Skip to main content

Environmental Risks of Synthetic Pyrethroids Used by the Salmon Industry in Chile

  • Chapter
  • First Online:
Book cover Pyrethroid Insecticides

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 92))

Abstract

Synthetic pyrethroids such as cypermethrin and deltamethrin have been widely used in Chile to treat sea lice on salmon since 2007. The environmental risks of aquaculture practices are evaluated through the use of several tools such as fugacity-based models for predicting environmental dynamics and the fate of pyrethroids after their release into the marine environment and the determination of pyrethroid occurrence in environmental samples (i.e., water and sediment). For seawater, passive sampling devices (PSDs) are proposed as a good alternative for field monitoring. Finally, by means of ecotoxicological bioassays, the effects of pyrethroids on native biota were assessed. The results show that the application of pyrethroids may trigger some unintended risks to nontarget organisms, particularly copepods, since modeled and observed concentrations in water (dissolved phase) are in the range of fractions of ng L−1, but higher cypermethrin and deltamethrin concentrations in sediment in the range of 1,323 and 1,020 ng g−1, respectively, have been observed. These measured concentrations were in the range of concentrations toxic to native invertebrate species in Chile. We conclude that a stricter process should be followed when pyrethroids, particularly cypermethrin, are recommended for use in combating sea lice in the Chilean salmon farming industry. Risk assessment procedures and the establishment of stricter regulations on matters such as the maximum allowable concentrations around the cages when these pesticides are applied and recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quiñones RA, Fuentes M, Montes RM, Soto D, León-Muñoz J (2019) Environmental issues in Chilean salmon farming: a review. Rev Aquac 11(2):375–402. https://doi.org/10.1111/raq.12337

    Article  Google Scholar 

  2. Boxshall GA, Bravo S (2000) On the identity of the common Caligus (Copepoda: Siphonostomatoida: Caligidae) from salmonid netpen system in southern Chile. Contrib Zool 69(1):137–146. https://doi.org/10.1163/18759866-0690102015

    Article  Google Scholar 

  3. Bravo S, Sevatdal S, Horsberg TE (2008) Sensitivity assessment of Caligus rogercresseyi to emamectin benzoate in Chile. Aquaculture 282:7–12. https://doi.org/10.1016/j.aquaculture.2008.06.011

    Article  CAS  Google Scholar 

  4. Bravo S, Silva MT, Gustavo M (2012) Efficacy of emamectin benzoate in the control of Caligus rogercresseyi on farmed Atlantic salmon (Salmo salar L.) in Chile from 2006 to 2007. Aquaculture 364–365:61–66. https://doi.org/10.1016/j.aquaculture.2012.07.036

    Article  CAS  Google Scholar 

  5. Aaen SM, Helgesen KO, Bakke MJ, Kaur K, Horsberg TE (2015) Drug resistance in sea lice: a threat to salmonid aquaculture. Trends Parasitol 31(2):72–81. https://doi.org/10.1016/j.pt.2014.12.006

    Article  CAS  Google Scholar 

  6. Roth M (2000) The availability and use of chemotherapeutic sea lice control products. Contrib Zoolo 69(1–2):109–118. https://doi.org/10.1163/18759866-0690102012

    Article  Google Scholar 

  7. Haya K, Burridge LE, Davies IM, Ervik A (2005) A review and assessment of environmental risk of chemicals used for the treatment of sea lice infestations of cultured salmon. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture. Handbook of environment chemistry, vol 5. Springer, Berlin, pp 305–340. https://doi.org/10.1007/b136016

    Chapter  Google Scholar 

  8. Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306:7–23. https://doi.org/10.1016/j.aquaculture.2010.05.020

    Article  CAS  Google Scholar 

  9. Medina M, Barata C, Telfer T, Baird DJ (2002) Age- and sex-related variation in sensitivity to the pyrethroid cypermethrin in the marine copepod Acartia tonsa Dana. Arch Environ Contam Toxicol 42:17–22. https://doi.org/10.1007/s002440010286

    Article  CAS  Google Scholar 

  10. Barata C, Baird DJ, Medina M, Albalat A, Soares AMVM (2002) Determining the ecotoxicological mode of action of toxic chemicals in meiobenthic marine organisms: stage-specific short tests with Tisbe battagliai. Mar Ecol Prog Ser 230:183–194

    Article  CAS  Google Scholar 

  11. Van Geest JL, Burridge LE, Kidd KA (2014) The toxicity of the anti-sea lice pesticide AlphaMax® to the polychaete worm Nereis virens. Aquaculture 430:98–106. https://doi.org/10.1016/j.aquaculture.2014.03.044

    Article  CAS  Google Scholar 

  12. Tucca F, Díaz-Jaramillo M, Cruz G, Silva J, Bay-Schmith E, Chiang G, Barra R (2014) Toxic effects of antiparasitic pesticides used by the salmon industry in the marine amphipod Monocorophium insidiosum. Arch Environ Contam Toxicol 67:139–148. https://doi.org/10.1007/s00244-014-0008-8

    Article  CAS  Google Scholar 

  13. Urbina MA, Cumillaf JP, Paschke K, Gebauer P (2019) Effects of pharmaceuticals used to treat salmon lice on non-target species: evidence from a systematic review. Sci Total Environ 649:1124–1136. https://doi.org/10.1016/j.scitotenv.2018.08.334

    Article  CAS  Google Scholar 

  14. Food and Agriculture Organization of the United Nations (FAO) (2018) The State of World Fisheries and Aquaculture 2018 – meeting the sustainable development goals. Rome. License: CC BY-NC-SA 3.0 IGO. http://www.fao.org/3/i9540en/i9540en.pdf. Accessed 10 Apr 2019

  15. SUBPESCA (Subsecretaría de Pesca y Acuicultura) (2019) Informe sectorial de pesca y acuicultura (January 2019). Ministry of Economy, Chile (Spanish Report). http://www.subpesca.cl/portal/618/articles-103738_documento.pdf. Accessed 11 Apr 2019

  16. Johnson SC, Treasurer JW, Bravo S, Nagasawa K, Kabata Z (2004) A review of the impact of parasitic copepods on marine aquaculture. Zool Stud 43(2):229–243

    Google Scholar 

  17. Costello M (2009) The global economic cost of sea lice to the salmonid farming industry. J Fish Dis 32:115–118. https://doi.org/10.1111/j.1365-2761.2008.01011.x

    Article  Google Scholar 

  18. Torrissen O, Jones S, Asche F, Guttormsen A, Skilbrei OT, Nilsen F, Horsberg TE, Jackson D (2013) Salmon lice-impact on wild salmonids and salmon aquaculture. J Fish Dis 36:171–194. https://doi.org/10.1111/jfd.12061

    Article  CAS  Google Scholar 

  19. Abolofia J, Asche F, Wilen JE (2017) The cost of lice: quantifying the impacts of parasitic sea lice on farmed salmon. Mar Resour Econ 32(3):329–349. https://doi.org/10.1086/691981

    Article  Google Scholar 

  20. Costello MJ (2006) Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol 22:47–483. https://doi.org/10.1016/j.pt.2006.08.006

    Article  Google Scholar 

  21. González L, Carvajal J (2003) Life cycle of Caligus rogercresseyi, (Copepoda: Caligidae) parasite of Chilean reared salmonids. Aquaculture 220:101–117. https://doi.org/10.1016/S0044-8486(02)00512-4

    Article  Google Scholar 

  22. Pino-Marambio J, Mordue AJ, Birkett M, Carvajal J, Asencio G, Mellado A, Quiroz A (2007) Behavioural studies of host, non-host and mate location by the Sea Louse, Caligus rogercresseyi Boxshall & Bravo, 2000 (Copepoda: Caligidae). Aquaculture 271:70–76. https://doi.org/10.1016/j.aquaculture.2007.05.025

    Article  Google Scholar 

  23. Hamilton-West C, Arriagada G, Yatabe T, Valdés P, Hervé-Claude LP, Urcelay S (2012) Epidemiological description of the sea lice (Caligus rogercresseyi) situation in southern Chile in August 2007. Prev Vet Med 104(3–4):341–345. https://doi.org/10.1016/j.prevetmed.2011.12.002

    Article  Google Scholar 

  24. Mackay D, Shiu WY, Ma KC, Lee SC (2006) Insecticides (Chapter 18). In: Physical-chemical properties and environmental fate for organic chemicals, vol I–IV. 2nd edn. Taylor & Francis, CRC Press, Boca Raton, p 832

    Chapter  Google Scholar 

  25. Bravo S, Sepulveda M, Silva MT, Costello MJ (2014) Efficacy of deltamethrin in the control of Caligus rogercresseyi (Boxshall and Bravo) using bath treatment. Aquaculture 432:175–180. https://doi.org/10.1016/j.aquaculture.2014.05.018

    Article  CAS  Google Scholar 

  26. Agusti C, Bravo S, Contreras G, Bakke MJ, Helgesen KO, Winkler C, Silva MT, Mendoza J, Horsberg TE (2016) Sensitivity assessment of Caligus rogercresseyi to anti-louse chemicals in relation to treatment efficacy in Chilean salmonid farms. Aquaculture 458:195–205. https://doi.org/10.1016/j.aquaculture.2016.03.006

    Article  CAS  Google Scholar 

  27. Arriagada G, Stryhn H, Campistó JL, Rees EE, Sanchez J, Ibarra R, Medina M, St-Hilaire S (2014) Evaluation of the performance of pyrethroids on different life stages of Caligus rogercresseyi in southern Chile. Aquaculture 426–427:231–237. https://doi.org/10.1016/j.aquaculture.2014.02.007

    Article  CAS  Google Scholar 

  28. Arriagada G, Stryhn H, Sanchez J, Vanderstichel R, Campistó JL, Rees EE, Ibarra R et al (2017) Evaluating the effect of synchronized sea lice treatments in Chile. Prev Vet Med 136:1–10. https://doi.org/10.1016/j.prevetmed.2016.11.011

    Article  CAS  Google Scholar 

  29. Langford KH, Øxnevad S, Schøyen M, Thomas KV (2014) Do Antiparasitic medicines used in aquaculture pose a risk to the Norwegian aquatic environment? Environ Sci Technol 48:7774–7780. https://doi.org/10.1021/es5005329

    Article  CAS  Google Scholar 

  30. Lillicrap A, Macken A, Thomas KV (2015) Recommendations for the inclusion of targeted testing to improve the regulatory environmental risk assessment of veterinary medicines used in aquaculture. Environ Int 85:1–4. https://doi.org/10.1016/j.envint.2015.07.019

    Article  Google Scholar 

  31. SERNAPESCA (Servicio Nacional de Pesca y Acuicultura) (2017) Productos antiparasitarios para el control de caligidosis en salmonideos con registro del Servicio Agrícola y Ganadero (SAG) (August 2017). Ministry of Economy, Chile (Spanish Report) http://ww2.sernapesca.cl/index.php?option=com_remository&Itemid=246&func=fileinfo&id=7262. Accessed 20 Apr 2019

  32. Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology 171(1):3–59. https://doi.org/10.1016/S0300-483X(01)00569-8

    Article  CAS  Google Scholar 

  33. Ensley SM (2018) Pyrethrins and pyrethroids. In: Veterinary toxicology: basic and clinical principles, 3rd edn. Elsevier BV, Amsterdam, pp 515–520. https://doi.org/10.1016/B978-0-12-811410-0.00039-8

  34. Ernst W, Jackman P, Doe K, Page F, Julien G, Mackay K, Sutherland T (2001) Dispersion and toxicity to non-target aquatic organisms of pesticides used to treat sea lice on salmon in net pen enclosures. Mar Pollut Bull 42:432–443. https://doi.org/10.1016/S0025-326X(00)00177-6

    Article  Google Scholar 

  35. Ernst W, Doe K, Cook A, Burridge L, Lalonde B, Jackman P, Aubé JG, Page F (2014) Dispersion and toxicity to non-target crustaceans of azamethiphos and deltamethrin after sea lice treatments on farmed salmon, Salmo salar. Aquaculture 424–425:104–112. https://doi.org/10.1016/j.aquaculture.2013.12.017

    Article  CAS  Google Scholar 

  36. Bacci E (1994) Ecotoxicology of organic contaminants, 1st edn. Lewis, Boca Raton, p 165

    Google Scholar 

  37. Mackay D (1979) Finding fugacity feasible. Environ Sci Technol 13(10):1218–1223. https://doi.org/10.1021/es60158a003

    Article  CAS  Google Scholar 

  38. Mackay D, Paterson S (1991) Evaluating the multimedia fate of organic chemicals: a level III fugacity model. Environ Sci Technol 25(3):427–436. https://doi.org/10.1021/es00015a008

    Article  CAS  Google Scholar 

  39. Mackay D (2001) Multimedia environmental models: the fugacity approach. Lewis, Chelsea, p 273

    Book  Google Scholar 

  40. MacLeod M, Scheringer M, Mckone ET, Hungerbühler K (2010) The state of multimedia mass–balance modeling in environmental science and decision-making. Environ Sci Technol 44(22):8360–8364. https://doi.org/10.1021/es100968w

    Article  CAS  Google Scholar 

  41. Buser AM, MacLeod M, Scheringer M, Mackay D, Bonnell M, Russell MH, DePinto JV, Hungerbühler K (2012) Good modeling practice guidelines for applying multimedia models in chemical assessments. Integr Environ Assess Manag 8(4):703–708. https://doi.org/10.1002/ieam.1299

    Article  CAS  Google Scholar 

  42. Su C, Zhang H, Cridge C, Liang R (2019) A review of multimedia transport and fate models for chemicals: principles, features and applicability. Sci Total Environ 668:881–892. https://doi.org/10.1016/j.scitotenv.2019.02.456

    Article  CAS  Google Scholar 

  43. Barra R, Vighi M, Maffioli G, Di Guardo A, Ferrario P (2000) Coupling SoilFug model and GIS for predicting pesticides pollution of surface water at watershed level. Environ Sci Technol 34(20):4425–4433. https://doi.org/10.1021/es000986c

    Article  CAS  Google Scholar 

  44. Mackay D, Arnot JA (2011) The application of fugacity and activity to simulating the environmental fate of organic contaminants. J Chem Eng Data 56(4):1348–1355. https://doi.org/10.1021/je101158y

    Article  CAS  Google Scholar 

  45. Zhang Q-Q, Ying G-G, Pan C-G, Liu Y-S, Zhao J-L (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49(11):6772–6782. https://doi.org/10.1021/acs.est.5b00729

    Article  CAS  Google Scholar 

  46. Pérez OM, Telfer TC, Beveridge MCM, Ross LG (2002) Geographical Information Systems (GIS) as a simple tool to aid modelling of particulate waste distribution at marine fish cage sites. Estuar Coast Shelf Sci 54:761–768. https://doi.org/10.1006/ecss.2001.0870

    Article  CAS  Google Scholar 

  47. Corner RA, Brooker AJ, Telfer TC, Ross LG (2006) A fully integrated GIS-based model of particulate waste distribution from marine fish-cage sites. Aquaculture 258:299–311. https://doi.org/10.1016/j.aquaculture.2006.03.036

    Article  Google Scholar 

  48. Cromey CJ, Nickell TD, Black KD (2002) DEPOMOD-modelling the deposition and biological effects of waste solids from marine cage farms. Aquaculture 214:211–239. https://doi.org/10.1016/S0044-8486(02)00368-X

    Article  Google Scholar 

  49. Cromey CJ, Black KD (2005) Modelling the impacts of finfish aquaculture. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture. Handbook of environmental chemistry, vol 5. Springer, Berlin, pp 129–155. https://doi.org/10.1007/b136008

    Chapter  Google Scholar 

  50. Cromey CJ, Nickell TD, Treasurer J, Black KD, Inall M (2009) Modelling the impact of cod (Gadus morhua L.) farming in the marine environment–CODMOD. Aquaculture 289:42–53. https://doi.org/10.1016/j.aquaculture.2008.12.020

    Article  Google Scholar 

  51. Brigolin D, Pastres R, Nickell TD, Cromey CJ, Aguilera DR, Regnier P (2009) Modelling the impact of aquaculture on early diagenetic processes in sea loch sediments. Mar Ecol Prog Ser 388:63–80. https://doi.org/10.3354/meps08072

    Article  CAS  Google Scholar 

  52. Keeley NB, Cromey CJ, Goodwin EO, Gibbs MT, Macleod CM (2013) Predictive depositional modelling (DEPOMOD) of the interactive effect of current flow and resuspension on ecological impacts beneath salmon farms. Aquac Environ Interact 3:275–291. https://doi.org/10.3354/aei00068

    Article  Google Scholar 

  53. Symonds AM (2011) A comparison between far-field and near-field dispersion modelling of fish farm particulate wastes. Aquac Res 42:73–85. https://doi.org/10.1111/j.1365-2109.2010.02662.x

    Article  Google Scholar 

  54. Turrel WR, Gillibrand PA (1995) Simulating the fate of cypermethrin in the marine environment. Fisheries research service report 11/95 SOAEFD. https://www.sepa.org.uk/regulations/water/aquaculture/pre-june-2019-guidance/aquaculture-environment/modelling/. Accessed 5 May 2019

  55. Ng CA, Ritscher A, Hungerbuehler K, von Goetz N (2018) Polybrominated diphenyl ether (PBDE) accumulation in farmed salmon evaluated using a dynamic sea–cage production model. Environ Sci Technol 52:6965–6973. https://doi.org/10.1021/acs.est.8b00146

    Article  CAS  Google Scholar 

  56. Gentry B, Blankinship D, Wainwright E (2008) Oracle Crystal Ball user manual, 11.1.1 edn. Orcale Inc., Denver

    Google Scholar 

  57. Booij K, Robinson CD, Burgess RM, Mayer P, Roberts CA, Ahrens L, Allan IJ, Brant J, Jones L, Kraus UR, Larsen MM, Lepom P, Petersen J, Pröfrock D, Roose P, Schafer S, Smedes F, Tixier C, Vorkamp K, Whitehouse P (2016) Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment. Environ Sci Technol 50(1):3–17. https://doi.org/10.1021/acs.est.5b04050

    Article  CAS  Google Scholar 

  58. Vrana B, Smedes F, Prokeš R, Loos R, Mazzella N, Miege C, Budzinski H, Vermeirssen E, Ocelka T, Gravel A, Kaserzon S (2016) An interlaboratory study on passive sampling of emerging water pollutants. Trends Anal Chem 76:153–165. https://doi.org/10.1016/j.trac.2015.10.013

    Article  CAS  Google Scholar 

  59. Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20(5):533–552. https://doi.org/10.1016/0045-6535(90)90110-F

    Article  CAS  Google Scholar 

  60. Vrana B, Allan IJ, Greenwood R, Mills GA, Dominiak E, Svensson K, Knutsson J, Morrison G, Greenwood R (2005) Passive sampling techniques for monitoring pollutants in water. Trends Anal Chem 24(10):845–868. https://doi.org/10.1016/j.trac.2005.06.006

    Article  CAS  Google Scholar 

  61. Sacks VP, Lohmann R (2011) Development and use of polyethylene passive samplers to detect triclosans and alkylphenols in an urban estuary. Environ Sci Technol 45(6):2270–2277. https://doi.org/10.1021/es1040865

    Article  CAS  Google Scholar 

  62. Ahrens L, Daneshvar A, Lau AE, Kreuger J (2015) Characterization of five passive sampling devices for monitoring of pesticides in water. J Chromatogr A 1405:1–11. https://doi.org/10.1016/j.chroma.2015.05.044

    Article  CAS  Google Scholar 

  63. Golding CJ, Gobas FAPC, Birch GF (2007) Characterization of polycyclic aromatic hydrocarbon bioavailability in estuarine sediments using thin-film extraction. Environ Toxicol Chem 26(5):829–836. https://doi.org/10.1897/06-378R.1

    Article  CAS  Google Scholar 

  64. Xu C, Wang J, Richards J, Xu T, Liu W, Gan J (2018) Development of film-based passive samplers for in situ monitoring of trace levels of pyrethroids in sediment. Environ Pollut 242:1684–1692. https://doi.org/10.1016/j.envpol.2018.07.105

    Article  CAS  Google Scholar 

  65. Shoeib M, Harner T (2002) Characterization and comparison of three passive air samplers for persistent organic pollutants. Environ Sci Technol 36(19):4142–4151. https://doi.org/10.1021/es020635t

    Article  CAS  Google Scholar 

  66. Harner T, Farrar NJ, Shoeib M, Jones KC, Gobas FAPC (2003) Characterization of polymer-coated glass as a passive air sampler for persistent organic pollutants. Environ Sci Technol 37(11):2486–2493. https://doi.org/10.1021/es0209215

    Article  CAS  Google Scholar 

  67. Pozo K, Oyola G, Estellano VH, Harner T, Rudolph A, Prybilova P, Kukucka P, Audi O, Klánová J, Metzdorff A, Focardi S (2017) Persistent Organic Pollutants (POPs) in the atmosphere of three Chilean cities using passive air samplers. Sci Total Environ 586:107–114. https://doi.org/10.1016/j.scitotenv.2016.11.054

    Article  CAS  Google Scholar 

  68. Lai FY, Rauert C, Gobelius L, Ahrens L (2018) A critical review on passive sampling in air and water for per- and polyfluoroalkyl substances (PFASs). Trends Anal Chem 121:115311. https://doi.org/10.1016/j.trac.2018.11.009

    Article  CAS  Google Scholar 

  69. Lohmann R, Muir D (2010) Global Aquatic Passive Sampling (AQUA–GAPS): using passive samplers to monitor POPs in the water of the world. Environ Sci Technol 44(3):860–864. https://doi.org/10.1021/es902379g

    Article  CAS  Google Scholar 

  70. Lohmann R, Muir DCG, Zeng EY, Bao L-J, Allan IJ, Arinaitwe K, Booij K, Helm PA, Kaserzon SL, Mueller JF, Shibata Y, Smedes F, Tsapakis M, Wong CS, You J (2017) Aquatic Global Passive Sampling (AQUA-GAPS) revisited: first steps toward a network of networks for monitoring organic contaminants in the aquatic environment. Environ Sci Technol 51(3):1060–1067. https://doi.org/10.1021/acs.est.6b05159

    Article  CAS  Google Scholar 

  71. Jonker MTO, van der Heijden SA, Kotte M, Smedes F (2015) Quantifying the effects of temperature and salinity on partitioning of hydrophobic organic chemicals to silicone rubber passive samplers. Environ Sci Technol 49(11):6791–6799. https://doi.org/10.1021/acs.est.5b00286

    Article  CAS  Google Scholar 

  72. St. George T, Vlahos P, Harner T, Helm P, Wilford B (2011) A rapidly equilibrating, thin film, passive water sampler for organic contaminants; characterization and field testing. Environ Pollut 159:481–486. https://doi.org/10.1016/j.envpol.2010.10.030

    Article  CAS  Google Scholar 

  73. Tucca F, Moya H, Barra R (2014) Ethylene vinyl acetate polymer as a tool for passive sampling monitoring of hydrophobic chemicals in the salmon farm industry. Mar Pollut Bull 88(1–2):174–179. https://doi.org/10.1016/j.marpolbul.2014.09.009

    Article  CAS  Google Scholar 

  74. Warren JK, Vlahos P, Smith R, Tobias C (2018) Investigation of a new passive sampler for the detection of munitions compounds in marine and freshwater systems. Environ Toxicol Chem 37(7):1990–1997. https://doi.org/10.1002/etc.4143

    Article  CAS  Google Scholar 

  75. Raub KB, Vlahos P, Whitney M (2015) Comparison of marine sampling methods for organic contaminants: passive samplers, water extractions, and live oyster deployment. Mar Environ Res 109:148–158. https://doi.org/10.1016/j.marenvres.2015.07.004

    Article  CAS  Google Scholar 

  76. Booij K, Tucca F (2015) Passive samplers of hydrophobic organic chemicals reach equilibrium faster in the laboratory than in the field. Mar Pollut Bull 98:365–367. https://doi.org/10.1016/j.marpolbul.2015.07.007

    Article  CAS  Google Scholar 

  77. Tucca F, Moya H, Pozo K, Borghini F, Focardi S, Barra R (2017) Occurrence of antiparasitic pesticides in sediments near salmon farms in the northern Chilean Patagonia. Mar Pollut Bull 115:465–468. https://doi.org/10.1016/j.marpolbul.2016.11.041

    Article  CAS  Google Scholar 

  78. Placencia JA, Saavedra F, Fernández J, Aguirre C (2017) Occurrence and distribution of deltamethrin and diflubenzuron in surface sediments from the Reloncaví fjord and the Chiloé inner–sea (~39.5°S–43°S), Chilean Patagonia. Bull Environ Contam Toxicol 100(3):384–388. https://doi.org/10.1007/s00128-017-2251-y

    Article  CAS  Google Scholar 

  79. Feo ML, Ginebreda A, Eljarrat E, Barceló D (2010) Presence of pyrethroids pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162. https://doi.org/10.1016/j.jhydrol.2010.08.012

    Article  CAS  Google Scholar 

  80. Scottish Environment Protection Agency (SEPA) (2006) The occurrence of chemicals used in sea louse treatments in sediments adjacent to marine fish farms: results of screening surveys during 2005. Report: TR-060830JBT, 28 p

    Google Scholar 

  81. Scottish Environment Protection Agency (SEPA) (2007) The occurrence of chemicals used in sea louse treatments in sediments adjacent to marine fish farms: results of screening surveys during 2006. Report: TR-070807_JBT, 21 p

    Google Scholar 

  82. Gebauer P, Paschke K, Vera C, Toro JE, Pardo M, Urbina M (2017) Lethal and sub-lethal effects of commonly used anti-sea lice formulations on non-target crab Metacarcinus edwardsii larvae. Chemosphere 185:1019–1029. https://doi.org/10.1016/j.chemosphere.2017.07.108

    Article  CAS  Google Scholar 

  83. Gowland B, Webster L, Fryer R, Davies I, Moffat C, Stagg R (2002) Uptake and effects of the cypermethrin-containing sea lice treatment Excis® in the marine mussel, Mytilus edulis. Environ Pollut 120:805–811. https://doi.org/10.1016/S0269-7491(02)00176-8

    Article  CAS  Google Scholar 

  84. Ait Ayad M, Ait Fdil M, Mouabad A (2011) Effects of cypermethrin (pyrethroid insecticide) on the valve activity behavior, byssal thread formation, and survival in air of the marine mussel Mytilus galloprovincialis. Arch Environ Contam Toxicol 60:462–470. https://doi.org/10.1007/s00244-010-9549-7

    Article  CAS  Google Scholar 

  85. European Commission (EC) (2003) Technical guidance document on risk assessment part II. European Commission Joint Research Centre. European Chemicals Bureau, pp 7–131

    Google Scholar 

  86. Mayor DJ, Solan M, Martinez I, Murray L, McMillan H, Paton GJ, Killham K (2008) Acute toxicity of some treatments commonly used by the salmonid aquaculture industry to Corophium volutator and Hediste diversicolor: whole sediment bioassay tests. Aquaculture 285:102–108. https://doi.org/10.1016/j.aquaculture.2008.08.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of FIPA Project No. 2014-42 and the Undersecretariat for Fisheries and Aquaculture (SUBPESCA, Ministry of Economy). The authors also wish to acknowledge CONICYT/FONDECYT projects 1180063 and 3180159, the MUSELS Millennium Nucleus (NC 120086), and CRHIAM, CONICYT/FONDAP project 15130015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Felipe Tucca or Ricardo Barra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tucca, F., Barra, R. (2020). Environmental Risks of Synthetic Pyrethroids Used by the Salmon Industry in Chile. In: Eljarrat, E. (eds) Pyrethroid Insecticides. The Handbook of Environmental Chemistry, vol 92. Springer, Cham. https://doi.org/10.1007/698_2019_431

Download citation

Publish with us

Policies and ethics