Skip to main content

Plant Biotechnology Status in Egypt

  • Chapter
  • First Online:
Book cover Sustainability of Agricultural Environment in Egypt: Part I

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 76))

  • 1224 Accesses

Abstract

Hunger and malnutrition are important factors that hinder the development of any country. Farmers have used traditional methods to solve the problem, but do not seem to succeed. However, plant biotechnology has potentials for improving crop productivity and ensuring food security. Also, it significantly shortens the time required for the production of new cultivars with desirable characteristics. Egypt hosts one of the oldest agricultural civilizations in the world (Craig, The agriculture of Egypt. Oxford University Press, Oxford, 1993). Despite this, it faces the risk of food insecurity due to the increasing rate of population and not using the modern technology to increase crop productivity. Therefore, Egypt started one of the most advanced plant biotechnology programs in Africa in 1990 and launched the Agricultural Genetic Engineering Research Institute (AGERI). AGERI is engaged in cutting-edge projects in the field of biotic and abiotic stress resistance, genome mapping, and bioinformatics. AGERI successfully engineered several crops which include wheat, cotton, maize, potato, cucumber, squash, melon, and tomato. These crops are in the pipeline of commercialization due to the governmental hesitation toward commercialization of genetically modified crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craig GM (1993) The agriculture of Egypt. Oxford University Press, Oxford

    Google Scholar 

  2. Brar DS, Khush GS (1997) Wide hybridization for rice improvements: alien gene transfer and molecular characterization of introgression. In: Jones MP, Dingkhun M, Johnson DE, Fagade SO (eds) Inter-specific hybridization: progress and prospect. WARDA, Bouake, pp 21–29

    Google Scholar 

  3. Fairbanks DJ, Rytting B (2001) Mendelian controversies: a botanical and historical review. Am J Bot 88:737–752

    Article  CAS  Google Scholar 

  4. Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet 29:66–73

    Article  CAS  Google Scholar 

  5. Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318

    Article  Google Scholar 

  6. Mwadzingeni L, Shimelis H, Rees DJG, Tsilo TJ (2017) Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS One 12:e0171692

    Article  Google Scholar 

  7. Koornneef M, Alonso-Blanco C, Peeters a AJM, Soppe W (1998) Genetic control of flowering time in arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49:345–370

    Article  CAS  Google Scholar 

  8. Goldberg RB (2001) From cot curves to genomics. How gene cloning established new concepts in plant biology. Plant Physiol 125:4–8

    Article  CAS  Google Scholar 

  9. Potrykus I (1990) Gene transfer to plants: assessment and perspectives. Physiol Plant 79:125–134

    Article  CAS  Google Scholar 

  10. ISAAA (2016) Global status of commercialized biotech/GM crops: 2016. ISAAA brief. ISAAA, Ithaca

    Google Scholar 

  11. CAPMAS (2017) Central agency for public mobilization and statistics of Egypt, from http://www.capmas.gov.eg

  12. Vasil IK (2005) The story of transgenic cereals: the challenge, the debate, and the solution – a historical perspective. In Vitro Cell Dev Biol Plant 41:577–583

    Article  Google Scholar 

  13. Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E et al (2003) Bioengineered ‘golden’ indica rice cultivars with β-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1:81–90

    Article  CAS  Google Scholar 

  14. Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. In: Birchler JA (ed) Plant chromosome engineering: methods and protocols. Humana Press, Totowa, pp 1–35

    Google Scholar 

  15. Hooykaas PJJ (2001) Plant transformation. eLS. Wiley, New York

    Google Scholar 

  16. Rivera AL, Gómez-Lim M, Fernández F, Loske AM (2012) Physical methods for genetic plant transformation. Phys Life Rev 9:308–345

    Article  Google Scholar 

  17. Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  CAS  Google Scholar 

  18. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  Google Scholar 

  19. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  Google Scholar 

  20. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757

    Article  CAS  Google Scholar 

  21. Forget G (1993) Balancing the need for pesticides with the risk to human health. In: Forget G, Goodman T, de Villiers A (eds) Impact of pesticide use on health in developing countries. IDRC, Ottawa, pp 2–16

    Google Scholar 

  22. Igbedioh SO (1991) Effects of agricultural pesticides on humans, animals, and higher plants in developing countries. Arch Environ Health 46:218–224

    Article  CAS  Google Scholar 

  23. Jeyaratnam J (1985) Health problems of pesticide usage in the third world. Br J Ind Med 42:505–506

    CAS  Google Scholar 

  24. Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs 1:31–50

    Article  Google Scholar 

  25. De Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  Google Scholar 

  26. Bravo A, Gill SS, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  Google Scholar 

  27. Gatehouse AMR, Ferry N, Edwards MG, Bell HA (2011) Insect-resistant biotech crops and their impacts on beneficial arthropods. Philos Trans R Soc Lond B Biol Sci 366:1438–1452

    Article  CAS  Google Scholar 

  28. Brookes G (2007) Plant agriculture: the impact of biotechnology. Plant biotechnology and genetics. Wiley, New York, pp 1–19

    Google Scholar 

  29. Brookes GBP (2005) GM crops: the global economic and environmental impact: the first nine years. AgBioforum 8:187–196

    Google Scholar 

  30. Toenniessen GH, O’Toole JC, DeVries J (2003) Advances in plant biotechnology and its adoption in developing countries. Curr Opin Plant Biol 6:191–198

    Article  Google Scholar 

  31. Antony Ceasar S, Ignacimuthu S (2012) Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnol Lett 34:995–1002

    Article  CAS  Google Scholar 

  32. Grover A, Gowthaman R (2003) Strategies for development of fungus-resistant transgenic plants. Curr Sci 84:330–340

    Google Scholar 

  33. Kavanagh TA, Spillane C (1995) Strategies for engineering virus resistance in transgenic plants. Euphytica 85:149–158

    Article  CAS  Google Scholar 

  34. Reddy DVR, Sudarshana MR, Fuchs M, Rao NC, Thottappilly G (2009) Genetically engineered virus-resistant plants in developing countries: current status and future prospects. In: Loebenstein G, Carr JP (eds) Advances in virus research. Academic, New York, pp 185–220

    Google Scholar 

  35. Schütte G, Eckerstorfer M, Rastelli V, Reichenbecher W, Restrepo-Vassalli S et al (2017) Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ Sci Eur 29:5

    Article  Google Scholar 

  36. Wong DWS (2006) Transgenic crops conferred with herbicide resistance. In: Wong DWS (ed) The ABCs of gene cloning. Springer, Boston, MA, pp 147–149

    Google Scholar 

  37. World Health Organization (WHO) Vitamin A deficiency, from http://www.who.int/nutrition/topics/vad/en/

  38. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P et al (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  Google Scholar 

  39. Prasad PVV, Pisipati SR, Momčilović I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197:430–441

    Article  CAS  Google Scholar 

  40. Acquaah G (2006) Principles of plant genetics and breeding. Wiley, New York

    Google Scholar 

  41. Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley centre climate model. J Hydrometeorol 7:1113–1125

    Article  Google Scholar 

  42. FAO (2004) Food and agriculture organization of the United Nations. FAO production yearbook. FAO, Rome

    Google Scholar 

  43. Hussain SS, Raza H, Afzal I, Kayani MA (2012) Transgenic plants for abiotic stress tolerance: current status. Arch Agron Soil Sci 58:693–721

    Article  CAS  Google Scholar 

  44. Central Intelligence Agency (CIA). The world factbook, from https://www.cia.gov/library/publications/the-world-factbook/geos/eg.html

  45. Ahmed AAI, Hashem MY, Mohamed SM, Khalil SHS (2013) Protection of potato crop against Phthorimaea operculella (Zeller) infestation using frass extract of two noctuid insect pests under laboratory and storage simulation conditions. Arch Phytopathol Pfl 46:2409–2419

    Article  CAS  Google Scholar 

  46. Al-Shahwan IM, Abdalla OA, Al-Saleh MA (1995) Response of greenhouse-grown cucumber cultivars to an isolate of zucchini yellow mosaic virus (ZYMV). Plant Dis 79:898–901

    Article  Google Scholar 

  47. Desbiez C, Lecoq H (1997) Zucchini yellow mosaic virus. Plant Pathol 46:809–829

    Article  Google Scholar 

  48. Padidam M, Gonzalez de Schöpke A, El Leithy S, Abdallah N, Aref N, Beachy RN, Fauquet CM (1994) Engineering resistance against tomato yellow leaf curl virus (TYLCV). ILTAB mid-term review. TSRI, La Jolla

    Google Scholar 

  49. Bendahmane M, Gronenborn B (1997) Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol 33:351–357

    Article  CAS  Google Scholar 

  50. USDA (2016) Egypt agricultural biotechnology annual 2016. USDA, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid E. M. Sedeek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sedeek, K.E.M. (2018). Plant Biotechnology Status in Egypt. In: Negm, A.M., Abu-hashim, M. (eds) Sustainability of Agricultural Environment in Egypt: Part I. The Handbook of Environmental Chemistry, vol 76. Springer, Cham. https://doi.org/10.1007/698_2017_196

Download citation

Publish with us

Policies and ethics