Skip to main content

Exploring Assimilation of Crowdsourcing Observations into Flood Models

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 102))

Abstract

This chapter aims to describe the latest innovative approaches for integrating heterogeneous observations from static social sensors within hydrological and hydrodynamic modelling to improve flood prediction. The distinctive characteristic of such sensors, with respect to the traditional ones, is their varying lifespan and space-time coverage as well as their spatial distribution. The main part of the chapter is dedicated to the optimal assimilation of heterogeneous intermittent data within hydrological and hydraulic models. These approaches are designed to account for the intrinsic uncertainty contained into hydrological observations and model structure, states and parameters. Two case studies, the Brue and Bacchiglione catchments, are considered. Finally, the evaluation of the developed methods is provided. This study demonstrates that networks of low-cost static and dynamic social sensors can complement traditional networks of static physical sensors, for the purpose of improving flood forecasting accuracy. This can be a potential application of recent efforts to build citizen observatories of water, in which citizens not only can play an active role in information capturing, evaluation and communication but also can help improve models and increase flood resilience.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ, Tol RSJ, Marzeion B, Fettweis X, Ionescu C, Levermann A (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc Natl Acad Sci 111(9):3292–3297. https://doi.org/10.1073/pnas.1222469111

    Article  CAS  Google Scholar 

  2. Jongman B, Hochrainer-Stigler S, Feyen L, Aerts JCJH, Mechler R, Botzen WJW, Bouwer LM, Pflug G, Rojas R, Ward PJ (2014) Increasing stress on disaster-risk finance due to large floods. Nat Clim Chang 4(4):264–268. https://doi.org/10.1038/nclimate2124

    Article  Google Scholar 

  3. McLaughlin D (2002) An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering. Adv Water Resour 25(8–12):1275–1286. https://doi.org/10.1016/S0309-1708(02)00055-6

    Article  Google Scholar 

  4. Solomatine DP, Wagener T (2011) Hydrological modelling. In: Wilderer P (ed) Treatise on water science. Elsevier, Amsterdam, pp 435–457

    Chapter  Google Scholar 

  5. Todini E, Alberoni P, Butts M, Collier C, Khatibi R, Samuels P, Weerts A (2005) ACTIF best practice paper–understanding and reducing uncertainty in flood forecasting. In: Balabanis P, Lumbroso D, Samuels P (eds) International conference on innovation, advances and implementation of flood forecasting technology, Troms, Norway

    Google Scholar 

  6. Pappenberger F, Matgen P, Beven KJ, Henry J-B, Pfister L, de Fraipont P (2006) Influence of uncertain boundary conditions and model structure on flood inundation predictions. Adv Water Resour 29(10):1430–1449. https://doi.org/10.1016/j.advwatres.2005.11.012

    Article  Google Scholar 

  7. Koutsoyiannis D (2010) HESS opinions “a random walk on water”. Hydrol Earth Syst Sci 14(3):585–601. https://doi.org/10.5194/hess-14-585-2010

    Article  Google Scholar 

  8. Montanari A, Koutsoyiannis D (2012) A blueprint for process-based modeling of uncertain hydrological systems. Water Resour Res 48(9):W09555. https://doi.org/10.1029/2011WR011412

    Article  Google Scholar 

  9. Alfonso L, Tefferi M (2015) Effects of uncertain control in transport of water in a river-wetland system of the Low Magdalena River, Colombia. Transport of water versus transport over water. Springer, Cham, pp 131–144

    Chapter  Google Scholar 

  10. Domeneghetti A, Vorogushyn S, Castellarin A, Merz B, Brath A (2013) Probabilistic flood hazard mapping: effects of uncertain boundary conditions. Hydrol Earth Syst Sci 17(8):3127–3140. https://doi.org/10.5194/hess-17-3127-2013

    Article  Google Scholar 

  11. Hall J, Solomatine D (2008) A framework for uncertainty analysis in flood risk management decisions. Int J River Basin Manag 6(2):85–98. https://doi.org/10.1080/15715124.2008.9635339

    Article  Google Scholar 

  12. Merz B, Thieken AH (2005) Separating natural and epistemic uncertainty in flood frequency analysis. J Hydrol 309(1–4):114–132. https://doi.org/10.1016/j.jhydrol.2004.11.015

    Article  Google Scholar 

  13. Goetzinger J, Bardossy A (2008) Generic error model for calibration and uncertainty estimation of hydrological models. Water Resour Res 44:W00B07. https://doi.org/10.1029/2007WR006691

    Article  Google Scholar 

  14. Liu Y, Gupta HV (2007) Uncertainty in hydrologic modeling: toward an integrated data assimilation framework. Water Resour Res 43(7):1–18. https://doi.org/10.1029/2006WR005756

    Article  Google Scholar 

  15. Quinonero-Candela J, Rasmussen CE, Sinz F, Bousquet O, Schölkopf B (2006) Evaluating predictive uncertainty challenge. Machine learning challenges. Evaluating predictive uncertainty, visual object classification, and recognising tectual entailment. Springer, New York. http://link.springer.com/10.1007%2F11736790_1. Accessed 2 Mar 2016, pp 1–27

    Chapter  Google Scholar 

  16. Renard B, Kavetski D, Kuczera G, Thyer M, Franks SW (2010) Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. Water Resour Res 46(5):W05521. https://doi.org/10.1029/2009WR008328

    Article  Google Scholar 

  17. Wagener T, Gupta HV (2005) Model identification for hydrological forecasting under uncertainty. Stoch Environ Res Risk Assess 19(6):378–387. https://doi.org/10.1007/s00477-005-0006-5

    Article  Google Scholar 

  18. Melchers RE (1999) Structural reliability analysis and prediction, 2nd edn. Wiley, New York

    Google Scholar 

  19. Abebe AJ, Solomatine DP, Venneker RGW (2000) Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation events. Hydrol Sci J 45(3):425–436

    Article  Google Scholar 

  20. Bárdossy A, Bronstert A, Merz B (1995) 1-, 2- and 3-dimensional modeling of water movement in the unsaturated soil matrix using a fuzzy approach. Adv Water Resour 18(4):237–251

    Article  Google Scholar 

  21. Hundecha Y, Bardossy A, Theisen HW (2001) Development of a fuzzy logic-based rainfall-runoff model. Hydrol Sci J 46(3):363–376

    Article  Google Scholar 

  22. Plate E, Shahzad K (2015) Uncertainty analysis of multi-model flood forecasts. Water 7(12):6788–6809. https://doi.org/10.3390/w7126654

    Article  Google Scholar 

  23. Xuan Y, Cluckie ID, Wang Y (2009) Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction. Hydrol Earth Syst Sci 13(3):293–303

    Article  Google Scholar 

  24. Dogulu N, López López P, Solomatine DP, Weerts AH, Shrestha DL (2015) Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments. Hydrol Earth Syst Sci 19:3181–3201. https://doi.org/10.5194/hess-19-3181-2015

    Article  Google Scholar 

  25. Shrestha DL, Solomatine DP (2006) Machine learning approaches for estimation of prediction interval for the model output. Neural Netw 19:225–235. https://doi.org/10.1016/j.neunet.2006.01.012

    Article  Google Scholar 

  26. Shrestha DL, Rodriguez J, Price RK, Solomatine DP (2006) Assessing model prediction limits using fuzzy clustering and machine learning. Proceedings of the 7th international conference on hydroinformatics, 4–8 September, Nice, France

    Google Scholar 

  27. Beven K, Binley A (2014) GLUE: 20 years on. Hydrol Process 28:5897–5918. https://doi.org/10.1002/hyp.10082

    Article  Google Scholar 

  28. Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6:279–298. https://doi.org/10.1002/hyp.3360060305

    Article  Google Scholar 

  29. Shrestha DL, Kayastha N, Solomatine D (2009) A novel approach to parameter uncertainty analysis of hydrological models using neural networks. Hydrol Earth Syst Sci 13:1235–1248

    Article  Google Scholar 

  30. Solomatine D, Shrestha DL (2009) A novel method to estimate total model uncertainty using machine learning techniques. Water Resour Res 45:W00B11. https://doi.org/10.1029/2008WR006839

    Article  Google Scholar 

  31. Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249:11–29

    Article  Google Scholar 

  32. Mantovan P, Todini E (2006) Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology. J Hydrol 330(1–2):368–381. https://doi.org/10.1016/j.jhydrol.2006.04.046

    Article  Google Scholar 

  33. Pappenberger F, Beven KJ (2006) Ignorance is bliss: or seven reasons not to use uncertainty analysis. Water Resour Res 42(5):1–8. https://doi.org/10.1029/2005WR004820

    Article  Google Scholar 

  34. Liu Y, Weerts AH, Clark M, Hendricks Franssen HJ, Kumar S, Moradkhani H, Seo DJ, Schwanenberg D, Smith P, Van Dijk AIJM, Van Velzen N, He M, Lee H, Noh SJ, Rakovec O, Restrepo P (2012) Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrol Earth Syst Sci 16(10):3863–3887. https://doi.org/10.5194/hess-16-3863-2012

    Article  Google Scholar 

  35. Seo DJ, Cajina L, Corby R, Howieson T (2009) Automatic state updating for operational streamflow forecasting via variational data assimilation. J Hydrol 367(3–4):255–275. https://doi.org/10.1016/j.jhydrol.2009.01.019

    Article  Google Scholar 

  36. Welles E, Sorooshian S, Carter G, Olsen B (2007) Hydrologic verification: a call for action and collaboration. Bull Am Meteorol Soc 88:503–511

    Article  Google Scholar 

  37. Yarvis M, Kushalnagar N, Singh H, Rangarajan A, Liu Y, Singh S (2005) Exploiting heterogeneity in sensor networks. Proceedings IEEE INFOCOM 2005. 24th annual joint conference of the IEEE computer and communications societies, vol 2, pp 878–890

    Google Scholar 

  38. Bonney R, Shirk JL, Phillips TB, Wiggins A, Ballard HL, Miller-Rushing AJ, Parrish JK (2014) Next steps for citizen science. Science 343(6178):1436–1437. https://doi.org/10.1126/science.1251554

    Article  Google Scholar 

  39. Buytaert W, Zulkafli Z, Grainger S, Acosta L, Alemie TC, Bastiaensen J, De BiÃvre B, Bhusal J, Clark J, Dewulf A, Foggin M, Hannah DM, Hergarten C, Isaeva A, Karpouzoglou T, Pandeya B, Paudel D, Sharma K, Steenhuis T, Tilahun S, Van Hecken G, Zhumanova M (2014) Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Front Earth Sci 2:1–21. https://doi.org/10.3389/feart.2014.00026

    Article  Google Scholar 

  40. Clark MP, Rupp DE, Woods RA, Zheng X, Ibbitt RP, Slater AG, Schmidt J, Uddstrom MJ (2008) Hydrological data assimilation with the ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model. Adv Water Resour 31(10):1309–1324. https://doi.org/10.1016/j.advwatres.2008.06.005

    Article  Google Scholar 

  41. Mazzoleni M, Alfonso L, Solomatine D (2016) Influence of spatial distribution of sensors and observation accuracy on the assimilation of distributed streamflow data in hydrological modelling. Hydrol Sci J 62(3):389–407. https://doi.org/10.1080/02626667.2016.1247211

    Article  Google Scholar 

  42. Mazzoleni M, Noh SJ, Lee H, Liu Y, Seo DJ, Amaranto A, Alfonso L, Solomatine DP (2018) Real-time assimilation of streamflow observations into a hydrological routing model: effects of model structures and updating methods. Hydrol Sci J 63:386–407

    Article  Google Scholar 

  43. Rakovec O, Weerts AH, Hazenberg P, Torfs PJJF, Uijlenhoet R (2012) State updating of a distributed hydrological model with ensemble Kalman filtering: effects of updating frequency and observation network density on forecast accuracy. Hydrol Earth Syst Sci 16(9):3435–3449. https://doi.org/10.5194/hess-16-3435-2012

    Article  Google Scholar 

  44. Alfonso L, Lobbrecht A, Price R (2010) Using mobile phones to validate models of extreme events. 9th international conference on hydroinformatics, Tianjin, China, pp 1447–1454

    Google Scholar 

  45. de Vos L, Leijnse H, Overeem A, Uijlenhoet R (2017) The potential of urban rainfall monitoring with crowdsourced automatic weather stations in Amsterdam. Hydrol Earth Syst Sci 21:765–777. https://doi.org/10.5194/hess-21-765-2017

    Article  Google Scholar 

  46. Etter S, Strobl B, Seibert J, van Meerveld I (2018) Value of uncertain streamflow observations for hydrological modelling. Hydrol Earth Syst Sci Discuss 22(10):5243–5257. https://doi.org/10.5194/hess-2018-355

    Article  Google Scholar 

  47. Fava C, Santana G, Bressiani DA, Rosa A, Horita FEA, Souza VCB, Mendiondo EM (2014) Integration of information technology systems for flood forecasting with hybrid data sources. International conference of flood management, Sao Paolo, Brazil

    Google Scholar 

  48. Fohringer J, Dransch D, Kreibich H, Schröter K (2015) Social media as an information source for rapid flood inundation mapping. Nat Hazards Earth Syst Sci 15:2725–2738. https://doi.org/10.5194/nhess-15-2725-2015

    Article  Google Scholar 

  49. Gaitan S, van de Giesen NC, ten Veldhuis JAE (2016) Can urban pluvial flooding be predicted by open spatial data and weather data? Environ Model Softw 85:156–171. https://doi.org/10.1016/j.envsoft.2016.08.007

    Article  Google Scholar 

  50. Giuliani M, Castelletti A, Fedorov R, Fraternali P (2016) Using crowdsourced web content for informing water systems operations in snow-dominated catchments. Hydrol Earth Syst Sci 20:5049–5062. https://doi.org/10.5194/hess-20-5049-2016

    Article  Google Scholar 

  51. Rollason E, Bracken LJ, Hardy RJ, Large ARG (2018) The importance of volunteered geographic information for the validation of flood inundation models. J Hydrol 562:267–280

    Article  Google Scholar 

  52. Rosser JF, Leibovici DG, Jackson MJ (2017) Rapid flood inundation mapping using social media, remote sensing and topographic data. Nat Hazards 87:103–120

    Article  Google Scholar 

  53. Schneider P, Castell N, Vogt M, Dauge FR, Lahoz W, Bartonova A (2017) Mapping urban air quality in near real-time using observations from lowcost sensors and model information. Environ Int 106:234–247

    Article  CAS  Google Scholar 

  54. Smith L, Liang Q, James P, Lin W (2015) Assessing the utility of social media as a data source for flood risk management using a real-time modelling framework. J Flood Risk Manag 10:370–380. https://doi.org/10.1111/jfr3.12154

    Article  Google Scholar 

  55. Starkey E, Parkin G, Birkinshaw S, Large A, Quinn P, Gibson C (2017) Demonstrating the value of community-based (“citizen science”) observations for catchment modelling and characterisation. J Hydrol 548:801–817. https://doi.org/10.1016/j.jhydrol.2017.03.019

    Article  Google Scholar 

  56. Yu D, Yin J, Liu M (2016) Validating city-scale surface water flood modelling using crowd-sourced data. Environ Res Lett 11:124011. https://doi.org/10.1088/1748-9326/11/12/124011

    Article  Google Scholar 

  57. Le Coz J, Patalano A, Collins D, Guillén NF, García CM, Smart GM, Bind J, Chiaverinica A, Le Boursicauda R, Dramaisa G, Braud I (2016) Crowdsourced data for flood hydrology: feedback from recent citizen science projects in Argentina, France and New Zealand. J Hydrol 541:766–777

    Article  Google Scholar 

  58. Assumpção TH, Popescu I, Jonoski A, Solomatine DP (2018) Citizen observations contributing to flood modelling: opportunities and challenges. Hydrol Earth Syst Sci 22:1473–1489. https://doi.org/10.5194/hess-22-1473-2018

    Article  Google Scholar 

  59. Shanley L, Burns R, Bastian Z, Robson E (2013) Tweeting up a storm: the promise and perils of crisis mapping, available SSRN 2464599. https://ssrn.com/abstract=2464599. Accessed 20 Mar 2016

  60. Mazzoleni M, Alfonso L, Chacon-Hurtado J, Solomatine D (2015) Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models. Adv Water Resour 83:323–339

    Article  Google Scholar 

  61. Mazzoleni M, Cortes Arevalo VJ, Wehn U, Alfonso L, Norbiato D, Monego M, Ferri M, Solomatine DP (2018) Exploring the influence of citizen involvement on the assimilation of crowdsourced observations: a modelling study based on the 2013 flood event in the Bacchiglione catchment (Italy). Hydrol Earth Syst Sci 22:391–416. https://doi.org/10.5194/hess-22-391-2018

    Article  Google Scholar 

  62. Mazzoleni M, Verlaan M, Alfonso L, Monego M, Norbiato D, Ferri M, Solomatine DP (2017) Can assimilation of crowdsourced data in hydrological modelling improve flood prediction? Hydrol Earth Syst Sci 21:839–861. https://doi.org/10.5194/hess-21-839-2017

    Article  Google Scholar 

  63. Mazzoleni M (2017) Improving flood prediction assimilating uncertain crowdsourced data into hydrologic and hydraulic models. UNESCO-IHE PhD thesis series, CRC Press/Balkema, Leiden

    Google Scholar 

  64. Mazzoleni M, Amaranto A, Solomatine DP (2019) Integrating qualitative flow observations in a lumped hydrologic routing model. Water Resour Res 55. https://doi.org/10.1029/2018WR023768

  65. WeSenseIt (2016) WeSenseIt: citizen water observatories. http://wesenseit.eu/. Accessed 19 Feb 2016

  66. Sugeno M, Yasukawa T (1993) A fuzzy-logic-based approach to qualitative modelling. IEEE Trans Fuzzy Syst 1:7–31

    Article  Google Scholar 

  67. Moore RJ, Jones DA, Cox DR, Isham VS (2000) Design of the HYREX raingauge network. Hydrol Earth Syst Sci 4(4):521–530. https://doi.org/10.5194/hess-4-521-2000

    Article  Google Scholar 

  68. Wood SJ, Jones DA, Moore RJ (2000) Accuracy of rainfall measurement for scales of hydrological interest. Hydrol Earth Syst Sci Discuss 4(4):531–543

    Article  Google Scholar 

  69. Szilagyi J, Szollosi-Nagy A (2010) Recursive streamflow forecasting: a state space approach. CRC Press, Leiden

    Google Scholar 

  70. Cunge JA (1969) On the subject of a flood propagation computation method (Muskingum method). J Hydraul Res 7(2):205–230

    Article  Google Scholar 

  71. Ferri M, Monego M, Norbiato D, Baruffi F, Toffolon C, Casarin R (2012) La piattaforma previsionale per i bacini idrografici del Nord Est Adriatico (I). Proceedings XXXIII conference of hydraulics and hydraulic engineering, Brescia, p 10

    Google Scholar 

  72. Huwald H, Barrenetxea G, de Jong S, Ferri M, Carvalho R, Lanfranchi V, McCarthy S, Glorioso G, Prior S, Solà E, Gil-Roldàn E, Alfonso L, Wehn de Montalvo U, Onencan A, Solomatine D, Lobbrecht A (2013) D1.11 sensor technology requirement analysis. Confidential deliverable, the WeSenseIt project (FP7/2007-2013 grant agreement no 308429)

    Google Scholar 

  73. Duan Q, Ajami NK, Gao X, Sorooshian S (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv Water Resour 30(5):1371–1386. https://doi.org/10.1016/j.advwatres.2006.11.014

    Article  Google Scholar 

  74. Georgakakos AP, Georgakakos KP, Baltas EA (1990) A state-space model for hydrologic river routing. Water Resour Res 26:827–838

    Google Scholar 

  75. Refsgaard JC (1997) Validation and intercomparison of different updating procedures for real-time forecasting. Nord Hydrol 28(2):65–84. https://doi.org/10.2166/nh.1997.005

    Article  Google Scholar 

  76. WMO (1992) Simulated real-time intercomparison of hydrological models. World Meteorological Organization, Geneva

    Google Scholar 

  77. Moradkhani H, Hsu KL, Gupta H, Sorooshian S (2005) Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter. Water Resour Res 41(5):W05012. https://doi.org/10.1029/2004WR003604

    Article  Google Scholar 

  78. Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28(2):135–147

    Article  Google Scholar 

  79. Salamon P, Feyen L (2009) Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter. J Hydrol 376(3-4):428–442

    Article  Google Scholar 

  80. Lü H, Yu Z, Zhu Y, Drake S, Hao Z, Sudicky EA (2011) Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation. Adv Water Resour 34(3):395–406

    Article  Google Scholar 

  81. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45. https://doi.org/10.1115/1.3662552

    Article  Google Scholar 

  82. Heemink AW, Segers AJ (2002) Modeling and prediction of environmental data in space and time using Kalman filtering. Stoch Environ Res Risk Assess 16(3):225–240. https://doi.org/10.1007/s00477-002-0097-1

    Article  Google Scholar 

  83. Reichle RH, Crow WT, Keppenne CL (2008) An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour Res 44(3):W03423. https://doi.org/10.1029/2007WR006357

    Article  Google Scholar 

  84. Robinson AR, Lermusiaux PFJ, Sloan III NQ (1998) Data assimilation. Sea 10:541–594

    Google Scholar 

  85. Walker JP, Houser PR (2005) Hydrologic data assimilation. Adv Water Sci Methodol 41:233. https://doi.org/10.5772/1112

    Article  Google Scholar 

  86. Sun L, Seidou O, Nistor I, Liu K (2015) Review of the Kalman type hydrological data assimilation. Hydrol Sci J 61(13):2348–2366. https://doi.org/10.1080/02626667.2015.1127376

    Article  Google Scholar 

  87. Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367

    Article  Google Scholar 

  88. Heemink AW, Verlaan M, Segers AJ (2001) Variance reduced ensemble Kalman filtering. Mon Weather Rev 129(7):1718–1728

    Article  Google Scholar 

  89. Reichle R, McLaughlin DB, Entekhabi D (2002) Hydrologic data assimilation with the ensemble Kalman filter. Am Meteorol Soc 130(1):103–114. https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2

    Article  Google Scholar 

  90. Weerts AH, El Serafy GYH (2006) Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour Res 42(9):1–17. https://doi.org/10.1029/2005WR004093

    Article  Google Scholar 

  91. Anderson JL (2001) An ensemble adjustment kalman filter for data assimilation. Mon Weather Rev 129:2884–2903

    Article  Google Scholar 

  92. Murphy JM (1988) The impact of ensemble forecasts on predictability. Q J Roy Meteorol Soc 114(480):463–493. https://doi.org/10.1002/qj.49711448010

    Article  Google Scholar 

  93. Pauwels VRN, De Lannoy GJM (2009) Ensemble-based assimilation of discharge into rainfall-runoff models: a comparison of approaches to mapping observational information to state space. Water Resour Res 45(8):W08428. https://doi.org/10.1029/2008WR007590

    Article  Google Scholar 

  94. De Lannoy GJM, Reichle RH, Houser PR, Pauwels VRN, Verhoest NEC (2007) Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour Res 43(9):W09410. https://doi.org/10.1029/2006WR005449

    Article  Google Scholar 

  95. Brouwer T, Eilander D, Van Loenen A, Booij MJ, Wijnberg KM, Verkade JS, Wagemaker J (2017) Probabilistic flood extent estimates from social media flood observations. Nat Hazards Earth Syst Sci 17(5):735

    Article  Google Scholar 

  96. Cipra T, Romera R (1997) Kalman filter with outliers and missing observations. TEST 6(2):379–395. https://doi.org/10.1007/BF02564705

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded in the framework of the European FP7 Project WeSenseIt: Citizen Observatory of Water, grant agreement No. 308429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mazzoleni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzoleni, M., Alfonso, L., Solomatine, D.P. (2019). Exploring Assimilation of Crowdsourcing Observations into Flood Models. In: Scozzari, A., Mounce, S., Han, D., Soldovieri, F., Solomatine, D. (eds) ICT for Smart Water Systems: Measurements and Data Science. The Handbook of Environmental Chemistry, vol 102. Springer, Cham. https://doi.org/10.1007/698_2019_403

Download citation

Publish with us

Policies and ethics