Skip to main content

Main Uses and Environmental Emissions of Volatile Methylsiloxanes

  • Chapter
  • First Online:
Volatile Methylsiloxanes in the Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 89))

Abstract

The main uses and environmental emissions of cyclic methylsiloxanes (CMSs) and linear methylsiloxanes (LMSs), especially the three volatile CMSs (D4, D5, and D6), were reviewed. This chapter provides information on production, use, concentrations in various products, as well as emission of volatile methylsiloxanes (VMSs) into the environment. Many silicone-based products contain residues of CMSs as impurities, and hence the occurrence of VMSs in silicone-based materials (such as rubber products) has been described. CMSs are mainly used as intermediates in the production of silicone polymers, silicone fluids, elastomers, and resins, all of which have diverse industrial and consumer applications. CMSs are also used directly in personal care products (PCPs), as carriers. The concentrations and profiles of CMSs and LMSs in PCPs and household products from North America, Europe, and Asia varied widely across and within the product categories. The measured concentrations ranged from 0.01% in body wash to 70% (by weight) in deodorants. D5 was the predominant CMS found with high detection frequency in most PCPs. The correlations among VMSs in consumer products suggested incorporation of different blends of silicones to the raw material or as additives in those products. The industrial production of VMSs and direct use of PCPs result in significant emissions of VMSs into the environment. High production volume, high mobility, and environmental persistence of VMSs are causes of concern. VMSs, especially CMSs, were found globally in various environmental matrices including air, water, and sludge. This chapter also provides information on the concentrations and patterns of VMSs in the environment surrounding silicone factories, paper production facilities, and oil fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMS:

Cyclic methylsiloxane

D3:

Hexamethylcyclotrisiloxane

D4:

Octamethylcyclotetrasiloxane

D5:

Decamethylcyclopentasiloxane

D6:

Dodecamethylcyclohexasiloxane

GC/MS:

Gas chromatography/mass spectrometry

L3:

Octamethyltrisiloxane

L4:

Decamethyltetrasiloxane

L5:

Dodecamethylpentasiloxane

L6:

Tetradecamethylhexasiloxane

LMS:

Linear methylsiloxane

LOQ:

Limit of quantification

MDL:

Method detection limit

NA:

Not available

ND:

Not detected

PCPs:

Personal care products

PDMS:

Polydimethylsiloxane

SOA:

Secondary organic aerosols

SVHC:

Substances of very high concern

VMS:

Volatile methylsiloxane

VOC:

Volatile organic compound

WWTP:

Wastewater treatment plant

References

  1. Horii Y, Kannan K (2008) Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products. Arch Environ Contam Toxicol 55:701–710

    CAS  Google Scholar 

  2. Wang DG, Norwood W, Alaee M, Byer JD, Brimble S (2013) Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere 93:711–725

    CAS  Google Scholar 

  3. Graiver D, Farminer KW, Narayan R (2003) A review of the fate and effects of silicones in the environment. J Polym Environ 11:129–136

    CAS  Google Scholar 

  4. Granchi D, Cavedagna D, Ciapetti G, Stea S, Schiavon P, Giuliani R, Pizzoferrato A (1995) Silicone breast implants: the role of immune system on capsular contracture formation. J Biomed Mater Res 29:197–202

    CAS  Google Scholar 

  5. Hayden JF, Barlow SA (1972) Structure-activity relationships of organosiloxanes and the female reproductive system. Toxicol Appl Pharmacol 21:68–79

    CAS  Google Scholar 

  6. He B, Rhodes-Brower S, Miller MR, Munson AE, Germolec DR, Walker VR, Korach KS, Meade BJ (2003) Octamethylcyclotetrasiloxane exhibits estrogenic activity in mice via ERalpha. Toxicol Appl Pharmacol 192:254–261

    CAS  Google Scholar 

  7. Lieberman MW, Lykissa ED, Barrios R, Ou CN, Kala G, Kala SV (1999) Cyclosiloxanes produce fatal liver and lung damage in mice. Environ Health Perspect 107:161–165

    CAS  Google Scholar 

  8. Quinn AL, Regan JM, Tobin JM, Marinik BJ, McMahon JM, McNett DA, Sushynski CM, Crofoot SD, Jean PA, Plotzke KP (2007) In vitro and in vivo evaluation of the estrogenic, androgenic, and progestagenic potential of two cyclic siloxanes. Toxicol Sci 96:145–153

    CAS  Google Scholar 

  9. Flaningam OL (1986) Vapor pressures of poly(dimethylsiloxane) oligomers. J Chem Eng Data 31:266–272

    CAS  Google Scholar 

  10. Varaprath S, Frye CL, Hamelink J (1996) Aqueous solubility of permethylsiloxanes (silicones). Environ Toxicol Chem 15:1263–1265

    CAS  Google Scholar 

  11. Xu S, Kropscott B (2012) Method for simultaneous determination of partition coefficients for cyclic volatile methylsiloxanes and dimethylsilanediol. Anal Chem 84:1948–1955

    CAS  Google Scholar 

  12. Environment Canada (2012) Notice requiring the preparation and implementation of pollution prevention plans in respect of cyclotetrasiloxane, octamethyl- (siloxane D4) in industrial effluents. Canada Gazatte, Part I. http://www.gazette.gc.ca/rp-pr/p1/2012/2012-06-02/html/sup2-eng.html. Accessed 30 Jan 2019

  13. Brooke DN, Crookes MJ, Gray D, Robertson S (2009) Environmental risk assessment report: octamethylcyclotetrasiloxane. Environment Agency of England and Wales, Bristol. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/290565/scho0309bpqz-e-e.pdf. Accessed 30 Jan 2019

  14. Brooke DN, Crookes MJ, Gray D, Robertson S (2009) Environmental risk assessment report: decamethylcyclopentasiloxane. Environment Agency of England and Wales, Bristol. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/290561/scho0309bpqx-e-e.pdf. Accessed 30 Jan 2019

  15. Brooke DN, Crookes MJ, Gray D, Robertson S (2009) Environmental risk assessment report: dodecamethylcyclohexasiloxane. Environment Agency of England and Wales, Bristol. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/290562/scho0309bpqy-e-e.pdf. Accessed 30 Jan 2019

  16. ECHA (2016) Background document to the opinion on the annex XV dossier proposing restrictions on octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5). ECHA/RAC/RES-O-0000001412-86-97/D, Helsinki. https://echa.europa.eu/documents/10162/13641/rest_d4d5_bd_en.pdf. Accessed 30 Jan 2019

  17. European Commission (2018) Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5), Brussels. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1513&from=EN. Accessed 30 Jan 2019

  18. ECHA (2018) Inclusion of substances of very high concern in the candidate list for eventual inclusion in Annex XIV, Doc: ED/61/2018, Helsinki. https://echa.europa.eu/documents/10162/eeed2c09-2263-25ad-49cd-a0926736c877. Accessed 30 Jan 2019

  19. US-EPA (2014) Enforceable consent agreement for environmental testing for octamethylcyclotetrasiloxane (D4). EPA-HQ-OPPT-2012-0209. https://www.epa.gov/sites/production/files/2015-01/documents/signed_siloxanes_eca_4-2-14.pdf. Accessed 30 Jan 2019

  20. Hobson JF, Atkinson R, Carter WPL (1997) Volatile methylsiloxanes. In: Chandra G (ed) Organosilicon materials. The handbook of environmental chemistry. Springer-Verlag, New York

    Google Scholar 

  21. O’Lenick AJ (2008) Silicones for personal care, 2nd edn. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  22. GSC (2016) Socio-economic evaluation of the global silicones industry. AMEC Foster Wheeler Environment & Infrastructure UK Ltd, London. https://sehsc.americanchemistry.com/Socio-Economic-Evaluation-of-the-Global-Silicones-Industry-Final-Report.pdf. Accessed 30 Jan 2019

  23. AMEC (2013) Market confidential final report. AMEC Foster Wheeler Environment & Infrastructure UK Ltd, London

    Google Scholar 

  24. OECD (2007) Manual for investigation of HPV chemicals

    Google Scholar 

  25. US-EPA (2007) High Production Volume (HPV) challenge program

    Google Scholar 

  26. Mojsiewicz-Pieńkowska K, Krenczkowska D (2018) Evolution of consciousness of exposure to siloxanes – review of publications. Chemosphere 191:204–217

    Google Scholar 

  27. US-EPA (2002) Non-confidential inventory update reporting production volume information. Toxic Substances Control Act (TSCA) Inventory

    Google Scholar 

  28. SIAJ (2009) Report of economic ripple and job creation effect of silicone in Japan (in Japanese). Silicone Industry Association of Japan, Tokyo. http://www.siaj.jp/ja/fact_sheet/pdf/keizaikoyo.pdf. Accessed 30 Jan 2019

  29. Environment Canada (2008) Screening assessment for the challenge octamethylcyclotetrasiloxane (D4). http://www.ec.gc.ca/ese-ees/2481B508-1760-4878-9B8A-270EEE8B7DA4/batch2_556-67-2_en.pdf. Accessed 30 Jan 2019

  30. Environment Canada (2008) Screening assessment for the challenge decamethylcyclopentasiloxane (D5). https://www.cyclosiloxanes.org/uploads/Modules/Links/10.-environment-and-health-canada-screening-assessment-for-the-challenge-decamethylcyclopentasiloxane-(d5).pdf. Accessed 30 Jan 2019

  31. Environment Canada (2008) Screening assessment for the challenge dodecamethylcyclohexasiloxane (D6). https://www.ec.gc.ca/ese-ees/FC0D11E7-DB34-41AA-B1B3-E66EFD8813F1/batch2_540-97-6_en.pdf. Accessed 30 Jan 2019

  32. Hunter MJ, Hyde JF et al (1946) Organo-silicon polymers; the cyclic dimethyl siloxanes. J Am Chem Soc 68:667–672

    CAS  Google Scholar 

  33. Reconsile Consortium (2014) Octamethylcyclotetrasiloxane (D4) chemical safety report

    Google Scholar 

  34. Reconsile Consortium (2014) Decamethylcyclopentasiloxane (D5) chemical safety report

    Google Scholar 

  35. Chandra G (1997) Organosilicon materials. The handbook of environmental chemistry, vol 3. Springer-Verlag, New York

    Google Scholar 

  36. Environment Canada (2015) Screening assessment for the challenge trisiloxane, octamethyl- (MDM). http://www.cela.ca/sites/cela.ca/files/780.draft%20RA%20MDM%20(Batch%2012).pdf. Accessed 30 Jan 2019

  37. Friedel C, Crafts JM (1863). Liebigs Ann Chem 127:128

    Google Scholar 

  38. Dudzina T, von Goetz N, Bogdal C, Biesterbos JW, Hungerbuhler K (2014) Concentrations of cyclic volatile methylsiloxanes in European cosmetics and personal care products: prerequisite for human and environmental exposure assessment. Environ Int 62:86–94

    CAS  Google Scholar 

  39. Garaud JL (2007) Silicones in industrial applications. Dow Corning, Midland

    Google Scholar 

  40. DiSapio A, Fridd P (1988) Silicones: use of substantive properties on skin and hair. Int J Cosmet Sci 10:75–89

    CAS  Google Scholar 

  41. Abrutyn E, Bahr B (1993) Formulating enhancements for underarm applications. Cosmet Toiletries 108:51–54

    CAS  Google Scholar 

  42. Walker JD, Smock WH (1995) Chemicals recommended for testing by the TSCA interagency testing committee: a case study of octamethylcyclotetrasiloxane. Environ Toxicol Chem 14:1631–1634

    CAS  Google Scholar 

  43. Peter Fisk Associates (2012) Interim reports: technical support for D4 and D5 SEA

    Google Scholar 

  44. Lu Y, Yuan T, Wang W, Kannan K (2011) Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China. Environ Pollut 159:3522–3528

    CAS  Google Scholar 

  45. Wang R, Moody RP, Koniecki D, Zhu J (2009) Low molecular weight cyclic volatile methylsiloxanes in cosmetic products sold in Canada: implication for dermal exposure. Environ Int 35:900–904

    CAS  Google Scholar 

  46. Capela D, Alves A, Homem V, Santos L (2016) From the shop to the drain – volatile methylsiloxanes in cosmetics and personal care products. Environ Int 92–93:50–62

    Google Scholar 

  47. Xu L, Zhi L, Cai Y (2017) Methylsiloxanes in children silicone-containing products from China: profiles, leaching, and children exposure. Environ Int 101:165–172

    CAS  Google Scholar 

  48. Zhang K, Wong JW, Begley TH, Hayward DG, Limm W (2012) Determination of siloxanes in silicone products and potential migration to milk, formula and liquid simulants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:1311–1321

    CAS  Google Scholar 

  49. Kawamura Y, Nakajima A, Mutsuga M, Yamada T, Maitani T (2001) Residual chemicals in silicone rubber products for food contact use. Shokuhin Eiseigaku Zasshi 42:316–321. (in Japanese)

    CAS  Google Scholar 

  50. Xu L, Shi Y, Liu N, Cai Y (2015) Methyl siloxanes in environmental matrices and human plasma/fat from both general industries and residential areas in China. Sci Total Environ 505:454–463

    CAS  Google Scholar 

  51. UNEP (2016) Consolidated guidance on alternatives to perfluorooctane sulfonic acid and its related chemicals. https://www.informea.org/sites/default/files/imported-documents/UNEP-POPS-POPRC.12-INF-15-Rev.1.English.pdf. Accessed 30 Jan 2019

  52. Gouin T, van Egmond R, Sparham C, Hastie C, Chowdhury N (2013) Simulated use and wash-off release of decamethylcyclopentasiloxane used in anti-perspirants. Chemosphere 93:726–734

    CAS  Google Scholar 

  53. Montemayor BP, Price BB, van Egmond RA (2013) Accounting for intended use application in characterizing the contributions of cyclopentasiloxane (D5) to aquatic loadings following personal care product use: antiperspirants, skin care products and hair care products. Chemosphere 93:735–740

    CAS  Google Scholar 

  54. Mackay D, Cowan-Ellsberry CE, Powell DE, Woodburn KB, Xu S, Kozerski GE, Kim J (2015) Decamethylcyclopentasiloxane (D5) environmental sources, fate, transport, and routes of exposure. Environ Toxicol Chem 34:2689–2702

    CAS  Google Scholar 

  55. Pieri F, Katsoyiannis A, Martellini T, Hughes D, Jones KC, Cincinelli A (2013) Occurrence of linear and cyclic volatile methyl siloxanes in indoor air samples (UK and Italy) and their isotopic characterization. Environ Int 59:363–371

    CAS  Google Scholar 

  56. Tran TM, Abualnaja KO, Asimakopoulos AG, Covaci A, Gevao B, Johnson-Restrepo B, Kumosani TA, Malarvannan G, Minh TB, Moon HB, Nakata H, Sinha RK, Kannan K (2015) A survey of cyclic and linear siloxanes in indoor dust and their implications for human exposures in twelve countries. Environ Int 78:39–44

    CAS  Google Scholar 

  57. Tran TM, Le HT, Vu ND, Minh Dang GH, Minh TB, Kannan K (2017) Cyclic and linear siloxanes in indoor air from several northern cities in Vietnam: levels, spatial distribution and human exposure. Chemosphere 184:1117–1124

    CAS  Google Scholar 

  58. Liu N, Xu L, Cai Y (2018) Methyl siloxanes in barbershops and residence indoor dust and the implication for human exposures. Sci Total Environ 618:1324–1330

    CAS  Google Scholar 

  59. Lu Y, Yuan T, Yun SH, Wang W, Wu Q, Kannan K (2010) Occurrence of cyclic and linear siloxanes in indoor dust from China, and implications for human exposures. Environ Sci Technol 44:6081–6087

    CAS  Google Scholar 

  60. Kaj L, Schlabach M, Andersson J, Cousins AP, Schmidbauer N, Brorström-Lundén E (2005) Results from the Swedish national screening programme 2004. Swedish Environmental Research Institute, Stockholm. https://www.ivl.se/download/18.343dc99d14e8bb0f58b542e/1443183072893/B2014.pdf. Accessed 30 Jan 2019

  61. Companioni-Damas EY, Santos FJ, Galceran MT (2014) Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry. Talanta 118:245–252

    CAS  Google Scholar 

  62. McKone T, Maddalena R, Destaillats H, Hammond SK, Hodgson A, Russell M, Perrino C (2009) Indoor pollutant emissions from electronic office equipment. https://www.arb.ca.gov/research/seminars/mckone/mckone.pdf. Accessed 30 Jan 2019

  63. Wu XM, Apte MG, Maddalena R, Bennett DH (2011) Volatile organic compounds in small- and medium-sized commercial buildings in California. Environ Sci Technol 45:9075–9083

    CAS  Google Scholar 

  64. Tang X, Misztal PK, Nazaroff WW, Goldstein AH (2015) Siloxanes are the most abundant volatile organic compound emitted from engineering students in a classroom. Environ Sci Technol Lett 2:303–307

    CAS  Google Scholar 

  65. Tran TM, Kannan K (2015) Occurrence of cyclic and linear siloxanes in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Sci Total Environ 511:138–144

    CAS  Google Scholar 

  66. Shoeib M, Schuster J, Rauert C, Su K, Smyth SA, Harner T (2016) Emission of poly and perfluoroalkyl substances, UV-filters and siloxanes to air from wastewater treatment plants. Environ Pollut 218:595–604

    CAS  Google Scholar 

  67. Cheng Y, Shoeib M, Ahrens L, Harner T, Ma J (2011) Wastewater treatment plants and landfills emit volatile methyl siloxanes (VMSs) to the atmosphere: investigations using a new passive air sampler. Environ Pollut 159:2380–2386

    CAS  Google Scholar 

  68. Ahrens L, Harner T, Shoeib M (2014) Temporal variations of cyclic and linear volatile methylsiloxanes in the atmosphere using passive samplers and high-volume air samplers. Environ Sci Technol 48:9374–9381

    CAS  Google Scholar 

  69. Buser AM, Bogdal C, MacLeod M, Scheringer M (2014) Emissions of decamethylcyclopentasiloxane from Chicago. Chemosphere 107:473–475

    CAS  Google Scholar 

  70. Buser AM, Kierkegaard A, Bogdal C, MacLeod M, Scheringer M, Hungerbuhler K (2013) Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zurich, Switzerland. Environ Sci Technol 47:7045–7051

    CAS  Google Scholar 

  71. Yucuis RA, Stanier CO, Hornbuckle KC (2013) Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation. Chemosphere 92:905–910

    CAS  Google Scholar 

  72. Horii Y, Minomo K, Ohtsuka N, Motegi M, Takemine S, Yamashita N (2018) Development of a method for determination for atmospheric volatile methylsiloxanes and its application to environmental monitoring. Bunseki Kagaku 67:313–322. (in Japanese)

    Google Scholar 

  73. Kierkegaard A, McLachlan MS (2013) Determination of linear and cyclic volatile methylsiloxanes in air at a regional background site in Sweden. Atmos Environ 80:322–329

    CAS  Google Scholar 

  74. Krogseth IS, Kierkegaard A, McLachlan MS, Breivik K, Hansen KM, Schlabach M (2013) Occurrence and seasonality of cyclic volatile methyl siloxanes in Arctic air. Environ Sci Technol 47:502–509

    CAS  Google Scholar 

  75. Navea JG, Young MA, Xu S, Grassian VH, O’Stanier C (2011) The atmospheric lifetimes and concentrations of cyclic methylsiloxanes octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) and the influence of heterogeneous uptake. Atmos Environ 45:3181–3191

    CAS  Google Scholar 

  76. Coggon MM, McDonald BC, Vlasenko A, Veres PR, Bernard F, Koss AR, Yuan B, Gilman JB, Peischl J, Aikin KC, DuRant J, Warneke C, Li SM, de Gouw JA (2018) Diurnal variability and emission pattern of decamethylcyclopentasiloxane (D5) from the application of personal care products in two north American cities. Environ Sci Technol 52:5610–5618

    CAS  Google Scholar 

  77. SEHSC (2012) Development of environmental monitoring proposal for certain cyclic siloxanes. Report submitted to US EPA, Silicones, Environmental, Health, and Safety Center

    Google Scholar 

  78. Schweigkofler M, niessner R (1999) Determination of siloxanes and VOC in landfill gas and sewage gas by canister sampling and GC-MS/AES analysis. Environ Sci Technol 33:3680–3685

    CAS  Google Scholar 

  79. Ajhar M, Travesset M, Yuce S, Melin T (2010) Siloxane removal from landfill and digester gas – a technology overview. Bioresour Technol 101:2913–2923

    CAS  Google Scholar 

  80. Eklund B, Anderson EP, Walker BL, Burrows DB (1998) Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environ Sci Technol 32:2233–2237

    CAS  Google Scholar 

  81. Ohannessian A, Desjardin V, Chatain V, Germain P (2008) Volatile organic silicon compounds: the most undesirable contaminants in biogases. Water Sci Technol 58:1775–1781

    CAS  Google Scholar 

  82. Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. Energy Convers Manag 47:1711–1722

    CAS  Google Scholar 

  83. Wang DG, Steer H, Tait T, Williams Z, Pacepavicius G, Young T, Ng T, Smyth SA, Kinsman L, Alaee M (2013) Concentrations of cyclic volatile methylsiloxanes in biosolid amended soil, influent, effluent, receiving water, and sediment of wastewater treatment plants in Canada. Chemosphere 93:766–773

    CAS  Google Scholar 

  84. Xu L, Shi Y, Cai Y (2013) Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing, China. Water Res 47:715–724

    CAS  Google Scholar 

  85. Sanchis J, Martinez E, Ginebreda A, Farre M, Barcelo D (2013) Occurrence of linear and cyclic volatile methylsiloxanes in wastewater, surface water and sediments from Catalonia. Sci Total Environ 443:530–538

    CAS  Google Scholar 

  86. Horii Y, Minomo K, Ohtsuka N, Motegi M, Nojiri K, Kannan K (2017) Distribution characteristics of volatile methylsiloxanes in Tokyo Bay watershed in Japan: analysis of surface waters by purge and trap method. Sci Total Environ 586:56–65

    CAS  Google Scholar 

  87. Bletsou AA, Asimakopoulos AG, Stasinakis AS, Thomaidis NS, Kannan K (2013) Mass loading and fate of linear and cyclic siloxanes in a wastewater treatment plant in Greece. Environ Sci Technol 47:1824–1832

    CAS  Google Scholar 

  88. Kaj L, Schlabach M, Andersson J, Palm Cousins A, Schmidbauer N, Brorstrom Lunden E (2005) Siloxanes in the Nordic environment. Nordic Council of Ministers, Copenhagen. http://norden.diva-portal.org/smash/get/diva2:702777/FULLTEXT01.pdf. Accessed 30 Jan 2019

    Google Scholar 

  89. van Egmond R, Sparham C, Hastie C, Gore D, Chowdhury N (2013) Monitoring and modelling of siloxanes in a sewage treatment plant in the UK. Chemosphere 93:757–765

    Google Scholar 

  90. Wang DG, Aggarwal M, Tait T, Brimble S, Pacepavicius G, Kinsman L, Theocharides M, Smyth SA, Alaee M (2015) Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant. Water Res 72:209–217

    CAS  Google Scholar 

  91. Sparham C, van Egmond R, O’Connor S, Hastie C, Whelan M, Kanda R, Franklin O (2008) Determination of decamethylcyclopentasiloxane in river water and final effluent by headspace gas chromatography/mass spectrometry. J Chromatogr A 1212:124–129

    CAS  Google Scholar 

  92. Environment and Climate Change Canada (2017) Final performance report: pollution prevention planning and siloxane D4 (2013–2017). https://www.canada.ca/content/dam/eccc/documents/pdf/p2/20180319-01-en.pdf. Accessed 30 Jan 2019

  93. Panagopoulos D, Jahnke A, Kierkegaard A, MacLeod M (2015) Organic carbon/water and dissolved organic carbon/water partitioning of cyclic volatile methylsiloxanes: measurements and polyparameter linear free energy relationships. Environ Sci Technol 49:12161–12168

    CAS  Google Scholar 

  94. Lee S, Moon HB, Song GJ, Ra K, Lee WC, Kannan K (2014) A nationwide survey and emission estimates of cyclic and linear siloxanes through sludge from wastewater treatment plants in Korea. Sci Total Environ 497–498:106–112

    Google Scholar 

  95. Xu L, He X, Zhi L, Zhang C, Zeng T, Cai Y (2016) Chlorinated methylsiloxanes generated in the papermaking process and their fate in wastewater treatment processes. Environ Sci Technol 50:12732–12741

    CAS  Google Scholar 

  96. Li B, Li W-L, Sun S-J, Qi H, Ma W-L, Liu L-Y, Zhang Z-F, Zhu N-Z, Li Y-F (2016) The occurrence and fate of siloxanes in wastewater treatment plant in Harbin, China. Environ Sci Pollut Res 23:13200–13209

    CAS  Google Scholar 

  97. Zhang Z, Qi H, Ren N, Li Y, Gao D, Kannan K (2011) Survey of cyclic and linear siloxanes in sediment from the Songhua River and in sewage sludge from wastewater treatment plants, northeastern China. Arch Environ Contam Toxicol 60:204–211

    CAS  Google Scholar 

  98. Powell DE, Kozerski GE (2007) Cyclic methylsiloxane (cVMS) materials in surface sediments and cores for Lake Ontario. HES Study No. 10724–108, Dow Corning Corporation, Auburn

    Google Scholar 

  99. Kierkegaard A, van Egmond R, McLachlan MS (2011) Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber estuary. Environ Sci Technol 45:5936–5942

    CAS  Google Scholar 

  100. Powell DE, Suganuma N, Kobayashi K, Nakamura T, Ninomiya K, Matsumura K, Omura N, Ushioka S (2017) Trophic dilution of cyclic volatile methylsiloxanes (cVMS) in the pelagic marine food web of Tokyo Bay, Japan. Sci Total Environ 578:366–382

    CAS  Google Scholar 

  101. Lee SY, Lee S, Choi M, Kannan K, Moon HB (2018) An optimized method for the analysis of cyclic and linear siloxanes and their distribution in surface and core sediments from industrialized bays in Korea. Environ Pollut 236:111–118

    CAS  Google Scholar 

  102. Apedaile E (2001) A perspective on biosolids management. Can J Infect Dis 12:202–204

    CAS  Google Scholar 

  103. Xu S, Chandra G (1999) Fate of cyclic methylsiloxanes in soils. 2. Rates of degradation and volatilization. Environ Sci Technol 33:4034–4039

    CAS  Google Scholar 

  104. Boehmer T, Gerhards R (2003) Octamethylcyclotetrasiloxane (D4), a compilation of environmental data. Centre Europeen des Silicones, Brussels

    Google Scholar 

  105. Boehmer T, Gerhards R (2003) Decamethycyclopentasiloxane (D5), a compilation of environmental data. Centre Europeen des Silicones, Brussels

    Google Scholar 

  106. Nusz JB, Fairbrother A, Daley J, Burton GA (2018) Use of multiple lines of evidence to provide a realistic toxic substances control act ecological risk evaluation based on monitoring data: D4 case study. Sci Total Environ 636:1382–1395

    CAS  Google Scholar 

  107. Xu L, Shi Y, Wang T, Dong Z, Su W, Cai Y (2012) Methyl siloxanes in environmental matrices around a siloxane production facility, and their distribution and elimination in plasma of exposed population. Environ Sci Technol 46:11718–11726

    CAS  Google Scholar 

  108. Habermehl J (2005) Silicone processing benefits pulp brownstock washing operations. China Pulp Paper Technology. https://consumer.dow.com/en-us/document-viewer.html?ramdomVar=6250614571543657171&docPath=/documents/en-us/tech-art/30/30-11/30-1147-01-silicone-processing-for-pulp-brownstock-washing.pdf. Accessed 30 Jan 2019

  109. Chao SH (2012) Silicones in the pulp and paper industry. https://consumer.dow.com/en-us/document-viewer.html?ramdomVar=7674900645825177899&docPath=/documents/en-us/tech-art/26/26-24/26-2457-01-sdc-phase-3-chapter-4-.pdf. Accessed 30 Jan 2019

  110. Daniel-David D, Pezron I, Dalmazzone C, Noïk C, Clausse D, Komunjer L (2005) Elastic properties of crude oil/water interface in presence of polymeric emulsion breakers. Colloids Surf A Physicochem Eng Asp 270–271:257–262

    Google Scholar 

  111. Shi Y, Xu S, Xu L, Cai Y (2015) Distribution, elimination, and rearrangement of cyclic volatile methylsiloxanes in oil-contaminated soil of the Shengli oilfield, China. Environ Sci Technol 49:11527–11535

    CAS  Google Scholar 

  112. Zhi L, Xu L, He X, Zhang C, Cai Y (2018) Occurrence and profiles of methylsiloxanes and their hydrolysis product in aqueous matrices from the Daqing oilfield in China. Sci Total Environ 631–632:879–886

    Google Scholar 

  113. McDonald BC, de Gouw JA, Gilman JB, Jathar SH, Akherati A, Cappa CD, Jimenez JL, Lee-Taylor J, Hayes PL, McKeen SA, Cui YY, Kim SW, Gentner DR, Isaacman-VanWertz G, Goldstein AH, Harley RA, Frost GJ, Roberts JM, Ryerson TB, Trainer M (2018) Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 359:760–764

    CAS  Google Scholar 

  114. Wu Y, Johnston MV (2017) Aerosol formation from OH oxidation of the volatile cyclic methyl siloxane (cVMS) decamethylcyclopentasiloxane. Environ Sci Technol 51:4445–4451

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Horii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horii, Y., Kannan, K. (2019). Main Uses and Environmental Emissions of Volatile Methylsiloxanes. In: Homem, V., Ratola, N. (eds) Volatile Methylsiloxanes in the Environment. The Handbook of Environmental Chemistry, vol 89. Springer, Cham. https://doi.org/10.1007/698_2019_375

Download citation

Publish with us

Policies and ethics