Skip to main content

Microplastics in Inland Small Waterbodies

  • Chapter
  • First Online:
Book cover Microplastics in Terrestrial Environments

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 95))

Abstract

Small waterbodies are the most numerous and widespread freshwater environments, and they play important roles in supporting freshwater biodiversity and ecosystem service delivery. There has been a considerable increase on research of environmental pollutants in small waterbodies, but only a few works have focused on microplastic (MP) occurrence and effects. MP pollution has been well documented in large freshwaters. Meanwhile, small waterbodies are also the receiving waters of MPs through stormwater runoff, atmospheric deposition, etc. In this chapter, we first introduce the definitions and characteristics of a range of small waterbodies and their ongoing threats. Next, we overview the distributions and characteristics of MPs in small waterbodies worldwide and offer some insights into their sources. Furthermore, we give a brief discussion about interactions of MPs with freshwater biota and describe the toxicity effects of MPs on amphibians in detail. Lastly, we demonstrate the current awareness of people about small waterbodies and provide potential approaches to minimize their MP pollution. Overall, high abundances of MPs are observed in water and sediment collected from various types of small waterbodies, and MPs pose a significant threat to the resident organisms and human health. Yet, less detailed information is available on small waterbodies’ MPs at present. Therefore, we appeal more researchers and policy-makers to focus on the protection and management of small waterbodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biggs J, von Fumetti S, Kelly-Quinn M (2017) The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia 793(1):3–39. https://doi.org/10.1007/s10750-016-3007-0

    Article  Google Scholar 

  2. Riley WD, Potter ECE, Biggs J, Collins AL, Jarvie HP, Jones JI, Kelly-Quinn M, Ormerod SJ, Sear DA, Wilby RL, Broadmeadow S, Brown CD, Chanin P, Copp GH, Cowx IG, Grogan A, Hornby DD, Huggett D, Kelly MG, Naura M, Newman JR, Siriwardena GM (2018) Small water bodies in Great Britain and Ireland: ecosystem function, human-generated degradation, and options for restorative action. Sci Total Environ 645:1598–1616. https://doi.org/10.1016/j.scitotenv.2018.07.243

    Article  CAS  Google Scholar 

  3. Biggs J, Nicolet P, Mlinaric M, Lalanne T (2014) Report of the workshop on the protection and management of Small Water Bodies. Brussels, 14th November 2013: The European Environmental Bureau (EEB) and the Freshwater Habitats Trust

    Google Scholar 

  4. Collinson NH, Biggs J, Corfield A, Hodson MJ, Walker D, Whitfield M, Williams PJ (1995) Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biol Conserv 74(2):125–133

    Article  Google Scholar 

  5. Cereghino R, Biggs J, Oertli B, Declerck S (2008) The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597(1):1–6. https://doi.org/10.1007/s10750-007-9225-8

    Article  Google Scholar 

  6. Furse MT, Grieve NJ, Gunn RJM, Symes KL, Winder JM, Blackburn JH (1993) The faunal richness of headwater streams. Stage 2 – Catchment Studies, National Rivers Authority R&D Note 221. National Rivers Authority, Bristol

    Google Scholar 

  7. Brown CD, Turner N, Hollis J, Bellamy P, Biggs J, Williams P, Arnold D, Pepper T, Maund S (2006) Morphological and physico-chemical properties of British aquatic habitats potentially exposed to pesticides. Agric Ecosyst Environ 113(1–4):307–319. https://doi.org/10.1016/j.agee.2005.10.015

    Article  CAS  Google Scholar 

  8. Cantonati M, Gerecke R, Bertuzzi E (2006) Springs of the Alps – sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562(1):59–96. https://doi.org/10.1007/s10750-005-1806-9

    Article  CAS  Google Scholar 

  9. Kristensen P, Globevnik L (2014) European small water bodies. Biol Environ Proc Roy Ir Acad 114B(3):281. https://doi.org/10.3318/bioe.2014.13

    Article  Google Scholar 

  10. McDonald CP, Rover JA, Stets EG, Striegl RG (2012) The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnol Oceanogr 57(2):597–606. https://doi.org/10.4319/lo.2012.57.2.0597

    Article  Google Scholar 

  11. Chumchal MM, Drenner RW, Adams KJ (2016) Abundance and size distribution of permanent and temporary farm ponds in the southeastern Great Plains. Inland Waters 6(2):258–264. https://doi.org/10.5268/Iw-6.2.954

    Article  Google Scholar 

  12. Oertli B, Auderset Joye D, Castella E, Juge R, Lehmann A, Lachavanne J-B (2005) PLOCH: a standardized method for sampling and assessing the biodiversity in ponds. Aquat Conserv Mar Freshwat Ecosyst 15(6):665–679. https://doi.org/10.1002/aqc.744

    Article  Google Scholar 

  13. Søndergaard M, Jeppesen E, Jensen JP (2005) Pond or lake: does it make any difference? Arch Hydrobiol 162(2):143–165. https://doi.org/10.1127/0003-9136/2005/0162-0143

    Article  CAS  Google Scholar 

  14. Maltby E, Ormerod S, Acreman M, Blackwell M, Durance I, Everard M, Morris J, Spray C (2011) Freshwaters – openwaters, wetlands and floodplains. In: Assessment UNE (ed) The UK National Ecosystem Assessment Technical Report. UNEP-WCMC, Cambridge, pp 295–360

    Google Scholar 

  15. Verdonschot RCM (2012) Drainage ditches, biodiversity hotspots for aquatic invertebrates. Radboud University Nijmegen, Wageningen

    Google Scholar 

  16. Wiens JJ (2015) Faster diversification on land than sea helps explain global biodiversity patterns among habitats and animal phyla. Ecol Lett 18(11):1234–1241. https://doi.org/10.1111/ele.12503

    Article  Google Scholar 

  17. Martínez-Sanz C, Cenzano CSS, Fernández-Aláez M, García-Criado F (2012) Relative contribution of small mountain ponds to regional richness of littoral macroinvertebrates and the implications for conservation. Aquat Conserv Mar Freshwat Ecosyst 22(2):155–164. https://doi.org/10.1002/aqc.2227

    Article  Google Scholar 

  18. Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115(2):329–341. https://doi.org/10.1016/S0006-3207(03)00153-8

    Article  Google Scholar 

  19. Davies BR, Biggs J, Williams PJ, Lee JT, Thompson S (2007) A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597(1):7–17. https://doi.org/10.1007/s10750-007-9227-6

    Article  Google Scholar 

  20. Pittman SE, Osbourn MS, Semlitsch RD (2014) Movement ecology of amphibians: a missing component for understanding population declines. Biol Conserv 169:44–53. https://doi.org/10.1016/j.biocon.2013.10.020

    Article  Google Scholar 

  21. Gooderham JPR, Barmuta LA, Davies PE (2007) Upstream heterogeneous zones: small stream systems structured by a lack of competence? J N Am Benthol Soc 26(3):365–374. https://doi.org/10.1899/06-067.1

    Article  Google Scholar 

  22. Thornhill IA, Biggs J, Hill MJ, Briers R, Gledhill D, Wood PJ, Gee JHR, Ledger M, Hassall C (2018) The functional response and resilience in small waterbodies along land-use and environmental gradients. Glob Chang Biol 24(7):3079–3092. https://doi.org/10.1111/gcb.14149

    Article  Google Scholar 

  23. Bernhardt ES, Band LE, Walsh CJ, Berke PE (2008) Understanding, managing, and minimizing urban impacts on surface water nitrogen loading. Ann N Y Acad Sci 1134(1):61–96. https://doi.org/10.1196/annals.1439.014

    Article  CAS  Google Scholar 

  24. Smedema LK, Vlotman WF, Rycroft D (2014) Modern land drainage: planning, design and management of agricultural drainage systems. CRC Press, London

    Google Scholar 

  25. Beketov MA, Kefford BJ, Schafer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci U S A 110(27):11039–11043. https://doi.org/10.1073/pnas.1305618110

    Article  Google Scholar 

  26. Rasmussen JJ, Wiberg-Larsen P, Baattrup-Pedersen A, Friberg N, Kronvang B (2012) Stream habitat structure influences macroinvertebrate response to pesticides. Environ Pollut 164:142–149. https://doi.org/10.1016/j.envpol.2012.01.007

    Article  CAS  Google Scholar 

  27. Brown JN, Peake BM (2006) Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff. Sci Total Environ 359(1–3):145–155. https://doi.org/10.1016/j.scitotenv.2005.05.016

    Article  CAS  Google Scholar 

  28. Hu L, Chernick M, Hinton DE, Shi H (2018) Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China. Environ Sci Technol 52(15):8885–8893. https://doi.org/10.1021/acs.est.8b02279

    Article  CAS  Google Scholar 

  29. Blaszczak JR, Steele MK, Badgley BD, Heffernan JB, Hobbie SE, Morse JL, Rivers EN, Hall SJ, Neill C, Pataki DE, Groffman PM, Groffman PM (2018) Sediment chemistry of urban stormwater ponds and controls on denitrification. Ecosphere 9(6):e02318

    Article  Google Scholar 

  30. Dodds W, Smith V (2016) Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6(2):155–164. https://doi.org/10.5268/iw-6.2.909

    Article  CAS  Google Scholar 

  31. Phillips G, Willby N, Moss B (2016) Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquat Bot 135:37–45. https://doi.org/10.1016/j.aquabot.2016.04.004

    Article  Google Scholar 

  32. Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43(1):12–19. https://doi.org/10.1021/es801217q

    Article  CAS  Google Scholar 

  33. He D, Chen R, Zhu E, Chen N, Yang B, Shi H, Huang M (2015) Toxicity bioassays for water from black-odor rivers in Wenzhou, China. Environ Sci Pollut Res Int 22(3):1731–1741. https://doi.org/10.1007/s11356-013-2484-1

    Article  CAS  Google Scholar 

  34. Ji X, Zhang W, Jiang M, He J, Zheng Z (2017) Black-odor water analysis and heavy metal distribution of Yitong River in Northeast China. Water Sci Technol 76(7–8):2051–2064. https://doi.org/10.2166/wst.2017.372

    Article  CAS  Google Scholar 

  35. Zhu L, Li X, Zhang C, Duan Z (2017) Pollutants’ release, redistribution and remediation of black smelly river sediment based on re-suspension and deep aeration of sediment. Int J Environ Res Public Health 14(4). https://doi.org/10.3390/ijerph14040374

  36. Szocs E, Brinke M, Karaoglan B, Schafer RB (2017) Large scale risks from agricultural pesticides in small streams. Environ Sci Technol 51(13):7378–7385. https://doi.org/10.1021/acs.est.7b00933

    Article  CAS  Google Scholar 

  37. Weinstein JE, Crawford KD, Garner TR, Flemming AJ (2010) Screening-level ecological and human health risk assessment of polycyclic aromatic hydrocarbons in stormwater detention pond sediments of Coastal South Carolina, USA. J Hazard Mater 178(1–3):906–916. https://doi.org/10.1016/j.jhazmat.2010.02.024

    Article  CAS  Google Scholar 

  38. Malaj E, von der Ohe PC, Grote M, Kuhne R, Mondy CP, Usseglio-Polatera P, Brack W, Schafer RB (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci U S A 111(26):9549–9554. https://doi.org/10.1073/pnas.1321082111

    Article  CAS  Google Scholar 

  39. Blettler MCM, Wantzen KM (2019) Threats underestimated in freshwater plastic pollution: mini-review. Water Air Soil Pollut 230(7). https://doi.org/10.1007/s11270-019-4220-z

  40. O'Brine T, Thompson RC (2010) Degradation of plastic carrier bags in the marine environment. Mar Pollut Bull 60(12):2279–2283. https://doi.org/10.1016/j.marpolbul.2010.08.005

    Article  CAS  Google Scholar 

  41. Lambert S, Wagner M (2016) Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145:265–268. https://doi.org/10.1016/j.chemosphere.2015.11.078

    Article  CAS  Google Scholar 

  42. Lambert S, Wagner M (2016) Formation of microscopic particles during the degradation of different polymers. Chemosphere 161:510–517. https://doi.org/10.1016/j.chemosphere.2016.07.042

    Article  CAS  Google Scholar 

  43. PlasticsEurope (2017) An analysis of European plastics production, demand and waste data. In: Plastics – the facts 2017. https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf

  44. Horton AA, Svendsen C, Williams RJ, Spurgeon DJ, Lahive E (2017) Large microplastic particles in sediments of tributaries of the River Thames, UK - Abundance, sources and methods for effective quantification. Mar Pollut Bull 114(1):218–226. https://doi.org/10.1016/j.marpolbul.2016.09.004

    Article  CAS  Google Scholar 

  45. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190

    Article  CAS  Google Scholar 

  46. Dris R, Gasperi J, Tassin B (2018) Sources and fate of microplastics in urban areas: a focus on Paris megacity. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer, Cham, pp 69–83. https://doi.org/10.1007/978-3-319-61615-5_4

    Chapter  Google Scholar 

  47. Peng G, Xu P, Zhu B, Bai M, Li D (2017) Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environ Pollut 234:448–456. https://doi.org/10.1016/j.envpol.2017.11.034

    Article  CAS  Google Scholar 

  48. Yonkos LT, Friedel EA, Perez-Reyes AC, Ghosal S, Arthur CD (2014) Microplastics in four estuarine rivers in the Chesapeake Bay, U.S.A. Environ Sci Technol 48(24):14195–14202. https://doi.org/10.1021/es5036317

    Article  CAS  Google Scholar 

  49. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179. https://doi.org/10.1021/es201811s

    Article  CAS  Google Scholar 

  50. Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28(1):2. https://doi.org/10.1186/s12302-015-0069-y

    Article  CAS  Google Scholar 

  51. Kay P, Hiscoe R, Moberley I, Bajic L, McKenna N (2018) Wastewater treatment plants as a source of microplastics in river catchments. Environ Sci Pollut Res Int 25(20):20264–20267. https://doi.org/10.1007/s11356-018-2070-7

    Article  CAS  Google Scholar 

  52. Luo W, Su L, Craig NJ, Du F, Wu C, Shi H (2019) Comparison of microplastic pollution in different water bodies from urban creeks to coastal waters. Environ Pollut 246:174–182. https://doi.org/10.1016/j.envpol.2018.11.081

    Article  CAS  Google Scholar 

  53. Lv W, Zhou W, Lu S, Huang W, Yuan Q, Tian M, Lv W, He D (2019) Microplastic pollution in rice-fish co-culture system: a report of three farmland stations in Shanghai, China. Sci Total Environ 652:1209–1218. https://doi.org/10.1016/j.scitotenv.2018.10.321

    Article  CAS  Google Scholar 

  54. Bordós G, Urbányi B, Micsinai A, Kriszt B, Palotai Z, Szabó I, Hantosi Z, Szoboszlay S (2019) Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin, Europe. Chemosphere 216:110–116. https://doi.org/10.1016/j.chemosphere.2018.10.110

    Article  CAS  Google Scholar 

  55. Hu L (2019) Microplastic pollution in small waterbodies and its toxicity effects on aquatic organisms. East China Normal University, Shanghai

    Google Scholar 

  56. Liu F, Olesen KB, Borregaard AR, Vollertsen J (2019) Microplastics in urban and highway stormwater retention ponds. Sci Total Environ 671:992–1000. https://doi.org/10.1016/j.scitotenv.2019.03.416

    Article  CAS  Google Scholar 

  57. Olesen KB, Stephansen DA, Alst NV, Vollertsen J (2019) Microplastics in a stormwater pond. Water 11(7):1466. https://doi.org/10.3390/w11071466

    Article  CAS  Google Scholar 

  58. Dikareva N, Simon KS (2019) Microplastic pollution in streams spanning an urbanisation gradient. Environ Pollut 250:292–299. https://doi.org/10.1016/j.envpol.2019.03.105

    Article  CAS  Google Scholar 

  59. Vaughan R, Turner SD, Rose NL (2017) Microplastics in the sediments of a UK urban lake. Environ Pollut 229:10–18. https://doi.org/10.1016/j.envpol.2017.05.057

    Article  CAS  Google Scholar 

  60. Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82. https://doi.org/10.1016/j.watres.2015.02.012

    Article  CAS  Google Scholar 

  61. Press. NdbCS (2016) National Bureau of Statistics, China. http://www.stats.gov.cn/tjsj/ndsj/2016/indexeh.htm

  62. Wright SL, Thompson RC, Galloway TS (2013) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. https://doi.org/10.1016/j.envpol.2013.02.031

    Article  CAS  Google Scholar 

  63. Wagner M, Lambert S (2018) Freshwater microplastics emerging environmental contaminants? Springer Nature, Heidelberg

    Book  Google Scholar 

  64. Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647. https://doi.org/10.1021/acs.est.7b00423

    Article  CAS  Google Scholar 

  65. Su L, Cai H, Kolandhasamy P, Wu C, Rochman CM, Shi H (2018) Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ Pollut 234:347–355. https://doi.org/10.1016/j.envpol.2017.11.075

    Article  CAS  Google Scholar 

  66. Xiong X, Zhang K, Chen X, Shi H, Luo Z, Wu C (2018) Sources and distribution of microplastics in China’s largest inland lake – Qinghai Lake. Environ Pollut 235:899–906. https://doi.org/10.1016/j.envpol.2017.12.081

    Article  CAS  Google Scholar 

  67. Phillips MB, Bonner TH (2015) Occurrence and amount of microplastic ingested by fishes in watersheds of the Gulf of Mexico. Mar Pollut Bull 100(1):264–269. https://doi.org/10.1016/j.marpolbul.2015.08.041

    Article  CAS  Google Scholar 

  68. Jabeen K (2018) Characteristics of microplastics in fish from coastal and fresh waters of China. East China Normal University, Shanghai

    Google Scholar 

  69. Su L, Nan B, Hassell KL, Craig NJ, Pettigrove V (2019) Microplastics biomonitoring in Australian urban wetlands using a common noxious fish (Gambusia holbrooki). Chemosphere 228:65–74. https://doi.org/10.1016/j.chemosphere.2019.04.114

    Article  CAS  Google Scholar 

  70. Mizraji R, Ahrendt C, Perez-Venegas D, Vargas J, Pulgar J, Aldana M, Patricio Ojeda F, Duarte C, Galban-Malagon C (2017) Is the feeding type related with the content of microplastics in intertidal fish gut? Mar Pollut Bull 116(1–2):498–500. https://doi.org/10.1016/j.marpolbul.2017.01.008

    Article  CAS  Google Scholar 

  71. Setälä O, Norkko J, Lehtiniemi M (2016) Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar Pollut Bull 102(1):95–101. https://doi.org/10.1016/j.marpolbul.2015.11.053

    Article  CAS  Google Scholar 

  72. Scherer C, Weber A, Lambert S, Wagner M (2018) Interactions of microplastics with freshwater biota. In: Wagner M, Lambert S (eds) Freshwater microplastics: emerging environmental contaminants? Springer, Cham, pp 153–180. https://doi.org/10.1007/978-3-319-61615-5_8

    Chapter  Google Scholar 

  73. Koelmans AA, Besseling E, Wegner A, Foekema EM (2013) Plastic as a carrier of POPs to aquatic organisms: a model analysis. Environ Sci Technol 47(14):7812–7820. https://doi.org/10.1021/es401169n

    Article  CAS  Google Scholar 

  74. Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50(7):3315–3326. https://doi.org/10.1021/acs.est.5b06069

    Article  CAS  Google Scholar 

  75. Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47(1):593–600. https://doi.org/10.1021/es302763x

    Article  CAS  Google Scholar 

  76. Fei L, Ye CY, Jiang JP (2012) Colored atlas of Chinese amphibians and their distributions. Henan Science and Technology Press, Henan

    Google Scholar 

  77. Hu L, Su L, Xue Y, Mu J, Zhu J, Xu J, Shi H (2016) Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere 164:611–617. https://doi.org/10.1016/j.chemosphere.2016.09.002

    Article  CAS  Google Scholar 

  78. De Felice B, Bacchetta R, Santo N, Tremolada P, Parolini M (2018) Polystyrene microplastics did not affect body growth and swimming activity in Xenopus laevis tadpoles. Environ Sci Pollut Res Int 25(34):34644–34651. https://doi.org/10.1007/s11356-018-3408-x

    Article  CAS  Google Scholar 

  79. Tussellino M, Ronca R, Formiggini F, De Marco N, Fusco S, Netti PA, Carotenuto R (2015) Polystyrene nanoparticles affect Xenopus laevis development. J Nanopart Res 17(2):70. https://doi.org/10.1007/s11051-015-2876-x

    Article  CAS  Google Scholar 

  80. Webster CA, Di Silvio D, Devarajan A, Bigini P, Micotti E, Giudice C, Salmona M, Wheeler GN, Sherwood V, Bombelli FB (2016) An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment. Nanomedicine (Lond) 11(6):643–656

    Article  CAS  Google Scholar 

  81. Fahrenfeld NL, Arbuckle-Keil G, Naderi Beni N, Bartelt-Hunt SL (2018) Source tracking microplastics in the freshwater environment. TrAC Trends Anal Chem. https://doi.org/10.1016/j.trac.2018.11.030

  82. Rochman CM (2018) Microplastics research – from sink to source. Science 360(6384):28–29. https://doi.org/10.1126/science.aar7734

    Article  CAS  Google Scholar 

  83. Nicolas Weithmann JNM, Löder MGJ, Piehl S, Laforsch C, Freitag R (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv 4(4):eaap8060. https://doi.org/10.1126/sciadv.aap8060

    Article  CAS  Google Scholar 

  84. Magnusson K, Eliasson K, Fråne A, Haikonen K, Hultén J, Olshammar M, Stadmark J, Voisin A (2017) Swedish sources and pathways for microplastics to the marine environment. Swedish Environmental Protection Agency, Stockholm

    Google Scholar 

  85. Murphy F, Ewins C, Carbonnier F, Quinn B (2016) Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol 50(11):5800–5808. https://doi.org/10.1021/acs.est.5b05416

    Article  CAS  Google Scholar 

  86. Ziajahromi S, Neale PA, Rintoul L, Leusch FD (2017) Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res 112:93–99. https://doi.org/10.1016/j.watres.2017.01.042

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the Natural Science Foundation of China (41776123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huahong Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, L., He, D., Shi, H. (2020). Microplastics in Inland Small Waterbodies. In: He, D., Luo, Y. (eds) Microplastics in Terrestrial Environments. The Handbook of Environmental Chemistry, vol 95. Springer, Cham. https://doi.org/10.1007/698_2019_445

Download citation

Publish with us

Policies and ethics