Skip to main content

Identification and Characterization Methods for Microplastics Basing on Spatial Imaging in Micro-/Nanoscales

  • Chapter
  • First Online:
Microplastics in Terrestrial Environments

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 95))

Abstract

Microplastic pollution is a global problem in recent decades due to their ubiquity in the oceans, sediment, soil, or wastewater. The bioavailability and adsorbability for toxic chemicals of MPs have detrimental effects upon living organisms. This work attempts to provide a critical overview on modern instrumentation and promising techniques for identifying and visualizing micro- or nanoplastics. Fourier transform infrared spectrum (FT-IR) and Raman spectroscopies combined with microscopies, scanning electron microscopy (SEM), hyperspectral imaging (HSI), and confocal laser scanning microscopy (CLSM) were widely used in the identification and visualization of microplastics in organisms and environments. The advantages and limitations of each identification and characterization method were indicated for MP analysis basing on spatial imaging in micro-/nanoscales. In addition, some novel methods may possibly be applied to micro-/nanoplastics identification, such as atomic force microscope (AFM), which may be used to identify and characterize the surface morphology, chemical composition, thermal and mechanical properties of MPs at the nanoscale. However, there is a need to improve and develop new methods to reduce the identification time and effort for sub- or nanomicron plastics and obtain more useful physical and chemical information in environmental MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katsnelson A (2015) News feature: microplastics present pollution puzzle. Proc Natl Acad Sci 112(18):5547. https://doi.org/10.1073/pnas.1504135112

    Article  CAS  Google Scholar 

  2. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364(1526):1985–1998. https://doi.org/10.1098/rstb.2008.0205

    Article  CAS  Google Scholar 

  3. Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62(6):1207–1217. https://doi.org/10.1016/j.marpolbul.2011.03.032

    Article  CAS  Google Scholar 

  4. Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L (2017) Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol 51(23):13689–13697. https://doi.org/10.1021/acs.est.7b03667

    Article  CAS  Google Scholar 

  5. Lee KW, Shim WJ, Kwon OY, Kang JH (2013) Size-dependent effects of micro polystyrene particles in the marine copepod tigriopus japonicus. Environ Sci Technol 47(19):11278–11283. https://doi.org/10.1021/acs.est.8b05512

    Article  CAS  Google Scholar 

  6. Bouwmeesster H, Hollman PCH, Peters RJB (2015) Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol 49:8932–8947. https://doi.org/10.1021/acs.est.5b01090

    Article  CAS  Google Scholar 

  7. Canesi L et al (2015) Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar Environ Res 111:34–40. https://doi.org/10.1016/j.marenvres.2015.06.008

    Article  CAS  Google Scholar 

  8. Zhou Z, Kang Y, Xu Z, Xue P (2019) Development and prospects of microfluidic platforms for sperm inspection. Anal Methods 11(36):4547–4560. https://doi.org/10.1039/C9AY01641D

    Article  CAS  Google Scholar 

  9. Hernandez LM, Yousefi N, Tufenkji N (2017) Are there nanoplastics in your personal care products? Environ Sci Technol Lett 4(7):280–285. https://doi.org/10.1021/acs.estlett.7b00187

    Article  CAS  Google Scholar 

  10. Carr SA, Liu J, Tesoro AG (2016) Transport and fate of microplastic particles in wastewater treatment plants. Water Res 91:174–182. https://doi.org/10.1016/j.watres.2016.01.002

    Article  CAS  Google Scholar 

  11. Carney Almroth BM et al (2018) Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ Sci Pollut Res 25(2):1191–1199. https://doi.org/10.1007/s11356-017-0528-7

    Article  CAS  Google Scholar 

  12. Ng EL et al (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341

    Article  CAS  Google Scholar 

  13. Rocha-Santos TAP, Duarte AC (2017) Characterization and analysis of microplastics. In: Comprehensive analytical chemistry, vol 75. Elsevier, Amsterdam, p i. https://doi.org/10.1016/S0166-526X(17)30014-4

    Chapter  Google Scholar 

  14. da Costa JP, Santos PSM, Duarte AC, Rocha-Santos T (2016) (Nano)plastics in the environment-sources, fates and effects. Sci Total Environ 566-567:15–26. https://doi.org/10.1016/j.scitotenv.2016.05.041

    Article  CAS  Google Scholar 

  15. Llorca M, Schirinzi G, Martínez M, Barceló D, Farré M (2018) Adsorption of perfluoroalkyl substances on microplastics under environmental conditions. Environ Pollut 235:680–691. https://doi.org/10.1016/j.envpol.2017.12.075

    Article  CAS  Google Scholar 

  16. Llorca M, Farré M, Karapanagioti HK, Barceló D (2014) Levels and fate of perfluoroalkyl substances in beached plastic pellets and sediments collected from Greece. Mar Pollut Bull 87(1):286–291. https://doi.org/10.1016/j.marpolbul.2014.07.036

    Article  CAS  Google Scholar 

  17. Song YK et al (2014) Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ Sci Technol 48(16):9014–9021. https://doi.org/10.1021/es501757s

    Article  CAS  Google Scholar 

  18. Li J, Liu H, Paul Chen J (2018) Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res 137:362–374. https://doi.org/10.1016/j.watres.2017.12.056

    Article  CAS  Google Scholar 

  19. Maes T, Jessop R, Wellner N, Haupt K, Mayes AG (2017) A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep 7:44501. https://doi.org/10.1038/srep44501

    Article  CAS  Google Scholar 

  20. Harrison JP, Ojeda JJ, Romero-González ME (2012) The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ 416:455–463. https://doi.org/10.1016/j.scitotenv.2011.11.078

    Article  CAS  Google Scholar 

  21. Turner A, Holmes L (2011) Occurrence, distribution and characteristics of beached plastic production pellets on the island of Malta (Central Mediterranean). Mar Pollut Bull 62(2):377–381. https://doi.org/10.1016/j.marpolbul.2010.09.027

    Article  CAS  Google Scholar 

  22. Ugolini A, Ungherese G, Ciofini M, Lapucci A, Camaiti M (2013) Microplastic debris in sandhoppers. Estuar Coast Shelf Sci 129:19–22. https://doi.org/10.1016/j.ecss.2013.05.026

    Article  CAS  Google Scholar 

  23. Ng KL, Obbard JP (2006) Prevalence of microplastics in Singapore’s coastal marine environment. Mar Pollut Bull 52(7):761–767. https://doi.org/10.1016/j.marpolbul.2005.11.017

    Article  CAS  Google Scholar 

  24. Song YK et al (2015) A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull 93(1):202–209. https://doi.org/10.1016/j.marpolbul.2015.01.015

    Article  CAS  Google Scholar 

  25. Wenning M, Seiler H, Scherer S (2002) Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl Environ Microbiol 68(10):4717. https://doi.org/10.1128/AEM.68.10.4717-4721.2002

    Article  CAS  Google Scholar 

  26. Ojeda JJ, Romero-González ME, Banwart SA (2009) Analysis of bacteria on steel surfaces using reflectance micro-Fourier transform infrared spectroscopy. Anal Chem 81(15):6467–6473. https://doi.org/10.1021/ac900841c

    Article  CAS  Google Scholar 

  27. Cincinelli A et al (2017) Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR. Chemosphere 175:391–400. https://doi.org/10.1016/j.chemosphere.2017.02.024

    Article  CAS  Google Scholar 

  28. Tagg AS, Sapp M, Harrison JP, Ojeda JJ (2015) Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem 87(12):6032–6040. https://doi.org/10.1021/acs.analchem.5b00495

    Article  CAS  Google Scholar 

  29. Löder MGJ, Gerdts G (2015) Methodology used for the detection and identification of microplastics-a critical appraisal. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham, pp 201–227

    Chapter  Google Scholar 

  30. Schymanski D, Goldbeck C, Humpf H-U, Fürst P (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162. https://doi.org/10.1016/j.watres.2017.11.011

    Article  CAS  Google Scholar 

  31. Van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499. https://doi.org/10.1016/j.envpol.2013.08.013

    Article  CAS  Google Scholar 

  32. Collard F, Gilbert B, Eppe G, Parmentier E, Das K (2015) Detection of anthropogenic particles in fish stomachs: an isolation method adapted to identification by Raman spectroscopy. Arch Environ Contam Toxicol 69(3):331–339. https://doi.org/10.1007/s00244-015-0221-0

    Article  CAS  Google Scholar 

  33. Ivleva NP, Wiesheu AC, Niessner R (2017) Microplastic in aquatic ecosystems. Angew Chem Int Ed 56:1720–1739. https://doi.org/10.1002/anie.201606957

    Article  CAS  Google Scholar 

  34. Fang C et al (2008) DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label. Biosens Bioelectron 24(2):216–221. https://doi.org/10.1016/j.bios.2008.03.032

    Article  CAS  Google Scholar 

  35. Fang C et al (2009) Metallization of silicon nanowires and SERS response from a single metallized nanowire. Chem Mater 21(15):3542–3548. https://doi.org/10.1021/cm900132j

    Article  CAS  Google Scholar 

  36. Sobhani Z, Al Amin M, Naidu R, Megharaj M, Fang C (2019) Identification and visualisation of microplastics by Raman mapping. Anal Chim Acta 1077:191–199. https://doi.org/10.1016/j.aca.2019.05.021

    Article  CAS  Google Scholar 

  37. Enders K, Lenz R, Stedmon CA, Nielsen TG (2015) Abundance, size and polymer composition of marine microplastics ≥10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull 100(1):70–81. https://doi.org/10.1016/j.marpolbul.2015.09.027

    Article  CAS  Google Scholar 

  38. Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG (2015) A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull 100(1):82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026

    Article  CAS  Google Scholar 

  39. Kolvenbach BA, Helbling DE, Kohler H-PE, Corvini PFX (2014) Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Curr Opin Biotechnol 27:8–14. https://doi.org/10.1016/j.copbio.2013.08.017

    Article  CAS  Google Scholar 

  40. Burkersroda F, Schedl L, Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23(21):4221–4231. https://doi.org/10.1016/S0142-9612(02)00170-9

    Article  Google Scholar 

  41. Serranti S, Palmieri R, Bonifazi G, Cózar A (2018) Characterization of microplastic litter from oceans by an innovative approach based on hyperspectral imaging. Waste Manag 76:117–125. https://doi.org/10.1016/j.wasman.2018.03.003

    Article  Google Scholar 

  42. Zhang Y et al (2019) Hyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fish. Environ Sci Technol 53(9):5151–5158. https://doi.org/10.1021/acs.est.8b07321

    Article  CAS  Google Scholar 

  43. Shan J et al (2019) Simple and rapid detection of microplastics in seawater using hyperspectral imaging technology. Anal Chim Acta 1050:161–168. https://doi.org/10.1016/j.aca.2018.11.008

    Article  CAS  Google Scholar 

  44. Serranti S, Gargiulo A, Bonifazi G (2011) Characterization of post-consumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes. Waste Manag 31(11):2217–2227. https://doi.org/10.1016/j.wasman.2011.06.007

    Article  CAS  Google Scholar 

  45. Serranti S, Luciani V, Bonifazi G, Hu B, Rem PC (2015) An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag 35:12–20. https://doi.org/10.1016/j.wasman.2014.10.017

    Article  CAS  Google Scholar 

  46. Hu B, Serranti S, Fraunholcz N, Di Maio F, Bonifazi G (2013) Recycling-oriented characterization of polyolefin packaging waste. Waste Manag 33(3):574–584. https://doi.org/10.1016/j.wasman.2012.11.018

    Article  CAS  Google Scholar 

  47. Luciani V, Bonifazi G, Rem P, Serranti S (2015) Upgrading of PVC rich wastes by magnetic density separation and hyperspectral imaging quality control. Waste Manag 45:118–125. https://doi.org/10.1016/j.wasman.2014.10.015

    Article  CAS  Google Scholar 

  48. Palmieri R, Bonifazi G, Serranti S (2014) Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging. Waste Manag 34(11):2120–2130. https://doi.org/10.1016/j.wasman.2014.06.003

    Article  CAS  Google Scholar 

  49. Veenstra TS, Churnside JH (2012) Airborne sensors for detecting large marine debris at sea. Mar Pollut Bull 65(1):63–68. https://doi.org/10.1016/j.marpolbul.2010.11.018

    Article  CAS  Google Scholar 

  50. Mace TH (2012) At-sea detection of marine debris: overview of technologies, processes, issues, and options. Mar Pollut Bull 65(1):23–27. https://doi.org/10.1016/j.marpolbul.2011.08.042

    Article  CAS  Google Scholar 

  51. Karlsson TM, Grahn H, van Bavel B, Geladi P (2016) Hyperspectral imaging and data analysis for detecting and determining plastic contamination in seawater filtrates. J Near Infrared Spectrosc 24(2):141–149. https://doi.org/10.1255/jnirs.1212

    Article  CAS  Google Scholar 

  52. Shan J et al (2018) A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics. Environ Pollut 238:121–129. https://doi.org/10.1016/j.envpol.2018.03.026

    Article  CAS  Google Scholar 

  53. Cooper DA, Corcoran PL (2010) Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar Pollut Bull 60(5):650–654. https://doi.org/10.1016/j.marpolbul.2009.12.026

    Article  CAS  Google Scholar 

  54. Brun NR, Beenakker MMT, Hunting ER, Ebert D, Vijver MG (2017) Brood pouch-mediated polystyrene nanoparticle uptake during Daphnia magna embryogenesis. Nanotoxicology 11(8):1059–1069. https://doi.org/10.1080/17435390.2017.1391344

    Article  CAS  Google Scholar 

  55. Chen Q et al (2017) Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci Total Environ 584-585:1022–1031. https://doi.org/10.1016/j.scitotenv.2017.01.156

    Article  CAS  Google Scholar 

  56. De Tender C et al (2017) A review of microscopy and comparative molecular-based methods to characterize “Plastisphere” communities. Anal Methods 9(14):2132–2143. https://doi.org/10.1039/C7AY00260B

    Article  CAS  Google Scholar 

  57. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “Plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146. https://doi.org/10.1021/es401288x

    Article  CAS  Google Scholar 

  58. Harrison JP, Schratzberger M, Sapp M, Osborn AM (2014) Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14(1):232. https://doi.org/10.1186/s12866-014-0232-4

    Article  CAS  Google Scholar 

  59. Eich A, Mildenberger T, Laforsch C, Weber M (2015) Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: early signs of degradation in the pelagic and benthic zone? PLoS One 10(9):e0137201. https://doi.org/10.1371/journal.pone.0137201

    Article  CAS  Google Scholar 

  60. Reisser J et al (2014) Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS One 9(6):e100289. https://doi.org/10.1371/journal.pone.0100289

    Article  CAS  Google Scholar 

  61. Oberbeckmann S, Loeder MGJ, Gerdts G, Osborn AM (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol 90(2):478–492. https://doi.org/10.1111/1574-6941.12409

    Article  CAS  Google Scholar 

  62. Carson HS, Nerheim MS, Carroll KA, Eriksen M (2013) The plastic-associated microorganisms of the North Pacific Gyre. Mar Pollut Bull 75(1):126–132. https://doi.org/10.1016/j.marpolbul.2013.07.054

    Article  CAS  Google Scholar 

  63. Di M, Wang J (2018) Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Sci Total Environ 616-617:1620–1627. https://doi.org/10.1016/j.scitotenv.2017.10.150

    Article  CAS  Google Scholar 

  64. Anderson PJ et al (2017) Microplastic contamination in Lake Winnipeg, Canada. Environ Pollut 225:223–231. https://doi.org/10.1016/j.envpol.2017.02.072

    Article  CAS  Google Scholar 

  65. Su L et al (2016) Microplastics in Taihu Lake, China. Environ Pollut 216:711–719. https://doi.org/10.1016/j.envpol.2016.06.036

    Article  CAS  Google Scholar 

  66. Mahon AM et al (2017) Microplastics in sewage sludge: effects of treatment. Environ Sci Technol 51(2):810–818. https://doi.org/10.1021/acs.est.6b04048

    Article  CAS  Google Scholar 

  67. Vianello A et al (2013) Microplastic particles in sediments of Lagoon of Venice, Italy: first observations on occurrence, spatial patterns and identification. Estuar Coast Shelf Sci 130:54–61. https://doi.org/10.1016/j.ecss.2013.03.022

    Article  CAS  Google Scholar 

  68. Gniadek M, Dąbrowska A (2019) The marine nano- and microplastics characterisation by SEM-EDX: the potential of the method in comparison with various physical and chemical approaches. Mar Pollut Bull 148:210–216. https://doi.org/10.1016/j.marpolbul.2019.07.067

    Article  CAS  Google Scholar 

  69. Chae Y, Kim D, Kim SW, An Y-J (2018) Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci Rep 8(1):284. https://doi.org/10.1038/s41598-017-18849-y

    Article  CAS  Google Scholar 

  70. Jiang X et al (2019) Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut 250:831–838. https://doi.org/10.1016/j.envpol.2019.04.055

    Article  CAS  Google Scholar 

  71. Pico Y, Alfarhan A, Barcelo D (2019) Nano- and microplastic analysis: focus on their occurrence in freshwater ecosystems and remediation technologies. TrAC Trends Anal Chem 113:409–425. https://doi.org/10.1016/j.trac.2018.08.022

    Article  CAS  Google Scholar 

  72. Zhang H et al (2018) Atomic force microscopy for two-dimensional materials: a tutorial review. Opt Commun 406:3–17. https://doi.org/10.1016/j.optcom.2017.05.015

    Article  CAS  Google Scholar 

  73. Marcott C et al (2014) Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra. J Mol Struct 1069:284–289. https://doi.org/10.1016/j.molstruc.2014.01.036

    Article  CAS  Google Scholar 

  74. Tang F, Bao P, Roy A, Wang Y, Su Z (2018) In-situ spectroscopic and thermal analyses of phase domains in high-impact polypropylene. Polymer 142:155–163. https://doi.org/10.1016/j.polymer.2018.03.037

    Article  CAS  Google Scholar 

  75. Wu X, Shi S, Yu Z, Russell TP, Wang D (2018) AFM nanomechanical mapping and nanothermal analysis reveal enhanced crystallization at the surface of a semicrystalline polymer. Polymer 146:188–195. https://doi.org/10.1016/j.polymer.2018.05.043

    Article  CAS  Google Scholar 

  76. Wang H et al (2018) Resistive switching and nanoscale chemical mapping of phase separation in PVDF/PMMA/F8T2 ternary thin films. Polymer 153:498–506. https://doi.org/10.1016/j.polymer.2018.08.051

    Article  CAS  Google Scholar 

  77. Awatani T, Midorikawa H, Kojima N, Ye J, Marcott C (2013) Morphology of water transport channels and hydrophobic clusters in Nafion from high spatial resolution AFM-IR spectroscopy and imaging. Electrochem Commun 30:5–8. https://doi.org/10.1016/j.elecom.2013.01.021

    Article  CAS  Google Scholar 

  78. Marcott C et al (2013) Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an atomic force microscope to directly detect absorbed light from a tunable IR laser source. Exp Dermatol 22(6):419–421. https://doi.org/10.1111/exd.12144

    Article  CAS  Google Scholar 

  79. Li N, Gilpin CJ, Taylor LS (2017) Understanding the impact of water on the miscibility and microstructure of amorphous solid dispersions: An AFM-LCR and TEM-EDX study. Mol Pharm 14(5):1691–1705. https://doi.org/10.1021/acs.molpharmaceut.6b01151

    Article  CAS  Google Scholar 

  80. Duvigneau J, Schönherr H, Vancso GJ (2010) Nanoscale thermal AFM of polymers: transient heat flow effects. ACS Nano 4(11):6932–6940. https://doi.org/10.1021/nn101665k

    Article  CAS  Google Scholar 

  81. Dazzi A, Prater CB (2017) AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem Rev 117(7):5146–5173. https://doi.org/10.1021/acs.chemrev.6b00448

    Article  CAS  Google Scholar 

  82. Li N, Taylor LS (2016) Nanoscale infrared, thermal, and mechanical characterization of telaprevir-polymer miscibility in amorphous solid dispersions prepared by solvent evaporation. Mol Pharm 13(3):1123–1136. https://doi.org/10.1021/acs.molpharmaceut.5b00925

    Article  CAS  Google Scholar 

  83. Dazzi A et al (2012) AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl Spectrosc 66(12):1365–1384

    Article  CAS  Google Scholar 

  84. Kinnunen H et al (2015) Extrinsic lactose fines improve dry powder inhaler formulation performance of a cohesive batch of budesonide via agglomerate formation and consequential co-deposition. Int J Pharm 478(1):53–59. https://doi.org/10.1016/j.ijpharm.2014.11.019

    Article  CAS  Google Scholar 

  85. Qi S, Moffat JG, Yang Z (2013) Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods. Mol Pharm 10(3):918–930. https://doi.org/10.1021/mp300557q

    Article  CAS  Google Scholar 

  86. Hurley DC (2009) Contact resonance force microscopy techniques for nanomechanical measurements. In: Bhushan B, Fuchs H (eds) Applied scanning probe methods XI: scanning probe microscopy techniques. Springer, Berlin, pp 97–138

    Chapter  Google Scholar 

  87. Dillon E, Kjoller K, Prater C (2013) Lorentz contact resonance imaging for atomic force microscopes: probing mechanical and thermal properties on the nanoscale. Microscopy Today 21(6):18–24. https://doi.org/10.1017/S1551929513000989

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2018D01A38), the National Natural Science Foundation of China (Grant No. 41907140), and the West Light Foundation of Chinese Academy of Sciences (Grant No. 2016-QNXZ-B-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangliang Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, W., Luo, Y., Pan, X. (2020). Identification and Characterization Methods for Microplastics Basing on Spatial Imaging in Micro-/Nanoscales. In: He, D., Luo, Y. (eds) Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry, vol 95. Springer, Cham. https://doi.org/10.1007/698_2020_446

Download citation

Publish with us

Policies and ethics