5275–5284. doi:10.1523/JNEUROSCI.3200-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang H, Ghosh P, van den Pol AN (2006) Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal. J Neurophysiol 95(3):1656–1668. doi:10.1152/jn.00927.2005

    Article  PubMed  Google Scholar 

  54. Kim J, Nakajima K, Oomura Y, Wayner MJ, Sasaki K (2009) Electrophysiological effects of orexins/hypocretins on pedunculopontine tegmental neurons in rats: an in vitro study. Peptides 30(2):191–209. doi:10.1016/j.peptides.2008.09.023

    Article  CAS  PubMed  Google Scholar 

  55. Kim J, Nakajima K, Oomura Y, Wayner MJ, Sasaki K (2009) Orexin-A and ghrelin depolarize the same pedunculopontine tegmental neurons in rats: an in vitro study. Peptides 30(7):1328–1335. doi:10.1016/j.peptides.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  56. Kolaj M, Doroshenko P, Yan Cao X, Coderre E, Renaud LP (2007) Orexin-induced modulation of state-dependent intrinsic properties in thalamic paraventricular nucleus neurons attenuates action potential patterning and frequency. Neuroscience 147(4):1066–1075. doi:10.1016/j.neuroscience.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  57. Mukai K, Kim J, Nakajima K, Oomura Y, Wayner MJ, Sasaki K (2009) Electrophysiological effects of orexin/hypocretin on nucleus accumbens shell neurons in rats: an in vitro study. Peptides 30(8):1487–1496. doi:10.1016/j.peptides.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  58. Murai Y, Akaike T (2005) Orexins cause depolarization via nonselective cationic and K+ channels in isolated locus coeruleus neurons. Neurosci Res 51(1):55–65. doi:10.1016/j.neures.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  59. Wu M, Zaborszky L, Hajszan T, van den Pol AN, Alreja M (2004) Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons. J Neurosci 24(14):3527–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yan J, He C, Xia JX, Zhang D, Hu ZA (2012) Orexin-A excites pyramidal neurons in layer 2/3 of the rat prefrontal cortex. Neurosci Lett 520(1):92–97. doi:10.1016/j.neulet.2012.05.038

    Article  CAS  PubMed  Google Scholar 

  61. Yang B, Ferguson AV (2003) Orexin-A depolarizes nucleus tractus solitarius neurons through effects on nonselective cationic and K+ conductances. J Neurophysiol 89(4):2167–2175. doi:10.1152/jn.01088.2002

    Article  CAS  PubMed  Google Scholar 

  62. Yang B, Samson WK, Ferguson AV (2003) Excitatory effects of orexin-A on nucleus tractus solitarius neurons are mediated by phospholipase C and protein kinase C. J Neurosci 23(15):6215–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang J, Li B, Yu L, He YC, Li HZ, Zhu JN, Wang JJ (2011) A role for orexin in central vestibular motor control. Neuron 69(4):793–804. doi:10.1016/j.neuron.2011.01.026

    Article  CAS  PubMed  Google Scholar 

  64. Yamanaka A, Tabuchi S, Tsunematsu T, Fukazawa Y, Tominaga M (2010) Orexin directly excites orexin neurons through orexin 2 receptor. J Neurosci 30(38):12642–12652. doi:10.1523/JNEUROSCI.2120-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou WL, Gao XB, Picciotto MR (2015) Acetylcholine acts through nicotinic receptors to enhance the firing rate of a subset of hypocretin neurons in the mouse hypothalamus through distinct presynaptic and postsynaptic mechanisms. eNeuro 2(1). doi:10.1523/ENEURO.0052-14.2015

  66. Xia J, Chen X, Song C, Ye J, Yu Z, Hu Z (2005) Postsynaptic excitation of prefrontal cortical pyramidal neurons by hypocretin-1/orexin A through the inhibition of potassium currents. J Neurosci Res 82(5):729–736. doi:10.1002/jnr.20667

    Article  CAS  PubMed  Google Scholar 

  67. Grabauskas G, Moises HC (2003) Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscerotopically organized sensitivity to orexin. J Physiol 549(Pt 1):37–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Muroya S, Funahashi H, Yamanaka A, Kohno D, Uramura K, Nambu T, Shibahara M, Kuramochi M, Takigawa M, Yanagisawa M, Sakurai T, Shioda S, Yada T (2004) Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca 2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. Eur J Neurosci 19(6):1524–1534

    Article  PubMed  Google Scholar 

  69. Apergis-Schoute J, Iordanidou P, Faure C, Jego S, Schone C, Aitta-Aho T, Adamantidis A, Burdakov D (2015) Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci 35(14):5435–5441. doi:10.1523/jneurosci.5269-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kohlmeier KA, Watanabe S, Tyler CJ, Burlet S, Leonard CS (2008) Dual orexin actions on dorsal raphe and laterodorsal tegmentum neurons: noisy cation current activation and selective enhancement of Ca2+ transients mediated by L-type calcium channels. J Neurophysiol 100(4):2265–2281. doi:10.1152/jn.01388.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu F, Weng SJ, Yang XL, Zhong YM (2015) Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells. Neuroscience 305:225–237. doi:10.1016/j.neuroscience.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  72. Wu WN, Wu PF, Zhou J, Guan XL, Zhang Z, Yang YJ, Long LH, Xie N, Chen JG, Wang F (2013) Orexin-A activates hypothalamic AMP-activated protein kinase signaling through a Ca(2)(+)-dependent mechanism involving voltage-gated L-type calcium channel. Mol Pharmacol 84(6):876–887. doi:10.1124/mol.113.086744

    Article  CAS  PubMed  Google Scholar 

  73. Putula J, Pihlajamaa T, Kukkonen JP (2014) Calcium affects OX1 orexin (hypocretin) receptor responses by modifying both orexin binding and the signal transduction machinery. Br J Pharmacol 171(24):5816–5828. doi:10.1111/bph.12883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bernard R, Lydic R, Baghdoyan HA (2002) Hypocretin-1 activates G proteins in arousal-related brainstem nuclei of rat. Neuroreport 13(4):447–450

    Article  CAS  PubMed  Google Scholar 

  75. Bernard R, Lydic R, Baghdoyan HA (2003) Hypocretin-1 causes G protein activation and increases ACh release in rat pons. Eur J Neurosci 18(7):1775–1785. doi:10.1046/j.1460-9568.2003.02905.x

    Article  PubMed  Google Scholar 

  76. Karteris E, Machado RJ, Chen J, Zervou S, Hillhouse EW, Randeva HS (2005) Food deprivation differentially modulates orexin receptor expression and signalling in the rat hypothalamus and adrenal cortex. Am J Physiol Endocrinol Metab 288(6):E1089–E1100. doi:10.1152/ajpendo.00351.2004

    Article  CAS  PubMed  Google Scholar 

  77. Haj-Dahmane S, Shen RY (2005) The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling. J Neurosci 25(4):896–905. doi:10.1523/JNEUROSCI.3258-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ho YC, Lee HJ, Tung LW, Liao YY, Fu SY, Teng SF, Liao HT, Mackie K, Chiou LC (2011) Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition. J Neurosci 31(41):14600–14610. doi:10.1523/JNEUROSCI.2671-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89(1):309–380. doi:10.1152/physrev.00019.2008

    Article  CAS  PubMed  Google Scholar 

  80. Malendowicz LK, Tortorella C, Nussdorfer GG (1999) Orexins stimulate corticosterone secretion of rat adrenocortical cells, through the activation of the adenylate cyclase-dependent signaling cascade. J Steroid Biochem Mol Biol 70(4-6):185–188

    Article  CAS  PubMed  Google Scholar 

  81. Mazzocchi G, Malendowicz LK, Gottardo L, Aragona F, Nussdorfer GG (2001) Orexin A stimulates cortisol secretion from human adrenocortical cells through activation of the adenylate cyclase-dependent signaling cascade. J Clin Endocrinol Metab 86(2):778–782

    Article  CAS  PubMed  Google Scholar 

  82. Randeva HS, Karteris E, Grammatopoulos D, Hillhouse EW (2001) Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: implications for adrenal function and energy homeostasis. J Clin Endocrinol Metab 86(10):4808–4813

    Article  CAS  PubMed  Google Scholar 

  83. Sunahara RK, Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2(3):168–184. doi:10.1124/mi.2.3.168

    Article  CAS  PubMed  Google Scholar 

  84. Ramanjaneya M, Conner AC, Chen J, Stanfield PR, Randeva HS (2008) Orexins stimulate steroidogenic acute regulatory protein expression through multiple signaling pathways in human adrenal H295R cells. Endocrinology 149(8):4106–4115. doi:10.1210/en.2007-1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wenzel J, Grabinski N, Knopp CA, Dendorfer A, Ramanjaneya M, Randeva HS, Ehrhart-Bornstein M, Dominiak P, Johren O (2009) Hypocretin/orexin increases the expression of steroidogenic enzymes in human adrenocortical NCI H295R cells. Am J Physiol Regul Integr Comp Physiol 297(5):R1601–R1609. doi:10.1152/ajpregu.91034.2008

    Article  CAS  PubMed  Google Scholar 

  86. Chen XW, Huang W, Yan JA, Fan HX, Guo N, Lu J, Xiu Y, Gu JL, Zhang CX, Ruan HZ, Hu ZA, Yu ZP, Zhou Z (2008) Reinvestigation of the effect of orexin A on catecholamine release from adrenal chromaffin cells. Neurosci Lett 436(2):181–184. doi:10.1016/j.neulet.2008.03.014

    Article  CAS  PubMed  Google Scholar 

  87. Mazzocchi G, Malendowicz LK, Aragona F, Rebuffat P, Gottardo L, Nussdorfer GG (2001) Human pheochromocytomas express orexin receptor type 2 gene and display an in vitro secretory response to orexins A and B. J Clin Endocrinol Metab 86(10):4818–4821

    Article  CAS  PubMed  Google Scholar 

  88. Nakabayashi M, Suzuki T, Takahashi K, Totsune K, Muramatsu Y, Kaneko C, Date F, Takeyama J, Darnel AD, Moriya T, Sasano H (2003) Orexin-A expression in human peripheral tissues. Mol Cell Endocrinol 205(1-2):43–50

    Article  CAS  PubMed  Google Scholar 

  89. Chen C, Xu R (2003) The in vitro regulation of growth hormone secretion by orexins. Endocrine 22(1):57–66

    Article  PubMed  Google Scholar 

  90. Samson WK, Taylor MM (2001) Hypocretin/orexin suppresses corticotroph responsiveness in vitro. Am J Physiol Regul Integr Comp Physiol 281(4):R1140–R1145

    Article  CAS  PubMed  Google Scholar 

  91. Göncz E, Strowski MZ, Grotzinger C, Nowak KW, Kaczmarek P, Sassek M, Mergler S, El-Zayat BF, Theodoropoulou M, Stalla GK, Wiedenmann B, Plockinger U (2008) Orexin-A inhibits glucagon secretion and gene expression through a Foxo1-dependent pathway. Endocrinology 149(4):1618–1626. doi:10.1210/en.2007-1257

    Article  CAS  PubMed  Google Scholar 

  92. Wymann MP, Zvelebil M, Laffargue M (2003) Phosphoinositide 3-kinase signalling--which way to target? Trends Pharmacol Sci 24(7):366–376. doi:10.1016/S0165-6147(03)00163-9

    Article  CAS  PubMed  Google Scholar 

  93. Karteris E, Chen J, Randeva HS (2004) Expression of human prepro-orexin and signaling characteristics of orexin receptors in the male reproductive system. J Clin Endocrinol Metab 89(4):1957–1962. doi:10.1210/jc.2003-031778

    Article  CAS  PubMed  Google Scholar 

  94. Barreiro ML, Pineda R, Gaytan F, Archanco M, Burrell MA, Castellano JM, Hakovirta H, Nurmio M, Pinilla L, Aguilar E, Toppari J, Dieguez C, Tena-Sempere M (2005) Pattern of orexin expression and direct biological actions of orexin-a in rat testis. Endocrinology 146(12):5164–5175. doi:10.1210/en.2005-0455

    Article  CAS  PubMed  Google Scholar 

  95. Barreiro ML, Pineda R, Navarro VM, Lopez M, Suominen JS, Pinilla L, Senaris R, Toppari J, Aguilar E, Dieguez C, Tena-Sempere M (2004) Orexin 1 receptor messenger ribonucleic acid expression and stimulation of testosterone secretion by orexin-A in rat testis. Endocrinology 145(5):2297–2306

    Article  CAS  PubMed  Google Scholar 

  96. Jöhren O, Neidert SJ, Kummer M, Dendorfer A, Dominiak P (2001) Prepro-orexin and orexin receptor mRNAs are differentially expressed in peripheral tissues of male and female rats. Endocrinology 142(8):3324–3331

    Article  PubMed  Google Scholar 

  97. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585. doi:10.1016/S0092-8674(00)80949-6

    Article  CAS  PubMed  Google Scholar 

  98. Tafuri S, Muto RL, Pavone LM, Valiante S, Costagliola A, Staiano N, Vittoria A (2010) Novel localization of orexin A in the tubular cytotypes of the rat testis. Regul Pept 164(2-3):53–57. doi:10.1016/j.regpep.2010.06.011

    Article  CAS  PubMed  Google Scholar 

  99. Kirchgessner AL, Liu M (1999) Orexin synthesis and response in the gut. Neuron 24(4):941–951

    Article  CAS  PubMed  Google Scholar 

  100. Matsuo K, Kaibara M, Uezono Y, Hayashi H, Taniyama K, Nakane Y (2002) Involvement of cholinergic neurons in orexin-induced contraction of guinea pig ileum. Eur J Pharmacol 452(1):105–109

    Article  CAS  PubMed  Google Scholar 

  101. Squecco R, Garella R, Luciani G, Francini F, Baccari MC (2011) Muscular effects of orexin A on the mouse duodenum: mechanical and electrophysiological studies. J Physiol 589(Pt 21):5231–5246. doi:10.1113/jphysiol.2011.214940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rouet-Benzineb P, Rouyer-Fessard C, Jarry A, Avondo V, Pouzet C, Yanagisawa M, Laboisse C, Laburthe M, Voisin T (2004) Orexins acting at native OX(1) receptor in colon cancer and neuroblastoma cells or at recombinant OX(1) receptor suppress cell growth by inducing apoptosis. J Biol Chem 279(44):45875–45886. doi:10.1074/jbc.M404136200

    Article  CAS  PubMed  Google Scholar 

  103. Voisin T, El Firar A, Fasseu M, Rouyer-Fessard C, Descatoire V, Walker F, Paradis V, Bedossa P, Henin D, Lehy T, Laburthe M (2011) Aberrant expression of OX1 receptors for orexins in colon cancers and liver metastases: an openable gate to apoptosis. Cancer Res 71(9):3341–3351. doi:10.1158/0008-5472.CAN-10-3473

    Article  CAS  PubMed  Google Scholar 

  104. Voisin T, Firar AE, Avondo V, Laburthe M (2006) Orexin-induced apoptosis: the key role of the seven-transmembrane domain orexin type 2 receptor. Endocrinology 147(10):4977–4984. doi:10.1210/en.2006-0201

    Article  CAS  PubMed  Google Scholar 

  105. Sellayah D, Bharaj P, Sikder D (2011) Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab 14(4):478–490. doi:10.1016/j.cmet.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  106. Sellayah D, Sikder D (2012) Orexin receptor-1 mediates brown fat developmental differentiation. Adipocyte 1(1):58–63. doi:10.4161/adip.18965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Digby JE, Chen J, Tang JY, Lehnert H, Matthews RN, Randeva HS (2006) Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B. J Endocrinol 191(1):129–136. doi:10.1677/joe.1.06886

    Article  CAS  PubMed  Google Scholar 

  108. Skrzypski M, Le TT, Kaczmarek P, Pruszynska-Oszmalek E, Pietrzak P, Szczepankiewicz D, Kolodziejski PA, Sassek M, Arafat A, Wiedenmann B, Nowak KW, Strowski MZ (2011) Orexin A stimulates glucose uptake, lipid accumulation and adiponectin secretion from 3T3-L1 adipocytes and isolated primary rat adipocytes. Diabetologia 54(7):1841–1852. doi:10.1007/s00125-011-2152-2

    Article  CAS  PubMed  Google Scholar 

  109. Skrzypski M, Kaczmarek P, Le TT, Wojciechowicz T, Pruszynska-Oszmalek E, Szczepankiewicz D, Sassek M, Arafat A, Wiedenmann B, Nowak KW, Strowski MZ (2012) Effects of orexin A on proliferation, survival, apoptosis and differentiation of 3T3-L1 preadipocytes into mature adipocytes. FEBS Lett 586(23):4157–4164. doi:10.1016/j.febslet.2012.10.013

    Article  CAS  PubMed  Google Scholar 

  110. Zwirska-Korczala K, Adamczyk-Sowa M, Sowa P, Pilc K, Suchanek R, Pierzchala K, Namyslowski G, Misiolek M, Sodowski K, Kato I, Kuwahara A, Zabielski R (2007) Role of leptin, ghrelin, angiotensin II and orexins in 3T3 L1 preadipocyte cells proliferation and oxidative metabolism. J Physiol Pharmacol 58(Suppl 1):53–64

    PubMed  Google Scholar 

  111. Kim MK, Park HJ, Kim SR, Choi YK, Bae SK, Bae MK (2015) Involvement of heme oxygenase-1 in orexin-a-induced angiogenesis in vascular endothelial cells. Korean J Physiol Pharmacol 19(4):327–334. doi:10.4196/kjpp.2015.19.4.327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Johansson L, Ekholm ME, Kukkonen JP (2008) Multiple phospholipase activation by OX(1) orexin/hypocretin receptors. Cell Mol Life Sci 65(12):1948–1956. doi:10.1007/s00018-008-8206-z

    Article  CAS  PubMed  Google Scholar 

  113. Lund PE, Shariatmadari R, Uustare A, Detheux M, Parmentier M, Kukkonen JP, Åkerman KEO (2000) The orexin OX1 receptor activates a novel Ca2+ influx pathway necessary for coupling to phospholipase C. J Biol Chem 275(40):30806–30812. doi:10.1074/jbc.M002603200

    Article  CAS  PubMed  Google Scholar 

  114. Kukkonen JP (2016) OX orexin/hypocretin receptor signal transduction in recombinant Chinese hamster ovary cells. Cell Signal 28(2):51–60. doi:10.1016/j.cellsig.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  115. Turunen PM, Jäntti MH, Kukkonen JP (2012) OX1 orexin/hypocretin receptor signaling via arachidonic acid and endocannabinoid release. Mol Pharmacol 82(2):156–167. doi:10.1124/mol.112.078063

    Article  CAS  PubMed  Google Scholar 

  116. Jäntti MH, Putula J, Somerharju P, Frohman MA, Kukkonen JP (2012) OX1 orexin/hypocretin receptor activation of phospholipase D. Br J Pharmacol 165(4b):1109–1123. doi:10.1111/j.1476-5381.2011.01565.x

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kukkonen JP (2016) G-protein-dependency of orexin/hypocretin receptor signalling in recombinant Chinese hamster ovary cells. Biochem Biophys Res Commun 476:379–385. doi:10.1016/j.bbrc.2016.05.130

    Article  CAS  PubMed  Google Scholar 

  118. Holmqvist T, Johansson L, Östman M, Ammoun S, Åkerman KE, Kukkonen JP (2005) OX1 orexin receptors couple to adenylyl cyclase regulation via multiple mechanisms. J Biol Chem 280(8):6570–6579. doi:10.1074/jbc.M407397200

    Article  CAS  PubMed  Google Scholar 

  119. Ammoun S, Johansson L, Ekholm ME, Holmqvist T, Danis AS, Korhonen L, Sergeeva OA, Haas HL, Åkerman KE, Kukkonen JP (2006) OX1 orexin receptors activate extracellular signal-regulated kinase (ERK) in CHO cells via multiple mechanisms: the role of Ca2+ influx in OX1 receptor signaling. Mol Endocrinol 20(1):80–99. doi:10.1210/me.2004-0389

    Article  CAS  PubMed  Google Scholar 

  120. Ammoun S, Lindholm D, Wootz H, Åkerman KE, Kukkonen JP (2006) G-protein-coupled OX1 orexin/hcrtr-1 hypocretin receptors induce caspase-dependent and -independent cell death through p38 mitogen-/stress-activated protein kinase. J Biol Chem 281(2):834–842. doi:10.1074/jbc.M508603200

    Article  CAS  PubMed  Google Scholar 

  121. Ekholm ME, Johansson L, Kukkonen JP (2007) IP3-independent signalling of OX1 orexin/hypocretin receptors to Ca2+ influx and ERK. Biochem Biophys Res Commun 353(2):475–480. doi:10.1016/j.bbrc.2006.12.045

    Article  CAS  PubMed  Google Scholar 

  122. Larsson KP, Peltonen HM, Bart G, Louhivuori LM, Penttonen A, Antikainen M, Kukkonen JP, Åkerman KE (2005) Orexin-A-induced Ca2+ entry: evidence for involvement of TRPC channels and protein kinase C regulation. J Biol Chem 280(3):1771–1781. doi:10.1074/jbc.M406073200

    Article  CAS  PubMed  Google Scholar 

  123. Johansson L, Ekholm ME, Kukkonen JP (2007) Regulation of OX(1) orexin/hypocretin receptor-coupling to phospholipase C by Ca(2+) influx. Br J Pharmacol 150(1):97–104. doi:10.1038/sj.bjp.0706959

    Article  CAS  PubMed  Google Scholar 

  124. Turunen PM, Ekholm ME, Somerharju P, Kukkonen JP (2010) Arachidonic acid release mediated by OX1 orexin receptors. Br J Pharmacol 159(1):212–221. doi:10.1111/j.1476-5381.2009.00535.x

    Article  CAS  PubMed  Google Scholar 

  125. El Firar A, Voisin T, Rouyer-Fessard C, Ostuni MA, Couvineau A, Laburthe M (2009) Discovery of a functional immunoreceptor tyrosine-based switch motif in a 7-transmembrane-spanning receptor: role in the orexin receptor OX1R-driven apoptosis. FASEB J 23(12):4069–4080. doi:10.1096/fj.09-131367

    Article  CAS  PubMed  Google Scholar 

  126. Putula J, Kukkonen JP (2012) Mapping of the binding sites for the OX(1) orexin receptor antagonist, SB-334867, using orexin/hypocretin receptor chimaeras. Neurosci Lett 506(1):111–115. doi:10.1016/j.neulet.2011.10.061

    Article  CAS  PubMed  Google Scholar 

  127. Putula J, Turunen PM, Jäntti MH, Ekholm ME, Kukkonen JP (2011) Agonist ligand discrimination by the two orexin receptors depends on the expression system. Neurosci Lett 494(1):57–60. doi:10.1016/j.neulet.2011.02.055

  128. Peltonen HM, Magga JM, Bart G, Turunen PM, Antikainen MS, Kukkonen JP, Åkerman KE (2009) Involvement of TRPC3 channels in calcium oscillations mediated by OX(1) orexin receptors. Biochem Biophys Res Commun 385(3):408–412. doi:10.1016/j.bbrc.2009.05.077

    Article  CAS  PubMed  Google Scholar 

  129. Tang J, Chen J, Ramanjaneya M, Punn A, Conner AC, Randeva HS (2008) The signalling profile of recombinant human orexin-2 receptor. Cell Signal 20(9):1651–1661. doi:10.1016/j.cellsig.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  130. Holmqvist T, Åkerman KEO, Kukkonen JP (2002) Orexin signaling in recombinant neuron-like cells. FEBS Lett 526:11–14. doi:10.1016/S0014-5793(02)03101-0

    Article  CAS  PubMed  Google Scholar 

  131. Zhu Y, Miwa Y, Yamanaka A, Yada T, Shibahara M, Abe Y, Sakurai T, Goto K (2003) Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J Pharmacol Sci 92(3):259–266

    Article  CAS  PubMed  Google Scholar 

  132. Louhivuori LM, Jansson L, Nordstrom T, Bart G, Nasman J, Akerman KE (2010) Selective interference with TRPC3/6 channels disrupts OX1 receptor signalling via NCX and reveals a distinct calcium influx pathway. Cell Calcium 48(2-3):114–123. doi:10.1016/j.ceca.2010.07.005

    Article  CAS  PubMed  Google Scholar 

  133. Näsman J, Bart G, Larsson K, Louhivuori L, Peltonen H, Åkerman KE (2006) The orexin OX1 receptor regulates Ca2+ entry via diacylglycerol-activated channels in differentiated neuroblastoma cells. J Neurosci 26(42):10658–10666. doi:10.1523/JNEUROSCI.2609-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang Z, Liu S, Kakizaki M, Hirose Y, Ishikawa Y, Funato H, Yanagisawa M, Yu Y, Liu Q (2014) Orexin/hypocretin activates mTOR complex 1 (mTORC1) via an Erk/Akt-independent and calcium-stimulated lysosome v-ATPase pathway. J Biol Chem 289(46):31950–31959. doi:10.1074/jbc.M114.600015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gorojankina T, Grebert D, Salesse R, Tanfin Z, Caillol M (2007) Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways. Regul Pept 141(1-3):73–85. doi:10.1016/j.regpep.2006.12.012

    Article  CAS  PubMed  Google Scholar 

  136. Voisin T, El Firar A, Rouyer-Fessard C, Gratio V, Laburthe M (2008) A hallmark of immunoreceptor, the tyrosine-based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechanism. FASEB J 22(6):1993–2002. doi:10.1096/fj.07-098723

    Article  CAS  PubMed  Google Scholar 

  137. Hungs M, Fan J, Lin L, Lin X, Maki RA, Mignot E (2001) Identification and functional analysis of mutations in the hypocretin (orexin) genes of narcoleptic canines. Genome Res 11(4):531–539. doi:10.1101/gr.161001

    Article  CAS  PubMed  Google Scholar 

  138. Chen J, Randeva HS (2004) Genomic organization of mouse orexin receptors: characterization of two novel tissue-specific splice variants. Mol Endocrinol 18(11):2790–2804. doi:10.1210/me.2004-0167

    Article  CAS  PubMed  Google Scholar 

  139. Wang C, Pan Y, Zhang R, Bai B, Chen J, Randeva HS (2014) Heterodimerization of Mouse Orexin type 2 receptor variants and the effects on signal transduction. Biochim Biophys Acta 1843(3):652–663. doi:10.1016/j.bbamcr.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  140. Maggio R, Innamorati G, Parenti M (2007) G protein-coupled receptor oligomerization provides the framework for signal discrimination. J Neurochem 103(5):1741–1752. doi:10.1111/j.1471-4159.2007.04896.x

    Article  CAS  PubMed  Google Scholar 

  141. Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158(1):5–14. doi:10.1111/j.1476-5381.2009.00169.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jäntti MH, Mandrika I, Kukkonen JP (2014) Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors. Biochem Biophys Res Commun 445(2):486–490. doi:10.1016/j.bbrc.2014.02.026

    Article  CAS  PubMed  Google Scholar 

  143. Xu TR, Ward RJ, Pediani JD, Milligan G (2011) The orexin OX1 receptor exists predominantly as a homodimer in the basal state: potential regulation of receptor organization by both agonist and antagonist ligands. Biochem J 439(1):171–183. doi:10.1042/BJ20110230

    Article  CAS  PubMed  Google Scholar 

  144. Ward RJ, Pediani JD, Milligan G (2011) Hetero-multimerization of the cannabinoid CB1 receptor and the orexin OX1 receptor generates a unique complex in which both protomers are regulated by orexin A. J Biol Chem 286(43):37414–37428. doi:10.1074/jbc.M111.287649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jäntti MH, Putula J, Turunen PM, Näsman J, Reijonen S, Kukkonen JP (2013) Autocrine endocannabinoid signaling potentiates orexin receptor signaling upon CB1 cannabinoid-OX1 orexin receptor coexpression. Mol Pharmacol 83(3):621–632. doi:10.1124/mol.112.080523

    Article  CAS  PubMed  Google Scholar 

  146. Robinson JD, McDonald PH (2015) The orexin 1 receptor modulates kappa opioid receptor function via a JNK-dependent mechanism. Cell Signal 27(7):1449–1456. doi:10.1016/j.cellsig.2015.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen J, Zhang R, Chen X, Wang C, Cai X, Liu H, Jiang Y, Liu C, Bai B (2015) Heterodimerization of human orexin receptor 1 and kappa opioid receptor promotes protein kinase A/cAMP-response element binding protein signaling via a Galphas-mediated mechanism. Cell Signal 27(7):1426–1438. doi:10.1016/j.cellsig.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  148. Davies J, Chen J, Pink R, Carter D, Saunders N, Sotiriadis G, Bai B, Pan Y, Howlett D, Payne A, Randeva H, Karteris E (2015) Orexin receptors exert a neuroprotective effect in Alzheimer’s disease (AD) via heterodimerization with GPR103. Sci Rep 5:12584. doi:10.1038/srep12584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Navarro G, Quiroz C, Moreno-Delgado D, Sierakowiak A, McDowell K, Moreno E, Rea W, Cai NS, Aguinaga D, Howell LA, Hausch F, Cortes A, Mallol J, Casado V, Lluis C, Canela EI, Ferre S, McCormick PJ (2015) Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine. J Neurosci 35(17):6639–6653. doi:10.1523/JNEUROSCI.4364-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Scarselli M, Annibale P, McCormick PJ, Kolachalam S, Aringhieri S, Radenovic A, Corsini GU, Maggio R (2015) Revealing GPCR oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function. FEBS J. doi:10.1111/febs.13577

    Article  PubMed  Google Scholar 

  151. Cockcroft S (2009) Phosphatidic acid regulation of phosphatidylinositol 4-phosphate 5-kinases. Biochim Biophys Acta 1791(9):905–912. doi:10.1016/j.bbalip.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  152. Bjornstrom K, Turina D, Strid T, Sundqvist T, Eintrei C (2014) Orexin A inhibits propofol-induced neurite retraction by a phospholipase D/protein kinase Cepsilon-dependent mechanism in neurons. PLoS One 9(5), e97129. doi:10.1371/journal.pone.0097129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ahn S, Shenoy SK, Wei H, Lefkowitz RJ (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279(34):35518–35525. doi:10.1074/jbc.M405878200

    Article  CAS  PubMed  Google Scholar 

  154. Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390(6655):88–91

    Article  CAS  PubMed  Google Scholar 

  155. Kukkonen JP, Näsman J, Åkerman KEO (2001) Modelling of promiscuous receptor-Gi/Gs-protein coupling and effector response. Trends Pharmacol Sci 22(12):616–622

    Article  CAS  PubMed  Google Scholar 

  156. Newman-Tancredi A, Cussac D, Marini L, Millan MJ (2002) Antibody capture assay reveals bell-shaped concentration-response isotherms for h5-HT(1A) receptor-mediated Galpha(i3) activation: conformational selection by high-efficacy agonists, and relationship to trafficking of receptor signaling. Mol Pharmacol 62(3):590–601

    Article  CAS  PubMed  Google Scholar 

  157. Sun Y, Huang J, Xiang Y, Bastepe M, Juppner H, Kobilka BK, Zhang JJ, Huang XY (2007) Dosage-dependent switch from G protein-coupled to G protein-independent signaling by a GPCR. EMBO J 26(1):53–64. doi:10.1038/sj.emboj.7601502

    Article  CAS  PubMed  Google Scholar 

  158. Zhang L, Zhao H, Qiu Y, Loh HH, Law PY (2009) Src phosphorylation of micro-receptor is responsible for the receptor switching from an inhibitory to a stimulatory signal. J Biol Chem 284(4):1990–2000. doi:10.1074/jbc.M807971200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen J, Randeva HS (2010) Genomic organization and regulation of the human orexin (hypocretin) receptor 2 gene: identification of alternative promoters. Biochem J 427(3):377–390. doi:10.1042/BJ20091755

    Article  CAS  PubMed  Google Scholar 

  160. Kalogiannis M, Hsu E, Willie JT, Chemelli RM, Kisanuki YY, Yanagisawa M, Leonard CS (2011) Cholinergic modulation of narcoleptic attacks in double orexin receptor knockout mice. PLoS One 6(4), e18697. doi:10.1371/journal.pone.0018697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98(3):365–376. doi:10.1016/S0092-8674(00)81965-0

    Article  CAS  PubMed  Google Scholar 

  162. Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, Marcus JN, Lee C, Elmquist JK, Kohlmeier KA, Leonard CS, Richardson JA, Hammer RE, Yanagisawa M (2003) Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38(5):715–730

    Article  CAS  PubMed  Google Scholar 

  163. Asahi S, Egashira S, Matsuda M, Iwaasa H, Kanatani A, Ohkubo M, Ihara M, Morishima H (2003) Development of an orexin-2 receptor selective agonist, [Ala(11), D-Leu(15)]orexin-B. Bioorg Med Chem Lett 13(1):111–113

    Article  CAS  PubMed  Google Scholar 

  164. Kukkonen JP (2013) Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 301(1):C2–C32. doi:10.1152/ajpcell.00227.2012

    Article  CAS  Google Scholar 

  165. Karhu L, Turku A, Xhaard H (2015) Modeling of the OX1R-orexin-A complex suggests two alternative binding modes. BMC Struct Biol 15:9. doi:10.1186/s12900-015-0036-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lang M, Soll RM, Durrenberger F, Dautzenberg FM, Beck-Sickinger AG (2004) Structure-activity studies of orexin A and orexin B at the human orexin 1 and orexin 2 receptors led to orexin 2 receptor selective and orexin 1 receptor preferring ligands. J Med Chem 47(5):1153–1160

    Article  CAS  PubMed  Google Scholar 

  167. McElhinny CJ Jr, Lewin AH, Mascarella SW, Runyon S, Brieaddy L, Carroll FI (2012) Hydrolytic instability of the important orexin 1 receptor antagonist SB-334867: possible confounding effects on in vivo and in vitro studies. Bioorg Med Chem Lett 22(21):6661–6664. doi:10.1016/j.bmcl.2012.08.109

    Article  CAS  PubMed  Google Scholar 

  168. Kukkonen JP (2016) G-protein inhibition profile of the reported Gq/11 inhibitor UBO-QIC. Biochem Biophys Res Commun 1(1):101–107. doi:10.1016/j.bbrc.2015.11.078

    Article  CAS  Google Scholar 

  169. Schrage R, Schmitz AL, Gaffal E, Annala S, Kehraus S, Wenzel D, Bullesbach KM, Bald T, Inoue A, Shinjo Y, Galandrin S, Shridhar N, Hesse M, Grundmann M, Merten N, Charpentier TH, Martz M, Butcher AJ, Slodczyk T, Armando S, Effern M, Namkung Y, Jenkins L, Horn V, Stossel A, Dargatz H, Tietze D, Imhof D, Gales C, Drewke C, Muller CE, Holzel M, Milligan G, Tobin AB, Gomeza J, Dohlman HG, Sondek J, Harden TK, Bouvier M, Laporte SA, Aoki J, Fleischmann BK, Mohr K, Konig GM, Tuting T, Kostenis E (2015) The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun 6:10156. doi:10.1038/ncomms10156

    Article  CAS  PubMed  Google Scholar 

  170. Kukkonen JP (2012) Recent progress in orexin/hypocretin physiology and pharmacology. Biomol Concepts 3(5):447–463. doi:10.1515/bmc-2012-0013

    Article  CAS  PubMed  Google Scholar 

  171. Yin J, Babaoglu K, Brautigam CA, Clark L, Shao Z, Scheuermann TH, Harrell CM, Gotter AL, Roecker AJ, Winrow CJ, Renger JJ, Coleman PJ, Rosenbaum DM (2016) Structure and ligand-binding mechanism of the human OX and OX orexin receptors. Nat Struct Mol Biol. doi:10.1038/nsmb.3183

    Article  PubMed  PubMed Central  Google Scholar 

  172. Yin J, Mobarec JC, Kolb P, Rosenbaum DM (2015) Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. Nature 519(7542):247–250. doi:10.1038/nature14035

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyrki P. Kukkonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Kukkonen, J.P. (2016). Orexin/Hypocretin Signaling. In: Lawrence, A.J., de Lecea, L. (eds) Behavioral Neuroscience of Orexin/Hypocretin. Current Topics in Behavioral Neurosciences, vol 33. Springer, Cham. https://doi.org/10.1007/7854_2016_49

Download citation

Publish with us

Policies and ethics