Skip to main content

Introduction: Overview of the Human Eye, Mammalian Retina, and the Retinoid Visual Cycle

  • Chapter
  • First Online:
Drug Delivery Challenges and Novel Therapeutic Approaches for Retinal Diseases

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 35))

Abstract

The human eye is a part of the sensory nervous system and is the organ responsible for conscious light perception and vision. Its intricate and complex anatomy has evolved to effectively focus incoming light from the surrounding environment and to harness its energy by efficiently utilizing the physicochemical properties of retinoids. This remarkable organ is capable of phototransduction, which involves the conversion of photon energy into an integrated neural signal that propagates through the optic nerve as an action potential to the visual cortex of the brain. There, the neural signal is processed to give rise to color differentiation, brightness perception, contrast, and depth perception. Loss of visual acuity or blindness presents a significant negative impact on quality of life. Irreversible blindness affects nearly 60 million individuals worldwide, with the leading causes including age-related macular degeneration, glaucoma, and retinal vascular disease. In this chapter, we will provide basic background information of the human eye and retina required for readers unfamiliar with the field of ophthalmic drug discovery. The purpose of this chapter is to help facilitate a thorough understanding of the subsequent chapters of this volume that focus on key ophthalmic diseases, recent developments in drug discovery efforts toward treating these diseases, and the challenges faced in the delivery of drugs to their ocular targets. Thus, this chapter will provide a general overview that begins with the gross anatomical features of the human eye followed by a description of the histology of the mammalian retina. We will next provide morphological and functional details concerning the various cell types that comprise the many layers of the retina, and we will conclude by describing the series of reactions that constitute the visual retinoid cycle and the various key proteins that facilitate it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

bb:

Basal bodies

BBB:

Blood-brain barrier

BRB:

Blood-retinal barrier

cc:

Connecting cilium

CFH:

Complement factor H

cGMP:

Cyclic guanosine monophosphate

CIS:

Cone inner segment

CNG:

Cyclic nucleotide-gated

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

COS:

Cone outer segment

CRABP:

Cellular retinaldehyde-binding protein

CRBP:

Cellular retinol-binding protein

ER:

Endoplasmic reticulum

ERG:

Electroretinogram

GABA:

γ-Aminobutyric acid

GDP:

Guanosine diphosphate

GPCR:

G protein-coupled receptor

GTP:

Guanosine triphosphate

ILGF-I:

Insulin-like growth factor-I

ILM:

Inner limiting membrane

IMH:

Isomerohydrolase

IPM:

Interphotoreceptor matrix

IRBP:

Intracellular retinol-binding protein

IS:

Inner segment

LEDGF:

Lens epithelium-derived growth factor

LGN:

Lateral geniculate nucleus

LRAT:

Lecithin-retinol acyltransferase

mGlu6:

Metabotropic glutamate 6

NPE:

Nonpigmented epithelial cells

OLM:

Outer limiting membrane

ONL:

Outer nuclear layer

OS:

Outer segment

PDE:

Phosphodiesterase

PDGF:

Platelet-derived growth factor

PE:

Phosphatidylethanolamine

PE:

Pigmented epithelial cells

POS:

Photoreceptor outer segment

RBP4:

Retinol-binding protein 4

RDH11:

Retinol dehydrogenase 11

RDH5:

Retinol dehydrogenase 5

RDH8:

Retinol dehydrogenase 8

RGC:

Retinal ganglion cell

RIS:

Rod inner segment

ROS:

Rod outer segment

RPE:

Retinal pigment epithelium

STRA6:

Stimulated by retinoic acid 6 protein

TGF-β:

Transforming growth factor-β

TMD:

Transmembrane domain

TTR:

Transthyretin

References

  1. Davson H (1984) The eye, vol 1a. 3rd edn. Academic Press, Orlando, pp 1–64

    Google Scholar 

  2. Born AJ, Tripathi RC, Tripathi BJ (1997) Wolff’s anatomy of the eye and orbit, 8th edn. Chapman & Hall Medical, London, pp 211–232, 308–334, 454–596

    Google Scholar 

  3. Warwick R, Williams PL (eds) (1973) Gray’s anatomy, 35th British edition. W.B Saunders, Philadelphia, pp 1100–1122

    Google Scholar 

  4. Oyster CW (1999) The human eye: structure and function. Sinauer Associates, Inc, Sunderland, pp 411–445, 708–732

    Google Scholar 

  5. Farjo AA, McDermott ML, Soong HK (2009) Corneal anatomy, physiology, and wound healing. In: Yanoff M, Duker JS (eds) Ophthalmology, 3rd edn. Mosby Elsevier/Elsevier Inc., Edinburgh, pp 203–208

    Google Scholar 

  6. Maurice DM (1970) The transparency of the corneal stroma. Vis Res 10:107–108

    Article  CAS  PubMed  Google Scholar 

  7. Boote C, Dennis S, Newton RH, Puri H, Meek KM (2003) Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Investig Ophthalmol Vis Sci 44:2941–2948

    Article  Google Scholar 

  8. Johnson DH, Bourne WM, Campbell RJ (1982) The ultrastructure of Descemet’s membrane. I. Changes with age in normal corneas. Arch Ophthalmol 100:1942–1947

    Article  CAS  PubMed  Google Scholar 

  9. Cvekl A, Ashery-Padan R (2014) The cellular and molecular mechanisms of vertebrate lens development. Development 141:4432–4447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tamm ER, Lutjen-Drecoll E (1996) Ciliary body. Microsc Res Tech 33:390–439

    Article  CAS  PubMed  Google Scholar 

  11. Delamere NA (2005) Ciliary body and Ciliary epithelium. Adv Organ Biol 10:127–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kaufman PL (1992) Accommodation and presbyopia: neuromuscular and biophysical aspects. In: Hart WM Jr (ed) Adler’s physiology of the eye. Mosby, St. Louis, pp 391–411

    Google Scholar 

  13. Smelser GK (1966) Electron microscopy of a typical epithelial cell and of the normal human ciliary process. Trans Am Acad Ophthalmol Otolaryngol 70:738–754

    CAS  PubMed  Google Scholar 

  14. Tormey JM (1966) The ciliary epithelium: an attempt to correlate structure and function. Trans Am Acad Ophthalmol Otolaryngol 70:755–766

    CAS  PubMed  Google Scholar 

  15. Ozanics V, Jakobiec FA (1982) Prenatal development of the eye and its adnexa. In: Duane TD, Jaeger EA (eds) Biomedical foundations of ophthalmology. Harper and Row, Philadelphia, pp 1–35

    Google Scholar 

  16. McMaughlin CW, Zellhuber-McMillan S, Peart D, Purves RD, Macknight AD, Civan MM (2001) Regional differences in ciliary epithelial cell transport properties. J Memb Biol 182:213–222

    Article  Google Scholar 

  17. Morrison JC, DeFrank MP, Van Buskirk EM (1987) Comparative microvascular anatomy of mammalian ciliary processes. Investig Ophthalmol Vis Sci 28:1325–1340

    CAS  Google Scholar 

  18. Coca-Prados M, Sanchez-Torres J (1998) Molecular approaches to the study of the Na+, K+-ATPase and chloride channels in the ocular ciliary epithelium. In: Civan MM (ed) The Eye’s aqueous humor: from secretion to glaucoma. Academic Press, San Diego, pp 25–53

    Google Scholar 

  19. Millar C, Kaufman PL (1995) Aqueous humor: secretion and dynamics. In: Tasman W, Jaeger EA (eds) Duane’s foundations of clinical ophthalmology. Lippincott-Raven, Philadelphia

    Google Scholar 

  20. Goel M, Picciani RG, Lee RK, Bhattacharya SK (2010) Aqueous humor dynamics: a review. Open Ophthalmol J 4:52–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gong H, Tripathi RC, Tripathi BJ (1996) Morphology of the aqueous outflow pathway. Microsc Res Tech 33:336–367

    Article  CAS  PubMed  Google Scholar 

  22. Flocks M (1956) The anatomy of the trabecular meshwork as seen in tangential section. AMA Arch Ophthalmol 56:708–718

    Article  CAS  PubMed  Google Scholar 

  23. Ashton N, Brini A, Smith R (1956) Anatomical studies of the trabecular meshwork of the normal human eye. Br J Ophthalmol 40:257–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fine BS (1966) Structure of the trabecular meshwork and the canal of Schlemm. Trans Am Acad Ophthalmol Otolaryngol 70:777–790

    CAS  PubMed  Google Scholar 

  25. Gong HY, Trinkaus-Randall V, Freddo TF (1989) Ultrastructural immunocytochemical localization of elastin in normal human trabecular meshwork. Curr Eye Res 8:1071–1082

    Article  CAS  PubMed  Google Scholar 

  26. Freddo TF (2013) A contemporary concept of the blood-aqueous barrier. Prog Retin Eye Res 32:181–195

    Article  CAS  PubMed  Google Scholar 

  27. Cunha-Vaz J (1979) The blood-ocular barriers. Surv Ophthalmol 23:279–296

    Article  CAS  PubMed  Google Scholar 

  28. Coca-Prados M (2014) The blood-aqueous barrier in health and disease. J Glaucoma 23:S36–S38

    Article  PubMed  Google Scholar 

  29. Bill A (1986) The blood-aqueous barrier. Trans Ophthalmol Soc UK 105:149–155

    PubMed  Google Scholar 

  30. Hämäläinen KM, Kananen K, Auriola S, Kontturi K, Urtti A (1997) Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Investig Ophthalmol Vis Sci 38:627–634

    Google Scholar 

  31. American Academy of Ophthalmology (2017) Retina and vitreous (2017–2018 Edition). American Academy of Ophthalmology, San Francisco

    Google Scholar 

  32. Kokavec J, Min SH, Tan MH, Gilhotra JS, Newland HS, Durkin SR, Grigg J, Casson RJ (2016) Biochemical analysis of the living human vitreous. Clin Exp Ophthalmol 44:597–609

    Article  PubMed  Google Scholar 

  33. Le Goff MM, Bishop PN (2008) Adult vitreous structure and postnatal changes. Eye (Lond) 22:1214–1222

    Article  Google Scholar 

  34. Holekamp NM (2010) The vitreous gel: more than meets the eye. Am J Ophthalmol 149:32–36

    Article  PubMed  Google Scholar 

  35. Shui YB, Holekamp NM, Kramer BC, Crowley JR, Wilkins MA, Chu F, Malone PE, Mangers SJ, Hou JH, Siegfried CJ, Beebe DC (2009) The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol 127:475–482

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gallagher B, Maurice D (1977) Striations of light scattering in the corneal stroma. J Ultrastruct Res 61:100–114

    Article  CAS  PubMed  Google Scholar 

  37. Miller NR, Newman NJ (2005) Embryology, anatomy, and physiology of the afferent visual pathway. In: Miller NR, Newman NJ (eds) Walsh & Hoyt’s clinical neuro-ophthalmology, vol 1. 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 3–82

    Google Scholar 

  38. Schubert HD (2009) Structure and function of the neural retina. In: Yanoff M, Duker JS (eds) Ophthalmology, 3rd edn. Mosby Elsevier/Elsevier Inc., Edinburgh, pp. 511–521

    Google Scholar 

  39. Masland RH (1986) The functional architecture of the retina. Sci Am 255:102–111

    Article  CAS  PubMed  Google Scholar 

  40. Cunha-Vaz J, Faria de Abreu JR, Campos AJ (1975) Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthamol 59:649–656

    Article  CAS  Google Scholar 

  41. Raviola G (1977) The structural basis of the blood-ocular barriers. Exp Eye Res 25:27–64

    Article  PubMed  Google Scholar 

  42. Díaz-Coránguez M, Ramos C, Antonetti DA (2017) The inner blood-retinal barrier: cellular basis and development. Vis Res 139:123–137

    Article  PubMed  Google Scholar 

  43. Cunha-Vaz J, Bernardes R, Lobo C (2011) Blood-retinal barrier. Eur J Ophthalmol 21:S3–S9

    Article  PubMed  Google Scholar 

  44. Campbell M, Humphries P (2012) The blood-retina barrier: tight junctions and barrier modulation. Adv Exp Med Biol 763:70–84

    Article  CAS  PubMed  Google Scholar 

  45. Nickla DL, Wallman J (2010) The multifunctional choroid. Prog Retin Eye Res 29:144–168

    Article  PubMed  Google Scholar 

  46. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. Saunders Company, Philadelphia

    Google Scholar 

  47. Vilensky J, Robertson W, Suarez-Quian C (2015) The clinical anatomy of the cranial nerves: the nerves of “on olympus towering top”. Wiley-Blackwell, Ames

    Book  Google Scholar 

  48. Selhorst J, Chen Y (2009) The optic nerve. Semin Neurol 29:29–35

    Article  PubMed  Google Scholar 

  49. Jonas JB, Schmidt AM, Müller-Bergh JA, Schlötzer-Schrehardt UM, Naumann GO (1992) Human optic nerve fiber count and optic disc size. Investig Ophthalmol Vis Sci 33:2012–2018

    CAS  Google Scholar 

  50. Murienne BJ, Chen ML, Quigley HA, Nguyen TD (2016) The contribution of glycosaminoglycans to the mechanical behaviour of the posterior human sclera. J R Soc Interface 13:20160367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rada JA, Achen VR, Penugonda S, Schmidt RW, Mount BA (2000) Proteoglycan composition in the human sclera during growth and aging. Investig Ophthalmol Vis Sci 41:1639–1648

    CAS  Google Scholar 

  52. Trier K (2005) The sclera. Adv Organ Biol 10:353–373

    Article  Google Scholar 

  53. Comper WD, Laurent TC (1978) Physiological function of connective tissue polysaccharides. Physiol Rev 58:255–315

    Article  CAS  PubMed  Google Scholar 

  54. Molday RS, Mortiz OL (2015) Photoreceptors at a glance. J Cell Sci 128:4039–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fisher SK, Anderson DH, Erickson PA, Guérin CJ, Lewis GP, Linberg KA (1993) Photoreceptor cells. In: Hargrave PA (ed) Methods in neurosciences, vol 15. Academic Press, Cambridge, pp 10–11

    Google Scholar 

  56. Perkins BD, Fadool JM (2010) Photoreceptor structure and development: analyses using GFP transgenes methods. Cell Biol 100:205–218

    CAS  Google Scholar 

  57. Insinna C, Pathak N, Perkins B, Drummond I, Besharse JC (2008) The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev Biol 316:160–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gilliam JC, Chang JT, Sandoval IM, Zhang Y, Li T, Pittler SJ, Chiu W, Wensel TG (2012) Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. Cell 151:1029–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nickell S, Park PS-H, Baumeister W, Palczewski K (2007) Three dimensional architecture of murine rod outer segments determined by cryoelectron tomography. J Cell Biol 177:917–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mustafi D, Engel AH, Palczewski K (2009) Structure of cone photoreceptors. Prog Retin Eye Res 28:289–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, Palczewski K (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    Article  CAS  PubMed  Google Scholar 

  62. Gunkel M, Schöneberg J, Alkhaldi W, Irsen S, Noé F, Kaupp UB, Al-Amoudi A (2015) Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. Structure 23:628–638

    Article  CAS  PubMed  Google Scholar 

  63. Clarke G, Goldberg AFX, Vidgen D, Collins L, Ploder L, Schwarz L, Molday LL, Rossant J, Szél Á, Molday RS, Birch DG, McInnes RR (2000) Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nat Genet 25:67–73

    Article  CAS  PubMed  Google Scholar 

  64. Kevany BM, Tsybovsky Y, Campuzano IDG, Schnier PD, Engel A, Palczewski K (2013) Structural and functional analysis of the native peripherin-ROM1 complex isolated from photoreceptor cells. J Biol Chem 288:36272–36284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karan S, Frederick JM, Baehr W (2010) Novel functions of photoreceptor guanylate cyclases revealed by targeted deletion. Mol Cell Biochem 334:141–155

    Article  CAS  PubMed  Google Scholar 

  66. Nemet I, Tian G, Imanishi Y (2015) Organization of cGMP sensing structures on the rod photoreceptor outer segment plasma membrane. Channels 8:528–535

    Article  PubMed Central  Google Scholar 

  67. Illing M, Molday LL, Molday RS (1997) The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272:10303–10310

    Article  CAS  PubMed  Google Scholar 

  68. Molday RS, Zhong M, Quazi F (2009) The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. Biochim Biophys Acta 1791:573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Coleman JA, Kwok MCM, Molday RS (2009) Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes. J Biol Chem 284:32670–32679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Skiba NP, Spencer WJ, Salinas RY, Lieu EC, Thompson JW, Arshavsky VY (2013) Proteomic identification of unique photoreceptor disc components reveals the presence of PRCD, a protein linked to retinal degeneration. J Proteome Res 12:3010–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kwok MCM, Holopainen JM, Molday LL, Foster LJ, Molday RS (2008) Proteomics of photoreceptor outer segments identifies a subset of SNARE and Rab proteins implicated in membrane vesicle trafficking and fusion. Mol Cell Proteomics 7:1053–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Körschen HG, Beyermann M, Müller F, Heck M, Vantler M, Koch KW, Kellner R, Wolfrum U, Bode C, Hofmann KP, Kaupp UB (1999) Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors. Nature 400:761–766

    Article  PubMed  Google Scholar 

  73. Kevany BM, Palczewski K (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiology 25:8–15

    Article  CAS  PubMed  Google Scholar 

  74. Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Steinberg RH, Fisher SK, Anderson DH (1980) Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol 190:501–518

    Article  CAS  PubMed  Google Scholar 

  76. Arikawa K, Molday LL, Molday RS, Williams DS (1992) Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors – relationship to disk membrane morphogenesis and retinal degeneration. J Cell Biol 116:659–667

    Article  CAS  PubMed  Google Scholar 

  77. Bowmaker JK, Hunt DM (2006) Evolution of vertebrate visual pigments. Curr Biol 16:R484–R489

    Article  CAS  PubMed  Google Scholar 

  78. Roorda A, Metha AB, Lennie P, Williams DR (2001) Packing arrangement of the three cone classes in primate retina. Vis Res 4:1291–1306

    Article  Google Scholar 

  79. Normann RA, Perlman I, Hallet PE (1991) Cone photoreceptor physiology and cone contributions to colour vision. In: Gouras P (ed) The perception of colour. Macmillan Press Ltd, London, pp 146–162

    Google Scholar 

  80. Euler T, Haverkamp S, Schubert T, Baden T (2014) Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci 15:507–519

    Article  CAS  PubMed  Google Scholar 

  81. Lin B, Masland RH (2005) Synaptic contacts between an identified ON cone bipolar cell and ganglion cells in the mouse retina. Eur J Neurosci 21:1257–1270

    Article  PubMed  Google Scholar 

  82. Morgan JL, Soto F, Wong RO, Kerschensteiner D (2011) Development of cell type specific connectivity patterns of converging excitatory axons in the retina. Neuron 71:1014–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hartveit E (1997) Functional organization of cone bipolar cells in the rat retina. J Neurophysiol 77:1716–1730

    Article  CAS  PubMed  Google Scholar 

  84. Euller T, Schneider H, Wassle H (1996) Glutamate responses of bipolar cells in a slice preparation of the rat retina. J Neurosci 16:2934–2944

    Article  Google Scholar 

  85. Euller T, Masland RH (2000) Light-evoked responses of bipolar cells in a mammalian retina. J Neurophysiol 83:1817–1829

    Article  Google Scholar 

  86. Strettoi E, Novelli E, Mazzoni F, Barone I, Damiani D (2010) Complexity of retinal cone bipolar cells. Prog Retin Eye Res 29:272–283

    Article  PubMed  PubMed Central  Google Scholar 

  87. Watson AB (2014) A formula for human retinal ganglion cell receptive field density as a function of visual field location. J Vis 14:15

    Article  PubMed  Google Scholar 

  88. Sanes JR, Masland RH (2015) The types of retinal ganglion cells: current status and implications for neuronal classification. Annu Rev Neurosci 8:221–246

    Article  CAS  Google Scholar 

  89. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  CAS  PubMed  Google Scholar 

  90. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Twig G, Levy H, Perlman I (2003) Color opponency in horizontal cells of the vertebrate retina. Prog Retin Eye Res 22:31–68

    Article  PubMed  Google Scholar 

  92. Wu SM (1992) Feedback connections and operation of the outer plexiform layer of the retina. Curr Opin Neurobiol 2:462–468

    Article  CAS  PubMed  Google Scholar 

  93. Chaya T, Matsumoto A, Sugita Y, Watanabe S, Kuwahara R, Tachibana M, Furukawa T (2017) Versatile functional roles of horizontal cells in the retinal circuit. Sci Rep 7:5540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kaneko A, Tachibana M (1986) Effects of gamma-aminobutyric acid on isolated cone photoreceptors of the turtle retina. J Physiol 373:443–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tatsukawa T, Hirasawa H, Kaneko A, Kaneda M (2005) GABA-mediated component in the feedback response of turtle retinal cones. Vis Neurosci 22:317–324

    Article  CAS  PubMed  Google Scholar 

  96. Gallego A (1986) Chapter 7. Comparative studies on horizontal cells and a note on microglial cells. Prog Retin Res 5:165–206

    Article  Google Scholar 

  97. Thoreson WB, Babai N, Bartoletti TM (2008) Feedback from horizontal cells to rod photoreceptors in vertebrate retina. J Neurosci 28:5691–5695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Thoreson WB, Mangel SC (2012) Lateral interactions in the outer retina. Prog Retin Eye Res 31:407–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Euler T, Detwiler PB, Denk W (2002) Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418:845–852

    Article  CAS  PubMed  Google Scholar 

  100. Famiglietti EV (1992) Polyaxonal amacrine cells of rabbit retina: morphology and stratification of PA1 cells. J Comp Neurol 316:391–405

    Article  CAS  PubMed  Google Scholar 

  101. Kolb H (1997) Amacrine cells of the mammalian retina: neurocircuitry and functional roles. Eye (Lond) 11:904–923

    Article  Google Scholar 

  102. Masland RH (2012) The tasks of amacrine cells. Vis Neurosci 29:3–9

    Article  PubMed  PubMed Central  Google Scholar 

  103. Marc RE (1989) The anatomy of multiple GABAergic and glycinergic pathways in the inner plexiform layer of the goldfish retina. In: Weiler R, Osborne E (eds) Neurobiology of the inner retina. Springer, Berlin, pp 53–64

    Chapter  Google Scholar 

  104. Stone J, Dreher Z (1987) Relationship between astrocytes, ganglion cells and vasculature of the retina. J Comp Neurol 255:35–49

    Article  CAS  PubMed  Google Scholar 

  105. Chan-Ling T (1994) Glial, neuronal and vascular interactions in the mammalian retina. Prog Retin Eye Res 13:357–389

    Article  Google Scholar 

  106. Reichenbach A, Robinson SR (1995) The involvement of Müller cells in the outer retina. In: Djamgoz MBA, Archer SN, Vallerga S (eds) Neurobiology and clinical aspects of the outer retina. Chapman & Hall, London, pp 395–416

    Chapter  Google Scholar 

  107. Edwards RB (1994) Biosynthesis of retinoic acid by Müller glial cells: a model for the central nervous system? Prog Retin Eye Res 13:231–242

    Article  CAS  Google Scholar 

  108. Newman EA, Odette LL (1984) Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J Neurophysiol 51:164–182

    Article  CAS  PubMed  Google Scholar 

  109. Karwoski CJ, Proenza LM (1977) Relationship between Muller cell responses, a local transretinal potential, and potassium flux. J Neurophysiol 40:24–259

    Google Scholar 

  110. Frishman LJ, Steinberg RH (1989) Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina. J Neurophysiol 61:1233–1243

    Article  CAS  PubMed  Google Scholar 

  111. Newman EA (1989) Electrophysiology of retinal glial cells. Prog Retin Res 8:153–172

    Article  Google Scholar 

  112. Kolb H, Nelson R, Ahnelt P, Cuenca N (2001) Cellular organization of the vertebrate retina. In: Concepts and challenges in retinal biology: a tribute to John E. Dowling. Elsevier Press, New York, pp 3–26

    Google Scholar 

  113. Hoon M, Okawa H, Della Santina L, Wong ROL (2014) Functional architecture of the retina: development and disease. Prog Retin Eye Res 42:44–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Whitehead AJ, Mares JA, Danis RP (2006) Macular pigment: a review of current knowledge. Arch Ophthalmol 124:1038–1045

    Article  CAS  PubMed  Google Scholar 

  115. Provis JM, Dubis AM, Maddess T, Carroll J (2013) Adaptation of the central retina for high acuity vision: cones, the fovea and the avascular zone. Prog Retin Eye Res 35:63–81

    Article  PubMed  PubMed Central  Google Scholar 

  116. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  117. Sparrrow JR, Hicks D, Hamel CP (2010) The retinal pigment epithelium in health and disease. Curr Mol Med 10:802–823

    Article  CAS  Google Scholar 

  118. Marmorstein AD, Finnemann SC, Bonilha VL, Rodriguez-Boulan E (1998) Morphogenesis of the retinal pigment epithelium: toward understanding retinal degenerative diseases. Ann N Y Acad Sci 857:1–12

    Article  CAS  PubMed  Google Scholar 

  119. Miller SS, Steinberg RH (1977) Active transport of ions across frog retinal pigment epithelium. Exp Eye Res 25:235–248

    Article  CAS  PubMed  Google Scholar 

  120. Miller SS, Steinberg RH (1977) Passive ionic properties of frog retinal pigment epithelium. J Membr Biol 36:337–372

    Article  CAS  PubMed  Google Scholar 

  121. Ban Y, Rizzolo LJ (2000) Regulation of glucose transporters during development of the retinal pigment epithelium. Brain Res Dev Brain Res 121:89–95

    Article  CAS  PubMed  Google Scholar 

  122. Sugasawa K, Deguchi J, Okami T, Yamamoto A, Omori K, Uyama M, Tashiro Y (1994) Immunocytochemical analyses of distributions of Na, K-ATPase and GLUT1, insulin and transferrin receptors in the developing retinal pigment epithelial cells. Cell Struct Funct 19:21–28

    Article  CAS  PubMed  Google Scholar 

  123. Hughes BA, Gallemore RP, Miller SS (1998) Transport mechanisms in the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium. Oxford University Press, Oxford, pp 103–134

    Google Scholar 

  124. Hamann S (2002) Molecular mechanisms of water transport in the eye. Int Rev Cytol 215:395–431

    Article  CAS  PubMed  Google Scholar 

  125. Adler AJ, Southwick RE (1992) Distribution of glucose and lactate in the interphotoreceptor matrix. Ophthalmic Res 24:243–252

    Article  CAS  PubMed  Google Scholar 

  126. Konari K, Sawada N, Zhong Y, Isomura H, Nakagawa T, Mori M (1995) Development of the blood-retinal barrier in vitro: formation of tight junctions as revealed by occludin and ZO-1 correlates with the barrier function of chick retinal pigment epithelial cells. Exp Eye Res 61:99–108

    Article  CAS  PubMed  Google Scholar 

  127. Guillermo L, Ignacio Benedictoa L, Philp NJ, Rodriguez-Boulana E (2014) Plasma membrane protein polarity and trafficking in RPE cells: past, present and future. Exp Eye Res 126:5–15

    Article  CAS  Google Scholar 

  128. Ishikawa M, Sawada Y, Yoshitomi T (2015) Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells. Exp Eye Res 133:3–18

    Article  CAS  PubMed  Google Scholar 

  129. LaVail MM (1976) Rod outer segment disc shedding in relation to cyclic lighting. Exp Eye Res 23:277–280

    Article  CAS  PubMed  Google Scholar 

  130. LaVail MM (1980) Circadian nature of rod outer segment disc shedding in the rat. Investig Ophthalmol Vis Sci 19:407–411

    CAS  Google Scholar 

  131. LaVail MM (1983) Outer segment disc shedding and phagocytosis in the outer retina. Trans Ophthalmol Soc U K 103:397–404

    PubMed  Google Scholar 

  132. Kevany BM, Palczewski K (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 25:8–15

    CAS  Google Scholar 

  133. Young RW, Droz B (1968) The renewal of protein in retinal rods and cones. J Cell Biol 39:169–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Anderson DH, Fisher SK, Steinberg RH (1978) Mammalian cones: disc shedding, phagocytosis, and renewal. Investig Ophthalmol Vis Sci 17:117–133

    CAS  Google Scholar 

  135. Nguyen-Legros J, Hicks D (2000) Renewal of photoreceptor outer segments and their phagocytosis by the retinal pigment epithelium. Int Rev Cytol 196:245–313

    Article  CAS  PubMed  Google Scholar 

  136. Beatty S, Boulton M, Henson D, Koh HH, Murray IJ (1999) Macular pigment and age related macular degeneration. Br J Ophthalmol 83:867–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  CAS  PubMed  Google Scholar 

  138. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Investig Ophthalmol Vis Sci 42:439–446

    CAS  Google Scholar 

  139. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32

    CAS  PubMed  Google Scholar 

  140. Ishida K, Panjwani N, Cao Z, Streilein JW (2003) Participation of pigment epithelium in ocular immune privilege. 3. Epithelia cultured from iris, ciliary body, and retina suppress T-cell activation by partially non-overlapping mechanisms. Ocul Immunol Inflamm 11:91–105

    Article  CAS  PubMed  Google Scholar 

  141. Streilein JW, Ma N, Wenkel H, Ng TF, Zamiri P (2002) Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vis Res 42:487–495

    Article  PubMed  Google Scholar 

  142. Wenkel H, Streilein JW (2000) Evidence that retinal pigment epithelium functions as an immune-privileged tissue. Investig Ophthalmol Vis Sci 41:3467–3473

    CAS  Google Scholar 

  143. Relvas LJ, Bouffioux C, Marcet B, Communi D, Makhoul M, Horckmans M, Blero D, Bruyns C, Caspers L, Boeynaems JM, Willermain F (2009) Extracellular nucleotides and interleukin-8 production by ARPE cells: potential role of danger signals in blood-retinal barrier activation. Investig Ophthalmol Vis Sci 50:1241–1246

    Article  Google Scholar 

  144. Kim YH, He S, Kase S, Kitamura M, Ryan SJ, Hinton DR (2009) Regulated secretion of complement factor H by RPE and its role in RPE migration. Graefes Arch Clin Exp Ophthalmol 247:651–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen M, Forrester JV, Xu H (2007) Synthesis of complement factor H by retinal pigment epithelial cells is down-regulated by oxidized photoreceptor outer segments. Exp Eye Res 84:635–645

    Article  CAS  PubMed  Google Scholar 

  146. Austin BA, Liu B, Li Z, Nussenblatt RB (2009) Biologically active fibronectin fragments stimulate release of MCP-1 and catabolic cytokines from murine retinal pigment epithelium. Investig Ophthalmol Vis Sci 50:2896–2902

    Article  Google Scholar 

  147. Jorgensen A, Wiencke AK, la Cour M, Kaestel CG, Madsen HO, Hamann S, Lui GM, Scherfig E, Prause JU, Svejgaard A, Odum N, Nissen MH, Ropke C (1998) Human retinal pigment epithelial cell-induced apoptosis in activated T cells. Investig Ophthalmol Vis Sci 39:1590–1599

    CAS  Google Scholar 

  148. Liversidge J, McKay D, Mullen G, Forrester JV (1993) Retinal pigment epithelial cells modulate lymphocyte function at the blood-retina barrier by autocrine PGE2 and membrane-bound mechanisms. Cell Immunol 149:315–330

    Article  CAS  PubMed  Google Scholar 

  149. Kindzelskii AL, Elner VM, Elner SG, Yang D, Hughes BA, Petty HR (2004) Toll-like receptor 4 (TLR4) of retinal pigment epithelial cells participates in transmembrane signaling in response to photoreceptor outer segments. J Gen Physiol 124:139–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhou R, Caspi RR (2010) Ocular immune privilege. F1000 Biol Rep 2:1–3

    Article  Google Scholar 

  151. Cayouette M, Smith SB, Becerra SP, Gravel C (1999) Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6:523–532

    Article  CAS  PubMed  Google Scholar 

  152. Ogata N, Wang L, Jo N, Tombran-Tink J, Takahashi K, Mrazek D, Matsumura M (2001) Pigment epithelium derived factor as a neuroprotective agent against ischemic retinal injury. Curr Eye Res 22:245–252

    Article  CAS  PubMed  Google Scholar 

  153. Becerra SP, Fariss RN, Wu YQ, Montuenga LM, Wong P, Pfeffer BA (2004) Pigment epithelium-derived factor in the monkey retinal pigment epithelium and interphotoreceptor matrix: apical secretion and distribution. Exp Eye Res 78:223–234

    Article  CAS  PubMed  Google Scholar 

  154. Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO (2003) Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 22:1–29

    Article  CAS  PubMed  Google Scholar 

  155. Kiser PD, Golczak M, Palczewski K (2014) Chemistry of the retinoid (visual) cycle. Chem Rev 114:194–232

    Article  CAS  PubMed  Google Scholar 

  156. Tsin A, Betts-Obregon B, Grigsby J (2018) Visual cycle proteins: structure, function, and roles in human retinal disease. J Biol Chem 293:13016–13021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Menon ST, Han M, Sakmar TP (2001) Rhodopsin: structural basis of molecular physiology. Physiol Rev 81:1659–1688

    Article  CAS  PubMed  Google Scholar 

  158. Sakmar TP, Menon ST, Marin EP, Awad ES (2002) Rhodopsin: insights from recent structural studies. Annu Rev Biophys Biomol Struct 31:443–484

    Article  CAS  PubMed  Google Scholar 

  159. Farrens DL (2010) What site-directed labeling studies tell us about the mechanism of rhodopsin activation and G-protein binding. Photochem Photobiol Sci 9:1466–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Park PS, Lodowski DT, Palczewski K (2008) Activation of G protein-coupled receptors: beyond two-state models and tertiary conformational changes. Annu Rev Pharmacol Toxicol 48:107–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ridge KD, Palczewski K (2007) Visual rhodopsin sees the light: structure and mechanism of G protein signaling. J Biol Chem 282:9297–9301

    Article  CAS  PubMed  Google Scholar 

  162. Vogel R, Sakmar TP, Sheves M, Siebert F (2007) Coupling of protonation switches during rhodopsin activation. Photochem Photobiol 83:86–92

    Article  CAS  Google Scholar 

  163. Kanai M, Raz A, Goodman DS (1968) Retinol-binding protein: the transport protein for vitamin A in human plasma. J Clin Investig 47:2025–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Naylor HM, Newcomer ME (1999) The structure of human retinol-binding protein (RBP) with its carrier protein transthyretin reveals an interaction with the carboxy terminus of RBP. Biochemistry 38:2647–2653

    Article  CAS  PubMed  Google Scholar 

  165. Noy N, Slosberg E, Scarlata S (1992) Interactions of retinol with binding proteins: studies with retinol-binding protein and with transthyretin. Biochemistry 31:11118–11124

    Article  CAS  PubMed  Google Scholar 

  166. Noy N, Xu ZJ (1990) Interactions of retinol with binding proteins: implications for the mechanism of uptake by cells. Biochemistry 29:3878–3883

    Article  CAS  PubMed  Google Scholar 

  167. Monaco HL (2000) The transthyretin-retinol-binding protein complex. Biochim Biophys Acta 1482:65–72

    Article  CAS  PubMed  Google Scholar 

  168. Monaco HL (2000) Three-dimensional structure of the transthyretin-retinol-binding protein complex. Clin Chem Lab Med 40:1229–1236

    Google Scholar 

  169. Monaco HL, Rizzi M, Coda A (1995) Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268:1039–1041

    Article  CAS  PubMed  Google Scholar 

  170. Noy N (2000) Retinoid-binding proteins: mediators of retinoid action. Biochem J 348(Pt 3):481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Newcomer ME, Jones TA, Aqvist J, Sundelin J, Eriksson U, Rask L, Peterson PA (1984) The three-dimensional structure of retinol-binding protein. EMBO J 3:1451–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Malpeli G, Stoppini M, Zapponi MC, Folli C, Berni R (1995) Interactions with retinol and retinoids of bovine cellular retinol-binding protein. Eur J Biochem 229:486–493

    Article  CAS  PubMed  Google Scholar 

  173. Cowan SW, Newcomer ME, Jones TA (1993) Crystallographic studies on a family of cellular lipophilic transport proteins. Refinement of P2 myelin protein and the structure determination and refinement of cellular retinol-binding protein in complex with all-trans-retinol. J Mol Biol 230:1225–1246

    Article  CAS  PubMed  Google Scholar 

  174. Ross ACJ (1982) Retinol esterification by rat liver microsomes. Evidence for a fatty acyl coenzyme A: retinol acyltransferase. Biol Chem 257:2453–2459

    Article  CAS  Google Scholar 

  175. Helgerud P, Petersen LB, Norum KR (1982) Acyl CoA:retinol acyltransferase in rat small intestine: its activity and some properties of the enzymic reaction. J Lipid Res 23:609–618

    Article  CAS  PubMed  Google Scholar 

  176. Chaudhary LR, Nelson EC (1987) Some properties and subcellular distribution of acyl-coenzyme A: retinol acyltransferase activity in rat testes. Biochim Biophys Acta 917:24–32

    Article  CAS  PubMed  Google Scholar 

  177. Hamel CP, Tsilou E, Pfeffer BA, Hooks JJ, Detrick B, Redmond TM (1993) Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in vitro. J Biol Chem 268:15751–15757

    Article  CAS  PubMed  Google Scholar 

  178. Gollapalli DR, Maiti P, Rando RR (2003) RPE65 operates in the vertebrate visual cycle by stereospecifically binding all-trans-retinyl esters. Biochemistry 42:11824–11830

    Article  CAS  PubMed  Google Scholar 

  179. Redmond TM, Yu S, Lee E, Bok D, Hamasaki D, Chen N, Goletz P, Ma JX, Crouch RK, Pfeifer K (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20:344–351

    Article  CAS  PubMed  Google Scholar 

  180. Kiser PD, Golczak M, Lodowski DT, Chance MR, Palczewski K (2009) Crystal structure of native RPE65, the retinoid isomerase of the visual cycle. Proc Natl Acad Sci U S A 106:17325–17330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Jang GF, McBee JK, Alekseev AM, Haeseleer F, Palczewski K (2000) Stereoisomeric specificity of the retinoid cycle in the vertebrate retina. J Biol Chem 275:28128–28138

    Article  CAS  PubMed  Google Scholar 

  182. Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma JX (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 102:12413–12418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Futterman S, Saari JC, Blair S (1977) Occurrence of a binding protein for 11-cis-retinal in retina. J Biol Chem 252:3267–3271

    Article  CAS  PubMed  Google Scholar 

  184. Saari JC, Bredberg DL (1987) Photochemistry and stereoselectivity of cellular retinaldehyde-binding protein from bovine retina. J Biol Chem 262:7618–7622

    Article  CAS  PubMed  Google Scholar 

  185. Shaw NS, Noy N (2001) Interphotoreceptor retinoid-binding protein contains three retinoid binding sites. Exp Eye Res 72:183–190

    Article  CAS  PubMed  Google Scholar 

  186. Gonzalez-Fernandez F, Baer CA, Ghosh D (2007) Module structure of interphotoreceptor retinoid-binding protein (IRBP) may provide bases for its complex role in the visual cycle – structure/function study of Xenopus IRBP. BMC Biochem 4:15

    Article  CAS  Google Scholar 

  187. Gonzalez-Fernandez F, Ghosh D (2008) Focus on molecules: interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 86:169–170

    Article  CAS  PubMed  Google Scholar 

  188. Garlipp MA, Gonzalez-Fernandez F (2013) Cone outer segment and Muller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 113:192–202

    Article  CAS  PubMed  Google Scholar 

  189. Pepperberg DR, Okajima TL, Wiggert B, Ripps H, Crouch RK, Chader GJ (1993) Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol 7:61–85

    Article  CAS  PubMed  Google Scholar 

  190. Quazi F, Lenevich S, Molday RS (2012) ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat Commun 3:925

    Article  PubMed  CAS  Google Scholar 

  191. Beharry S, Zhong M, Molday RS (2004) N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem 279:53972–53979

    Article  CAS  PubMed  Google Scholar 

  192. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98:13–23

    Article  CAS  PubMed  Google Scholar 

  193. Arshavsky VY, Burns ME (2014) Current understanding of signal amplification in phototransduction. Cell Logist 4:e29390

    Article  PubMed  PubMed Central  Google Scholar 

  194. Arshavsky VY, Wensel TG (2013) Timing is everything: GTPase regulation in phototransduction. Investig Ophthalmol Vis Sci 54:7725–7733

    Article  CAS  Google Scholar 

  195. Arshavsky VY, Lamb TD, Pugh EN Jr (2002) G proteins and phototransduction. Annu Rev Physiol 64:153–187

    Article  CAS  PubMed  Google Scholar 

  196. Lamb TD (1996) Gain and kinetics of activation in the G-protein cascade of phototransduction. Proc Natl Acad Sci U S A 93:566–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lamb TD, Pugh EN Jr (1992) A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J Physiol 449:719–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pugh EN Jr, Lamb TD (1993) Amplification and kinetics of the activation steps in phototransduction. Biochim Biophys Acta 1141:111–149

    Article  CAS  PubMed  Google Scholar 

  199. Baehr W, Devlin MJ, Applebury ML (1979) Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem 254:11669–11677

    Article  CAS  PubMed  Google Scholar 

  200. Deterre P et al (1988) cGMP phosphodiesterase of retinal rods is regulated by two inhibitory subunits. Proc Natl Acad Sci U S A 85:2424–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hurley JB, Stryer L (1982) Purification and characterization of the gamma regulatory subunit of the cyclic GMP phosphodiesterase from retinal rod outer segments. J Biol Chem 257:11094–11099

    Article  CAS  PubMed  Google Scholar 

  202. Muniz A, Betts BS, Trevino AR, Buddavarapu K, Roman R, Ma JX, Tsin AT (2009) Evidence for two retinoid cycles in the cone-dominated chicken eye. Biochemistry 48:6854–6863

    Article  CAS  PubMed  Google Scholar 

  203. Travis GH, Kaylor J, Yuan Q (2010) Analysis of the retinoid isomerase activities in the retinal pigment epithelium and retina. Methods Mol Biol 652:329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kaylor JJ, Yuan Q, Cook J, Sarfare S, Makshanoff J, Miu A, Kim A, Kim P, Habib S, Roybal CN, Xu T, Nusinowitz S, Travis GH (2013) Identification of DES1 as a vitamin a isomerase in Müller glial cells of the retina. Nat Chem Biol 9:30–36

    Article  CAS  PubMed  Google Scholar 

  205. Parkera RO, Crouch RK (2010) Retinol dehydrogenases (RDHs) in the visual cycle. Exp Eye Res 91:788–792

    Article  CAS  Google Scholar 

  206. Simon A, Hellman U, Wernstedt C, Eriksson U (1995) The retinal pigment epithelial-specific 11-cis retinol dehydrogenase belongs to the family of short chain alcohol dehydrogenases. J Biol Chem 270:1107–1112

    Article  CAS  PubMed  Google Scholar 

  207. Haeseleer F, Jang GF, Imanishi Y, Driessen CA, Matsumura M, Nelson PS, Palczewski K (2002) Dual substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem 277:45537–45546

    Article  CAS  PubMed  Google Scholar 

  208. Driessen CA, Winkens HJ, Hoffmann K, Kuhlmann LD, Janssen BP, Van Vugt AH, Van Hooser JP, Wieringa BE, Deutman AF, Palczewski K, Ruether K, Janssen JJ (2000) Disruption of the 11-cis-retinol dehydrogenase gene leads to accumulation of cis-retinols and cis-retinyl esters. Mol Cell Biol 20:4275–4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kim TS, Maeda A, Maeda T, Heinlein C, Kedishvili N, Palczewski K, Nelson PS (2005) Delayed dark adaptation in 11-cis-retinol dehydrogenase-deficient mice: a role of RDH11 in visual processes in vivo. J Biol Chem 280:8694–8704

    Article  CAS  PubMed  Google Scholar 

  210. Rattner A, Smallwood PM, Nathans J (2000) Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-transretinal to all-trans-retinol. J Biol Chem 275:11034–11043

    Article  CAS  PubMed  Google Scholar 

  211. Maeda A, Maeda T, Sun W, Zhang H, Baehr W, Palczewski K (2007) Redundant and unique roles of retinol dehydrogenases in the mouse retina. Proc Natl Acad Sci U S A 104:19565–19570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Maeda A, Maeda T, Imanishi Y, Sun W, Jastrzebska B, Hatala DA, Winkens HJ, Hofmann KP, Janssen JJ, Baehr W, Driessen CA, Palczewski K (2006) Retinol dehydrogenase (RDH12) protects photoreceptors from light-induced degeneration in mice. J Biol Chem 281:37697–37704

    Article  CAS  PubMed  Google Scholar 

  213. Haeseleer F, Huang J, Lebioda L, Saari JC, Palczewski K (1998) Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal. J Biol Chem 273:21790–21799

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our funding agency [National Institutes of Health, National Eye Institute grant R01 EY028549-01] for their continued support of our ongoing drug discovery research toward the identification of bispecific antagonists of RBP4 and kinetic stabilizers of TTR tetramers. These agents are under investigation for their potential to treat atrophic age-related macular degeneration while preventing TTR amyloid fibril formation and age-related amyloid disease such as senile systemic amyloidosis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Cioffi .

Editor information

Editors and Affiliations

Ethics declarations

This manuscript is a review of previously published accounts, as such no animal or human studies were performed.

Conflict of Interest

The author declares no conflict of interest or competing financial interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cioffi, C.L. (2020). Introduction: Overview of the Human Eye, Mammalian Retina, and the Retinoid Visual Cycle. In: Cioffi, C.L. (eds) Drug Delivery Challenges and Novel Therapeutic Approaches for Retinal Diseases. Topics in Medicinal Chemistry, vol 35. Springer, Cham. https://doi.org/10.1007/7355_2020_94

Download citation

Publish with us

Policies and ethics