Skip to main content

Interaction of Microplastics and Organic Pollutants: Quantification, Environmental Fates, and Ecological Consequences

  • Chapter
  • First Online:
Microplastics in Terrestrial Environments

Abstract

Microplastics which act as vectors for organic pollutant transport in environment have raised increasing concerns recently. This paper provides an overview on the interaction of plastic debris or microplastics with these organic chemicals and its effects on biological receptors. Plastic additives represented one of the most important organic pollutants associated with microplastics; the types, quantification, and migration from the plastic debris or microplastics are addressed here. In addition to the chemical additives, microplastics also adsorbed hydrophobic or hydrophilic organic pollutants from the environments due to their high surface areas and affinity for these pollutants. The mechanisms of microplastic adsorption for PAHs, PCBs, and pharmaceutics and the role of microplastic surface and solution chemistry were well discussed in the paper. The sorption affinity changed by the aging of microplastic surface was of concern in particular. The organic pollutants in the microplastics may cause toxic effects on biotas by releasing into the leachate or by contact exposure directly through microplastics ingestion. Here we reviewed the latest reports on the organic pollutant assay for the leachates from the environmental microplastics and their toxic effects on freshwater species Daphnia magna, brown mussel (Perna perna), barnacle, and microalgae using different endpoints. Bioaccumulation of organic pollutants and biological toxicology through the vector effects of microplastics were also reviewed in the paper. However, large uncertainties existed among the different studies with respect to the toxic effects of co-exposure with organic pollutants and microplastics. Therefore, further researches are recommended to be done regarding the combined effects of organic pollutants and microplastics under the different exposure scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24:1405–1416

    Google Scholar 

  2. Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Bjorn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Pham HV, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos T R Soc B 364:2027–2045

    CAS  Google Scholar 

  3. Syberg K, Khan FR, Selck H, Palmqvist A, Banta GT, Daley J, Sano L, Duhaime MB (2015) Microplastics: addressing ecological risk through lessons learned. Environ Toxicol Chem 34:945–953

    CAS  Google Scholar 

  4. Hermabessiere L, Dehaut A, Paul-Pont I, Lacroix C, Jezequel R, Soudant P, Duflos G (2017) Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182:781–793

    CAS  Google Scholar 

  5. Borges Ramirez MM, Dzul Caamal R, Rendon von Osten J (2019) Occurrence and seasonal distribution of microplastics and phthalates in sediments from the urban channel of the Ria and coast of Campeche, Mexico. Sci Total Environ 672:97–105

    CAS  Google Scholar 

  6. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24:139–177

    CAS  Google Scholar 

  7. Jang M, Shim WJ, Han GM, Rani M, Song YK, Hong SH (2017) Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environ Pollut 231:785–794

    CAS  Google Scholar 

  8. Quintana JB, Rodil R, Reemtsma T, García-López M, Rodríguez I (2008) Organophosphorus flame retardants and plasticizers in water and air II. Analytical methodology. TrAC Trends Anal Chem 27:904–915

    CAS  Google Scholar 

  9. Li J, Yu NY, Zhang BB, Jin L, Li MY, Hu MY, Zhang XW, Wei S, Yu HX (2014) Occurrence of organophosphate flame retardants in drinking water from China. Water Res 54:53–61

    Google Scholar 

  10. Fries E, Dekiff JH, Willmeyer J, Nuelle M-T, Ebert M, Remy D (2013) Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Processes Impacts 15:1949–1956

    CAS  Google Scholar 

  11. Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324

    CAS  Google Scholar 

  12. Rani M, Shim WJ, Han GM, Jang M, Song YK, Hong SH (2017) Benzotriazole-type ultraviolet stabilizers and antioxidants in plastic marine debris and their new products. Sci Total Environ 579:745–754

    CAS  Google Scholar 

  13. Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D, Zettler ER, Farrington JW, Reddy CM, Peacock EE, Ward MW (2011) Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692

    CAS  Google Scholar 

  14. Rani M, Shim WJ, Han GM, Jang M, Al-Odaini NA, Song YK, Hong SH (2015) Qualitative analysis of additives in plastic marine debris and its new products. Arch Environ Contam Toxicol 69:352–366

    CAS  Google Scholar 

  15. Zhang H, Zhou Q, Xie Z, Zhou Y, Tu C, Fu C, Mi W, Ebinghaus R, Christie P, Luo Y (2018) Occurrences of organophosphorus esters and phthalates in the microplastics from the coastal beaches in North China. Sci Total Environ 616:1505–1512

    Google Scholar 

  16. Leon VM, Garcia-Aguera I, Molto V, Fernandez-Gonzalez V, Llorca-Perez L, Andrade JM, Muniategui-Lorenzo S, Campillo JA (2019) PAHs, pesticides, personal care products and plastic additives in plastic debris from Spanish Mediterranean beaches. Sci Total Environ 670:672–684

    CAS  Google Scholar 

  17. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199

    CAS  Google Scholar 

  18. Paluselli A, Fauvelle V, Galgani F, Sempere R (2019) Phthalate release from plastic fragments and degradation in seawater. Environ Sci Technol 53:166–175

    CAS  Google Scholar 

  19. Luo H, Xiang Y, He D, Li Y, Zhao Y, Wang S, Pan X (2019) Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. Sci Total Environ 678:1–9

    CAS  Google Scholar 

  20. Al-Odaini NA, Shim WJ, Han GM, Jang M, Hong SH (2015) Enrichment of hexabromocyclododecanes in coastal sediments near aquaculture areas and a wastewater treatment plant in a semi-enclosed bay in South Korea. Sci Total Environ 505:290–298

    CAS  Google Scholar 

  21. Koelmans AA, Besseling E, Foekema EM (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54

    CAS  Google Scholar 

  22. Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S, Endo S, Mato Y, Saha M, Okuda K, Nakashima A, Murakami M, Zurcher N, Booyatumanondo R, Zakaria MP, Dung LQ, Gordon M, Miguez C, Suzuki S, Moore C, Karapanagioti HK, Weerts S, McClurg T, Burres E, Smith W, van Velkenburg M, Lang JS, Lang RC, Laursen D, Danner B, Stewardson N, Thompson RC (2009) International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull 58:1437–1446

    CAS  Google Scholar 

  23. Antunes JC, Frias JGL, Micaelo AC, Sobral P (2013) Resin pellets from beaches of the Portuguese coast and adsorbed persistent organic pollutants. Estuar Coast Shelf Sci 130:62–69

    CAS  Google Scholar 

  24. Gorman D, Moreira FT, Turra A, Fontenelle FR, Combi T, Bícego MC, de Castro Martins C (2019) Organic contamination of beached plastic pellets in the South Atlantic: risk assessments can benefit by considering spatial gradients. Chemosphere 223:608–615

    CAS  Google Scholar 

  25. Zhang W, Ma X, Zhang Z, Wang Y, Wang J, Wang J, Ma D (2015) Persistent organic pollutants carried on plastic resin pellets from two beaches in China. Mar Pollut Bull 99:28–34

    CAS  Google Scholar 

  26. Heskett M, Takada H, Yamashita R, Yuyama M, Ito M, Geok YB, Ogata Y, Kwan C, Heckhausen A, Taylor H, Powell T, Morishige C, Young D, Patterson H, Robertson B, Bailey E, Mermoz J (2012) Measurement of persistent organic pollutants (POPs) in plastic resin pellets from remote islands: toward establishment of background concentrations for international pellet watch. Mar Pollut Bull 64:445–448

    CAS  Google Scholar 

  27. Fisner M, Taniguchi S, Moreira F, Bicego MC, Turra A (2013) Polycyclic aromatic hydrocarbons (PAHs) in plastic pellets: variability in the concentration and composition at different sediment depths in a sandy beach. Mar Pollut Bull 70:219–226

    CAS  Google Scholar 

  28. Rochman CM, Hoh E, Hentschel BT, Kaye S (2013) Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ Sci Technol 47:1646–1654

    CAS  Google Scholar 

  29. Endo S, Takizawa R, Okuda K, Takada H, Chiba K, Kanehiro H, Ogi H, Yamashita R, Date T (2005) Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull 50:1103–1114

    CAS  Google Scholar 

  30. Chen Q, Zhang H, Allgeier A, Zhou Q, Ouellet JD, Crawford SE, Luo Y, Yang Y, Shi H, Hollert H (2019) Marine microplastics bound dioxin-like chemicals: model explanation and risk assessment. J Hazard Mater 364:82–90

    CAS  Google Scholar 

  31. Karapanagioti HK, Klontza I (2008) Testing phenanthrene distribution properties of virgin plastic pellets and plastic eroded pellets found on Lesvos island beaches (Greece). Mar Environ Res 65:283–290

    CAS  Google Scholar 

  32. Guo XY, Wang XL, Zhou XZ, Kong XZ, Tao S, Xing BS (2012) Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition. Environ Sci Technol 46:7252–7259

    CAS  Google Scholar 

  33. Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759–7764

    CAS  Google Scholar 

  34. Liu FF, Liu GZ, Zhu ZL, Wang SC, Zhao FF (2019) Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere 214:688–694

    CAS  Google Scholar 

  35. Rochman CM, Manzano C, Hentschel BT, Simonich SLM, Hoh E (2013) Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment. Environ Sci Technol 47:13976–13984

    CAS  Google Scholar 

  36. Velzeboer I, Kwadijk CJ, Koelmans AA (2014) Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol 48:4869–4876

    CAS  Google Scholar 

  37. Liu L, Fokkink R, Koelmans AA (2015) Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic. Environ Toxicol Chem/SETAC 35:1650–1655

    Google Scholar 

  38. Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    CAS  Google Scholar 

  39. Lin W, Jiang R, Wu J, Wei S, Yin L, Xiao X, Hu S, Shen Y, Ouyang G (2019) Sorption properties of hydrophobic organic chemicals to micro-sized polystyrene particles. Sci Total Environ 690:565–572

    CAS  Google Scholar 

  40. Wang W, Wang J (2018) Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics. Chemosphere 193:567–573

    CAS  Google Scholar 

  41. Fries E, Zarfl C (2012) Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environ Sci Pollut R 19:1296–1304

    CAS  Google Scholar 

  42. Müller A, Becker R, Dorgerloh U, Simon F-G, Braun U (2018) The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environ Pollut 240:639–646

    Google Scholar 

  43. Hüffer T, Weniger A-K, Hofmann T (2018) Sorption of organic compounds by aged polystyrene microplastic particles. Environ Pollut 236:218–225

    Google Scholar 

  44. Zhan ZW, Wang JD, Peng JP, Xie QL, Huang Y, Gao YF (2016) Sorption of 3,3′,4,4′-tetrachlorobiphenyl by microplastics: a case study of polypropylene. Mar Pollut Bull 110:559–563

    CAS  Google Scholar 

  45. Site AD (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data 30:187–439

    Google Scholar 

  46. Oh S, Wang Q, Shin WS, Song D-I (2013) Effect of salting out on the desorption-resistance of polycyclic aromatic hydrocarbons (PAHs) in coastal sediment. Chem Eng J 225:84–92

    CAS  Google Scholar 

  47. Zuo L-Z, Li H-X, Lin L, Sun Y-X, Diao Z-H, Liu S, Zhang Z-Y, Xu X-R (2019) Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics. Chemosphere 215:25–32

    CAS  Google Scholar 

  48. Bakir A, Rowland SJ, Thompson RC (2014) Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar Coast Shelf Sci 140:14–21

    CAS  Google Scholar 

  49. Liu G, Zhu Z, Yang Y, Sun Y, Yu F, Ma J (2019) Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ Pollut 246:26–33

    CAS  Google Scholar 

  50. Zhang H, Wang J, Zhou B, Zhou Y, Dai Z, Zhou Q, Chriestie P, Luo Y (2018) Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: kinetics, isotherms and influencing factors. Environ Pollut 243:1550–1557

    CAS  Google Scholar 

  51. Li J, Zhang K, Zhang H (2018) Adsorption of antibiotics on microplastics. Environ Pollut 237:460–467

    CAS  Google Scholar 

  52. Guo X, Pang J, Chen S, Jia H (2018) Sorption properties of tylosin on four different microplastics. Chemosphere 209:240–245

    CAS  Google Scholar 

  53. Xu B, Liu F, Brookes PC, Xu J (2018) Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environ Pollut 240:87–94

    CAS  Google Scholar 

  54. Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50:3315–3326

    CAS  Google Scholar 

  55. Bakir A, O’Connor IA, Rowland SJ, Hendriks AJ, Thompson RC (2016) Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environ Pollut 219:56–65

    CAS  Google Scholar 

  56. Hartmann NB, Rist S, Bodin J, Jensen LHS, Schmidt SN, Mayer P, Meibom A, Baun A (2017) Microplastics as vectors for environmental contaminants: exploring sorption, desorption, and transfer to biota. Integr Environ Assess Manag 13:488–493

    Google Scholar 

  57. Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47:593–600

    CAS  Google Scholar 

  58. Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC (2013) Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol 23:2388–2392

    CAS  Google Scholar 

  59. Ma Y, Huang A, Cao S, Sun F, Wang L, Guo H, Ji R (2016) Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environ Pollut 219:166–173

    CAS  Google Scholar 

  60. Liu J, Ma Y, Zhu D, Xia T, Qi Y, Yao Y, Guo X, Ji R, Chen W (2018) Polystyrene Nanoplastics-enhanced contaminant transport: role of irreversible adsorption in glassy polymeric domain. Environ Sci Technol 52:2677–2685

    CAS  Google Scholar 

  61. Zhang S, Ding J, Razanajatovo RM, Jiang H, Zou H, Zhu W (2019) Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus). Sci Total Environ 648:1431–1439

    CAS  Google Scholar 

  62. Qu H, Ma R, Wang B, Yang J, Duan L, Yu G (2019) Enantiospecific toxicity, distribution and bioaccumulation of chiral antidepressant venlafaxine and its metabolite in loach (Misgurnus anguillicaudatus) co-exposed to microplastic and the drugs. J Hazard Mater 370:203–211

    CAS  Google Scholar 

  63. Coffin S, Huang G-Y, Lee I, Schlenk D (2019) Fish and seabird gut conditions enhance desorption of estrogenic chemicals from commonly-ingested plastic items. Environ Sci Technol 53:4588–4599

    CAS  Google Scholar 

  64. Lee H, Lee H-J, Kwon J-H (2019) Estimating microplastic-bound intake of hydrophobic organic chemicals by fish using measured desorption rates to artificial gut fluid. Sci Total Environ 651:162–170

    CAS  Google Scholar 

  65. Beckingham B, Ghosh U (2017) Differential bioavailability of polychlorinated biphenyls associated with environmental particles: microplastic in comparison to wood, coal and biochar. Environ Pollut 220:150–158

    CAS  Google Scholar 

  66. Gandara e Silva PP, Nobre CR, Resaffe P, Seabra Pereira CD, Gusmao F (2016) Leachate from microplastics impairs larval development in brown mussels. Water Res 106:364–370

    CAS  Google Scholar 

  67. Li HX, Getzinger GJ, Ferguson PL, Orihuela B, Zhu M, Rittschof D (2016) Effects of toxic leachate from commercial plastics on larval survival and settlement of the barnacle Amphibalanus amphitrite. Environ Sci Technol 50:924–931

    CAS  Google Scholar 

  68. Oliviero M, Tato T, Schiavo S, Fernandez V, Manzo S, Beiras R (2019) Leachates of micronized plastic toys provoke embryotoxic effects upon sea urchin Paracentrotus lividus. Environ Pollut 247:706–715

    CAS  Google Scholar 

  69. Lithner D, Nordensvan I, Dave G (2012) Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna. Environ Sci Pollut R 19:1763–1772

    CAS  Google Scholar 

  70. Chen Q, Allgeier A, Yin D, Hollert H (2019) Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ Int 130:104938

    CAS  Google Scholar 

  71. Dave G, Aspegren P (2010) Comparative toxicity of leachates from 52 textiles to Daphnia magna. Ecotoxicol Environ Saf 73:1629–1632

    CAS  Google Scholar 

  72. Carbery M, O’Connor W, Thavamani P (2018) Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115:400–409

    Google Scholar 

  73. Oliveira M, Ribeiro A, Hylland K, Guilhermino L (2013) Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae). Ecol Indic 34:641–647

    CAS  Google Scholar 

  74. Magara G, Elia AC, Syberg K, Khan FR (2018) Single contaminant and combined exposures of polyethylene microplastics and fluoranthene: accumulation and oxidative stress response in the blue mussel, Mytilus edulis. J Toxicol Environ Health Part A Curr Issues 81:761–773

    CAS  Google Scholar 

  75. Zhu Z-L, Wang S-C, Zhao F-F, Wang S-G, Liu F-F, Liu G-Z (2019) Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ Pollut 246:509–517

    CAS  Google Scholar 

  76. Asmonaite G, Larsson K, Undeland I, Sturve J, Almroth BC (2018) Size matters: ingestion of relatively large microplastics contaminated with environmental pollutants posed little risk for fish health and fillet quality. Environ Sci Technol 52:14381–14391

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, H. et al. (2020). Interaction of Microplastics and Organic Pollutants: Quantification, Environmental Fates, and Ecological Consequences. In: He, D., Luo, Y. (eds) Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry, vol 95. Springer, Cham. https://doi.org/10.1007/698_2020_451

Download citation

Publish with us

Policies and ethics