Skip to main content

Electrophysiological Actions of Synthetic Cathinones on Monoamine Transporters

  • Chapter
  • First Online:
Book cover Neuropharmacology of New Psychoactive Substances (NPS)

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 32))

Abstract

Products containing psychoactive synthetic cathinones, such as mephedrone and 3,4-methylenedioxypyrovalerone (MDPV) are prevalent in our society. Synthetic cathinones are structurally similar to methamphetamine, and numerous synthetics have biological activity at dopamine, serotonin, and norepinephrine transporters. Importantly, monoamine transporters co-transport sodium ions along with their substrate, and movement of substrates and ions through the transporter can generate measurable ionic currents. Here we review how electrophysiological information has enabled us to determine how synthetic cathinones affect transporter-mediated currents in cells that express these transporters. Specifically, drugs that act as transporter substrates induce inward depolarizing currents when cells are held near their resting membrane potential, whereas drugs that act as transporter blockers induce apparent outward currents by blocking an inherent inward leak current. We have employed the two-electrode voltage-clamp technique in Xenopus laevis oocytes overexpressing monoamine transporters to determine whether synthetic cathinones found in the so-called bath salts products behave as blockers or substrates. We also examined the structure–activity relationships for synthetic cathinone analogs related to the widely abused compound MDPV, a common constituent in “bath salts” possessing potent actions at the dopamine transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clin Toxicol (Phila) 49:499–505

    CAS  PubMed  Google Scholar 

  2. De Felice LJ, Glennon RA, Negus SS (2014) Synthetic cathinones: chemical phylogeny, physiology, and neuropharmacology. Life Sci 97:20–26

    PubMed  Google Scholar 

  3. Schechter MD, Glennon RA (1985) Cathinone, cocaine and methamphetamine: similarity of behavioral effects. Pharmacol Biochem Behav 22:913–916

    CAS  PubMed  Google Scholar 

  4. Iversen L, White M, Treble R (2014) Designer psychostimulants: pharmacology and differences. Neuropharmacology 87:59–65

    CAS  PubMed  Google Scholar 

  5. Saha K, Partilla JS, Lehner KR, Seddik A, Stockner T, Holy M, Sandtner W, Ecker GF, Sitte HH, Baumann MH (2015) ‘Second-generation’ mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacology 40:1321–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoffman BJ, Hansson SR, Mezey E, Palkovits M (1998) Localization and dynamic regulation of biogenic amine transporters in the mammalian central nervous system. Front Neuroendocrinol 19:187–231

    CAS  PubMed  Google Scholar 

  7. Tao-Cheng JH, Zhou FC (1999) Differential polarization of serotonin transporters in axons versus soma-dendrites: an immunogold electron microscopy study. Neuroscience 94:821–830

    CAS  PubMed  Google Scholar 

  8. Wimalasena K (2011) Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med Res Rev 31:483–519

    CAS  PubMed  Google Scholar 

  9. Schloss P, Williams DC (1998) The serotonin transporter: a primary target for antidepressant drugs. J Psychopharmacol 12:115–121

    CAS  PubMed  Google Scholar 

  10. Stahl SM (1998) Basic psychopharmacology of antidepressants, part 1: antidepressants have seven distinct mechanisms of action. J Clin Psychiatry 59(Suppl 4):5–14

    CAS  PubMed  Google Scholar 

  11. Coppen A, Shaw DM, Herzberg B, Maggs R (1967) Tryptophan in the treatment of depression. Lancet 2:1178–1180

    CAS  PubMed  Google Scholar 

  12. Feighner JP (1994) Clinical effects of serotonin reuptake inhibitors--a review. Fortschr Neurol Psychiatr 62(Suppl 1):9–15

    PubMed  Google Scholar 

  13. Vaswani M, Kalra H (2004) Selective serotonin re-uptake inhibitors in anorexia nervosa. Expert Opin Investig Drugs 13:349–357

    CAS  PubMed  Google Scholar 

  14. Vaswani M, Linda FK, Ramesh S (2003) Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 27:85–102

    CAS  PubMed  Google Scholar 

  15. Barbeau A (1970) Dopamine and disease. Can Med Assoc J 103:824–832

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gainetdinov RR (2008) Dopamine transporter mutant mice in experimental neuropharmacology. Naunyn Schmiedebergs Arch Pharmacol 377:301–313

    CAS  PubMed  Google Scholar 

  17. Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43:261–284

    CAS  PubMed  Google Scholar 

  18. Javitch JA, Snyder SH (1984) Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. Eur J Pharmacol 106:455–456

    CAS  PubMed  Google Scholar 

  19. Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci U S A 77:3033–3037

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwartz JW, Piston D, DeFelice LJ (2006) Molecular microfluorometry: converting arbitrary fluorescence units into absolute molecular concentrations to study binding kinetics and stoichiometry in transporters. Handb Exp Pharmacol (175):23–57

    Google Scholar 

  21. Banks ML, Worst TJ, Rusyniak DE, Sprague JE (2014) Synthetic cathinones (“bath salts”). J Emerg Med 46:632–642

    PubMed  PubMed Central  Google Scholar 

  22. German CL, Fleckenstein AE, Hanson GR (2014) Bath salts and synthetic cathinones: an emerging designer drug phenomenon. Life Sci 97:2–8

    CAS  PubMed  Google Scholar 

  23. Miotto K, Striebel J, Cho AK, Wang C (2013) Clinical and pharmacological aspects of bath salt use: a review of the literature and case reports. Drug Alcohol Depend 132:1–12

    CAS  PubMed  Google Scholar 

  24. Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88:15–45

    CAS  PubMed  Google Scholar 

  25. White KJ, Walline CC, Barker EL (2005) Serotonin transporters: implications for antidepressant drug development. AAPS J 7:E421–E433

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sghendo L, Mifsud J (2012) Understanding the molecular pharmacology of the serotonergic system: using fluoxetine as a model. J Pharm Pharmacol 64:317–325

    CAS  PubMed  Google Scholar 

  27. Stahl SM (1998) Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 51:215–235

    CAS  PubMed  Google Scholar 

  28. Johansen PO, Krebs TS (2009) How could MDMA (ecstasy) help anxiety disorders? A neurobiological rationale. J Psychopharmacol 23:389–391

    CAS  PubMed  Google Scholar 

  29. Mithoefer MC, Wagner MT, Mithoefer AT, Jerome L, Doblin R (2011) The safety and efficacy of {+/-}3,4-methylenedioxymethamphetamine-assisted psychotherapy in subjects with chronic, treatment-resistant posttraumatic stress disorder: the first randomized controlled pilot study. J Psychopharmacol 25:439–452

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wall SC, Gu H, Rudnick G (1995) Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: amphetamine specificity for inhibition and efflux. Mol Pharmacol 47:544–550

    CAS  PubMed  Google Scholar 

  31. Wu X, Gu HH (1999) Molecular cloning of the mouse dopamine transporter and pharmacological comparison with the human homologue. Gene 233:163–170

    CAS  PubMed  Google Scholar 

  32. Henry LK, Blakely RD (2008) Distinctions between dopamine transporter antagonists could be just around the bend. Mol Pharmacol 73:616–618

    CAS  PubMed  Google Scholar 

  33. Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698

    CAS  PubMed  Google Scholar 

  34. Burnette WB, Bailey MD, Kukoyi S, Blakely RD, Trowbridge CG, Justice JB Jr (1996) Human norepinephrine transporter kinetics using rotating disk electrode voltammetry. Anal Chem 68:2932–2938

    CAS  PubMed  Google Scholar 

  35. Holmes JC, Rutledge CO (1976) Effects of the d- and l-isomers of amphetamine on uptake, release and catabolism of norepinephrine, dopamine and 5-hydroxytryptamine in several regions of rat brain. Biochem Pharmacol 25:447–451

    CAS  PubMed  Google Scholar 

  36. Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15:1308–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Phillips AG, Brooke SM, Fibiger HC (1975) Effects of amphetamine isomers and neuroleptics on self-stimulation from the nucleus accumbens and dorsal noradrenergic bundle. Brain Res 85:13–22

    CAS  PubMed  Google Scholar 

  38. Cody JT, Valtier S, Nelson SL (2003) Amphetamine enantiomer excretion profile following administration of Adderall. J Anal Toxicol 27:485–492

    CAS  PubMed  Google Scholar 

  39. Heal DJ, Cheetham SC, Smith SL (2009) The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety. Neuropharmacology 57:608–618

    CAS  PubMed  Google Scholar 

  40. Najib J (2009) The efficacy and safety profile of lisdexamfetamine dimesylate, a prodrug of d-amphetamine, for the treatment of attention-deficit/hyperactivity disorder in children and adults. Clin Ther 31:142–176

    CAS  PubMed  Google Scholar 

  41. Mendelson J, Uemura N, Harris D, Nath RP, Fernandez E, Jacob P 3rd, Everhart ET, Jones RT (2006) Human pharmacology of the methamphetamine stereoisomers. Clin Pharmacol Ther 80:403–420

    CAS  PubMed  Google Scholar 

  42. Potkin SG, Karoum F, Chuang LW, Cannon-Spoor HE, Phillips I, Wyatt RJ (1979) Phenylethylamine in paranoid chronic schizophrenia. Science 206:470–471

    CAS  PubMed  Google Scholar 

  43. Romanelli F, Smith KM (2006) Clinical effects and management of methamphetamine abuse. Pharmacotherapy 26:1148–1156

    CAS  PubMed  Google Scholar 

  44. Winslow BT, Voorhees KI, Pehl KA (2007) Methamphetamine abuse. Am Fam Physician 76:1169–1174

    PubMed  Google Scholar 

  45. Mazei-Robinson MS, Blakely RD (2006) ADHD and the dopamine transporter: are there reasons to pay attention? Handb Exp Pharmacol (175):373–415

    Google Scholar 

  46. Arias HR (2009) Is the inhibition of nicotinic acetylcholine receptors by bupropion involved in its clinical actions? Int J Biochem Cell Biol 41:2098–2108

    CAS  PubMed  Google Scholar 

  47. De Felice LJ (2016) Chloride requirement for monoamine transporters. Pflugers Arch 468:503–511

    PubMed  PubMed Central  Google Scholar 

  48. Singh SK (2008) LeuT: A prokaryotic stepping stone on the way to a eukaryotic neurotransmitter transporter structure. Channels (Austin) 2

    Google Scholar 

  49. Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS, Ganapathy V, Blakely RD (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci U S A 90:2542–2546

    CAS  PubMed  PubMed Central  Google Scholar 

  50. DeFelice LJ, Blakely RD (1996) Pore models for transporters? Biophys J 70:579–580

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Galli A, Blakely RD, DeFelice LJ (1996) Norepinephrine transporters have channel modes of conduction. Proc Natl Acad Sci U S A 93:8671–8676

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rudnick G (1998) Bioenergetics of neurotransmitter transport. J Bioenerg Biomembr 30:173–185

    CAS  PubMed  Google Scholar 

  53. Rudnick G (1998) Ion-coupled neurotransmitter transport: thermodynamic vs. kinetic determinations of stoichiometry. Methods Enzymol 296:233–247

    CAS  PubMed  Google Scholar 

  54. Naftalin RJ (1984) The thermostatics and thermodynamics of cotransport. Biochim Biophys Acta 778:155–175

    CAS  PubMed  Google Scholar 

  55. Stein WD, Lieb WR (1986) Transport and diffusion across cell membranes. Academic, Orlando

    Google Scholar 

  56. Abramson J, Smirnova I, Kasho V, Verner G, Iwata S, Kaback HR (2003) The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport. FEBS Lett 555:96–101

    CAS  PubMed  Google Scholar 

  57. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    CAS  PubMed  Google Scholar 

  58. Penmatsa A, Wang KH, Gouaux E (2015) X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat Struct Mol Biol 22:506–508

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang KH, Penmatsa A, Gouaux E (2015) Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521:322–327

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature 437:215–223

    CAS  PubMed  Google Scholar 

  61. Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    CAS  PubMed  Google Scholar 

  62. Gu H, Wall SC, Rudnick G (1994) Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J Biol Chem 269:7124–7130

    CAS  PubMed  Google Scholar 

  63. McElvain JS, Schenk JO (1992) A multisubstrate mechanism of striatal dopamine uptake and its inhibition by cocaine. Biochem Pharmacol 43:2189–2199

    CAS  PubMed  Google Scholar 

  64. Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci 17:960–974

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A (2003) Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem 278:12070–12077

    CAS  PubMed  Google Scholar 

  66. Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A (2005) Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A 102:3495–3500

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O, Holy M, Koppatz K, Krivanek P, Freissmuth M, Sitte HH (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151

    CAS  PubMed  Google Scholar 

  68. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60:527–535

    CAS  PubMed  Google Scholar 

  70. Khoshbouei H, Sen N, Guptaroy B, Johnson L, Lund D, Gnegy ME, Galli A, Javitch JA (2004) N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol 2, E78

    PubMed  PubMed Central  Google Scholar 

  71. Fog JU, Khoshbouei H, Holy M, Owens WA, Vaegter CB, Sen N, Nikandrova Y, Bowton E, McMahon DG, Colbran RJ, Daws LC, Sitte HH, Javitch JA, Galli A, Gether U (2006) Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51:417–429

    CAS  PubMed  Google Scholar 

  72. DeFelice LJ (2004) Going against the flow. Nature 432:279

    CAS  PubMed  Google Scholar 

  73. DeFelice LJ, Goswami T (2007) Transporters as channels. Annu Rev Physiol 69:87–112

    CAS  PubMed  Google Scholar 

  74. Quick MW (2003) Regulating the conducting states of a mammalian serotonin transporter. Neuron 40:537–549

    CAS  PubMed  Google Scholar 

  75. Adams SV, DeFelice LJ (2002) Flux coupling in the human serotonin transporter. Biophys J 83:3268–3282

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Adams SV, DeFelice LJ (2003) Ionic currents in the human serotonin transporter reveal inconsistencies in the alternating access hypothesis. Biophys J 85:1548–1559

    CAS  PubMed  PubMed Central  Google Scholar 

  77. DeFelice LJ, Galli A (1998) Electrophysiological analysis of transporter function. Adv Pharmacol 42:186–190

    CAS  PubMed  Google Scholar 

  78. DeFelice LJ, Galli A (1998) Fluctuation analysis of norepinephrine and serotonin transporter currents. Methods Enzymol 296:578–593

    CAS  PubMed  Google Scholar 

  79. Galli A, Blakely RD, DeFelice LJ (1998) Patch-clamp and amperometric recordings from norepinephrine transporters: channel activity and voltage-dependent uptake. Proc Natl Acad Sci U S A 95:13260–13265

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Galli A, DeFelice LJ, Duke BJ, Moore KR, Blakely RD (1995) Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J Exp Biol 198:2197–2212

    CAS  PubMed  Google Scholar 

  81. Li C, Zhong H, Wang Y, Wang H, Yang Z, Zheng Y, Liu K, Liu Y (2006) Voltage and ionic regulation of human serotonin transporter in Xenopus oocytes. Clin Exp Pharmacol Physiol 33:1088–1092

    CAS  PubMed  Google Scholar 

  82. Mager S, Min C, Henry DJ, Chavkin C, Hoffman BJ, Davidson N, Lester HA (1994) Conducting states of a mammalian serotonin transporter. Neuron 12:845–859

    CAS  PubMed  Google Scholar 

  83. Petersen CI, DeFelice LJ (1999) Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel. Nat Neurosci 2:605–610

    CAS  PubMed  Google Scholar 

  84. Ramsey IS, DeFelice LJ (2002) Serotonin transporter function and pharmacology are sensitive to expression level: evidence for an endogenous regulatory factor. J Biol Chem 277:14475–14482

    CAS  PubMed  Google Scholar 

  85. Carvelli L, McDonald PW, Blakely RD, Defelice LJ (2004) Dopamine transporters depolarize neurons by a channel mechanism. Proc Natl Acad Sci U S A 101:16046–16051

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ingram SL, Prasad BM, Amara SG (2002) Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons. Nat Neurosci 5:971–978

    CAS  PubMed  Google Scholar 

  87. Quick MW (2002) Role of syntaxin 1A on serotonin transporter expression in developing thalamocortical neurons. Int J Dev Neurosci 20:219–224

    CAS  PubMed  Google Scholar 

  88. Ryan RM, Mindell JA (2007) The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 14:365–371

    CAS  PubMed  Google Scholar 

  89. Sonders MS, Amara SG (1996) Channels in transporters. Curr Opin Neurobiol 6:294–302

    CAS  PubMed  Google Scholar 

  90. Bruns D (1998) Serotonin transport in cultured leech neurons. Methods Enzymol 296:593–607

    CAS  PubMed  Google Scholar 

  91. Bruns D, Engert F, Lux HD (1993) A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo. Neuron 10:559–572

    CAS  PubMed  Google Scholar 

  92. Rodriguez-Menchaca AA, Solis E Jr, Cameron K, De Felice LJ (2012) S(+)amphetamine induces a persistent leak in the human dopamine transporter: molecular stent hypothesis. Br J Pharmacol 165:2749–2757

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang HW, Li CZ, Yang ZF, Zheng YQ, Zhang Y, Liu YM (2006) Electrophysiological effect of fluoxetine on Xenopus oocytes heterologously expressing human serotonin transporter. Acta Pharmacol Sin 27:289–293

    PubMed  Google Scholar 

  94. Storustovu S, Sanchez C, Porzgen P, Brennum LT, Larsen AK, Pulis M, Ebert B (2004) R-citalopram functionally antagonises escitalopram in vivo and in vitro: evidence for kinetic interaction at the serotonin transporter. Br J Pharmacol 142:172–180

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin F, Lester HA, Mager S (1996) Single-channel currents produced by the serotonin transporter and analysis of a mutation affecting ion permeation. Biophys J 71:3126–3135

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Barker EL, Moore KR, Rakhshan F, Blakely RD (1999) Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J Neurosci 19:4705–4717

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sandtner W, Schmid D, Schicker K, Gerstbrein K, Koenig X, Mayer FP, Boehm S, Freissmuth M, Sitte HH (2014) A quantitative model of amphetamine action on the 5-HT transporter. Br J Pharmacol 171:1007–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  98. De Felice LJ, Cameron KN (2015) Comments on ‘A quantitative model of amphetamine action on the serotonin transporter’, by Sandtner et al., Br J Pharmacol 171: 1007–1018. Br J Pharmacol 172:4772–4774

    PubMed  PubMed Central  Google Scholar 

  99. Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203

    CAS  PubMed  Google Scholar 

  100. Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology 38:552–562

    CAS  PubMed  Google Scholar 

  101. Marusich JA, Antonazzo KR, Wiley JL, Blough BE, Partilla JS, Baumann MH (2014) Pharmacology of novel synthetic stimulants structurally related to the “bath salts” constituent 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology 87:206–213

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Cozzi NV, Brandt SD, Daley PF, Partilla JS, Rothman RB, Tulzer A, Sitte HH, Baumann MH (2013) Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs. Eur J Pharmacol 699:180–187

    CAS  PubMed  Google Scholar 

  103. Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A (2013) Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol 85:1803–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470

    CAS  PubMed  Google Scholar 

  105. Simmler LD, Rickli A, Hoener MC, Liechti ME (2014) Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 79:152–160

    CAS  PubMed  Google Scholar 

  106. Cameron KN, Kolanos R, Solis E Jr, Glennon RA, De Felice LJ (2013) Bath salts components mephedrone and methylenedioxypyrovalerone (MDPV) act synergistically at the human dopamine transporter. Br J Pharmacol 168:1750–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kolanos R, Solis E Jr, Sakloth F, De Felice LJ, Glennon RA (2013) “Deconstruction” of the abused synthetic cathinone methylenedioxypyrovalerone (MDPV) and an examination of effects at the human dopamine transporter. ACS Chem Neurosci 4:1524–1529

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bulling S, Schicker K, Zhang YW, Steinkellner T, Stockner T, Gruber CW, Boehm S, Freissmuth M, Rudnick G, Sitte HH, Sandtner W (2012) The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters. J Biol Chem 287:18524–18534

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge Louis J. De Felice and Michael H. Baumann for valuable input in the writing of the chapter. The work described in this chapter was supported by NIH/NIDA R01DA033930 and R01DA033930-S2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Solis Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Solis, E. (2016). Electrophysiological Actions of Synthetic Cathinones on Monoamine Transporters. In: Baumann, M.H., Glennon, R.A., Wiley, J.L. (eds) Neuropharmacology of New Psychoactive Substances (NPS). Current Topics in Behavioral Neurosciences, vol 32. Springer, Cham. https://doi.org/10.1007/7854_2016_39

Download citation

Publish with us

Policies and ethics