Skip to main content

The Role of Plastic Debris as Another Source of Hazardous Chemicals in Lower-Trophic Level Organisms

  • Chapter
  • First Online:
Hazardous Chemicals Associated with Plastics in the Marine Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 78))

Abstract

Over the last decade, it has become indisputable that small plastic debris contaminates habitats and wildlife globally. Of concern is that this material, which is ingested by hundreds of species across multiple trophic levels, is associated with a complex mixture of hazardous chemicals. Models, laboratory exposures, and field studies have all demonstrated that plastic debris can act as a source for hazardous chemicals to bioaccumulate in animals. This has been demonstrated with several plastic types, including polystyrene, polyvinyl chloride (PVC), polyurethane foam, and polyethylene, and for several different organic chemicals, including PCBs, PAHs, PBDEs, triclosan, and nonylphenol. What remains less certain is the ecological importance of this transfer, i.e., the relative contribution of plastic as a source of chemicals to wildlife relative to other sources. Experimental data suggests that for some chemicals and under certain exposure scenarios, plastic debris may be a relatively important source of chemicals, including at environmentally relevant exposure concentrations. Toxicological studies in the laboratory demonstrate adverse effects from the combination of plastic and hazardous chemicals in fish and lugworms. Further research is warranted to better understand the mechanisms by which plastic-associated contaminants transfer to organisms and if the chemicals are biomagnified in higher trophic level animals leading to ecological consequences or even human health effects via consumption of contaminated seafood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Obbard RW, Sadri S, Wong Y et al (2014) Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2(6):315–320

    Google Scholar 

  2. Browne MA, Crump P, Niven SJ et al (2011) Accumulations of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45:9175–9179

    CAS  Google Scholar 

  3. Eriksen M, Mason S, Wilson S et al (2013) Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77(1):177–182

    CAS  Google Scholar 

  4. Eriksen M, Lebreton LC, Carson HS et al (2014) Plastic pollution in the World’s Oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12), e111913

    Google Scholar 

  5. Woodall LC, Robinson LF, Rogers AD et al (2015) Deep sea litter: a comparison of seamounts, banks and a ridge in the Atlantic and Indian Oceans reveals both environmental and anthropogenic factors impact accumulation and composition. Front Mar Sci 2(3)

    Google Scholar 

  6. Endo S, Takizawa R, Okuda K et al (2005) Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull 50(10):1103–1114

    CAS  Google Scholar 

  7. Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60:2050–2055

    CAS  Google Scholar 

  8. Browne MA, Galloway TS, Thompson RC (2010) Spatial patterns of plastic debris along estuarine shorelines. Environ Sci Technol 44(9):3404–3409

    CAS  Google Scholar 

  9. Zbyszewski M, Corcoran PL (2011) Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water Air Soil Pollut 220(1–4):365–372

    CAS  Google Scholar 

  10. Castañeda RA, Avlijas S, Simard MA et al (2014) Microplastic pollution in St. Lawrence River sediments. Can J Fish Aquat Sci 71(12):1767–1771

    Google Scholar 

  11. Thompson RC, Olsen Y, Mitchell RP et al (2004) Lost at sea: where is all the plastic? Science 304:838

    CAS  Google Scholar 

  12. Laist DW (1987) Overview of the biological effects of lost and discarded plastic debris in the marine environment. Mar Pollut Bull 18(6):319–326

    Google Scholar 

  13. Derraik JG (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44(9):842–852

    CAS  Google Scholar 

  14. Gall SC, Thompson RC (2015) The impacts of debris on marine life. Mar Pollut Bull (in press)

    Google Scholar 

  15. Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70

    Google Scholar 

  16. Ugolini A, Ungherese G, Ciofini M et al (2013) Microplastic debris in sandhoppers. Estuar Coast Shelf Sci 129:19–22

    CAS  Google Scholar 

  17. Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62(6):1207–1217

    CAS  Google Scholar 

  18. Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67(1):94–99

    CAS  Google Scholar 

  19. Foekema EM, De Gruijter C, Mergia MT et al (2013) Plastic in North Sea fish. Environ Sci Technol 47(15):8818–8824

    CAS  Google Scholar 

  20. Choy CA, Drazen JC (2013) Plastic for dinner? Observations of frequent debris ingestion by pelagic predatory fishes from the central North Pacific. Mar Ecol Prog Ser 485:155–163

    Google Scholar 

  21. Bjorndal KA, Bolten AB, Lagueux CJ (1994) Ingestion of marine debris by juvenile sea turtles in coastal Florida habitats. Mar Pollut Bull 28(3):154–158

    Google Scholar 

  22. Ryan PG (2008) Seabirds indicate changes in the composition of plastic litter in the Atlantic and south-western Indian Oceans. Mar Pollut Bull 56(8):1406–1409

    CAS  Google Scholar 

  23. van Franeker JA, Blaize C, Danielsen J et al (2011) Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environ Pollut 159(10):2609–2615

    Google Scholar 

  24. Jacobsen JK, Massey L, Gulland F (2010) Fatal ingestion of floating net debris by two sperm whales (Physeter macrocephalus). Mar Pollut Bull 60(5):765–767

    CAS  Google Scholar 

  25. Beck CA, Barros NB (1991) The impact of debris on the Florida manatee. Mar Pollut Bull 22(10):508–510

    Google Scholar 

  26. Rochman CM, Browne MA, Halpern BS et al (2013) Classify plastic waste as hazardous. Nature 494:169–171

    CAS  Google Scholar 

  27. Gaylor MO, Harvey E, Hale RC (2012) House crickets can accumulate polybrominated diphenyl ethers (PBDEs) directly from polyurethane foam common in consumer products. Chemosphere 86(5):500–505

    CAS  Google Scholar 

  28. Besseling E, Wegner A, Foekema E et al (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47:593–600

    CAS  Google Scholar 

  29. Browne MA, Niven SJ, Galloway TS et al (2013) Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol 23(23):2388–2392

    CAS  Google Scholar 

  30. Rochman CM, Hoh E, Kurobe T et al (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3:3263

    Google Scholar 

  31. Chua E, Shimeta J, Nugegoda D et al (2014) Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa. Environ Sci Technol 48(14):8127–8134

    CAS  Google Scholar 

  32. USEPA (2013) Water: CWA methods—priority pollutants. http://water.epa.gov/scitech/methods/cwa/pollutants.cfm

  33. European Commission (2014) Priority substances and certain other pollutants according to Annex II of Directive 2008/105/EC. http://ec.europa.eu/environment/water/water-framework/priority_substances.htm

  34. Lithner D, Larsson A, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409:3309–3324

    CAS  Google Scholar 

  35. Ogata Y, Takada H, Mizukawa K et al (2009) International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull 58:1437–1446

    CAS  Google Scholar 

  36. Holmes LA, Turner A, Thompson RC (2012) Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 160:42–48

    CAS  Google Scholar 

  37. Fossi MC, Panti C, Guerranti C et al (2012) Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar Pollut Bull 64(11):2374–2379

    CAS  Google Scholar 

  38. Fossi MC, Coppola D, Baini M et al (2014) Large filter feeding marine organisms as indicators of microplastic in the pelagic environment: the case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus). Mar Environ Res 100:17–24

    CAS  Google Scholar 

  39. Teuten EL, Saquing JM, Knappe DR et al (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B 364:2027–2045

    CAS  Google Scholar 

  40. Tanaka K, Takada H, Yamashita R et al (2013) Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar Pollut Bull 69:219–222

    CAS  Google Scholar 

  41. Lavers JL, Bond AL, Hutton I (2014) Plastic ingestion by Flesh-footed Shearwaters (Puffinus carneipes): implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environ Pollut 187:124–129

    CAS  Google Scholar 

  42. Hardesty BD, Holdsworth D, Revill AT et al (2014) A biochemical approach for identifying plastics exposure in live wildlife. Methods Ecol Evol 6(1):92–98

    Google Scholar 

  43. Gassel M, Harwani S, Park JS et al (2013) Detection of nonylphenol and persistent organic pollutants in fish from the North Pacific Central Gyre. Mar Pollut Bull 73(1):231–242

    CAS  Google Scholar 

  44. Rochman CM, Lewison RL, Eriksen M et al (2014) Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an indicator of plastic contamination in marine habitats. Sci Total Environ 476:622–633

    Google Scholar 

  45. Engler RE (2012) The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46(22):12302–12315

    CAS  Google Scholar 

  46. Sinkonnen S, Paasivirta J (2000) Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere 40:943–949

    Google Scholar 

  47. Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149

    Google Scholar 

  48. Farrington JW, Takada H (2014) Persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and plastics: examples of the status, trend, and cycling of organic chemicals of environmental concern in the ocean. Oceanography 27(1):196–213

    Google Scholar 

  49. Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194

    Google Scholar 

  50. Mato Y, Isobe T, Takada H (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324

    CAS  Google Scholar 

  51. Teuten EL, Rowland SJ, Galloway TS et al (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41(22):7759–7764

    CAS  Google Scholar 

  52. Gouin T, Roche N, Lohmann R et al (2011) A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic. Environ Sci Technol 45(4):1466–1472

    CAS  Google Scholar 

  53. Koelmans AA (2015) Modeling the role of microplastics in bioaccumulation of organic chemicals to marine aquatic organisms. Critical review. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham, pp ##

    Google Scholar 

  54. Koelmans AA, Besseling E, Wegner A et al (2013) Plastic as a carrier of POPs to aquatic organisms: a model analysis. Environ Sci Technol 47:7812–7820

    CAS  Google Scholar 

  55. Koelmans AA, Besseling E, Foekema EM (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54

    CAS  Google Scholar 

  56. Bakir A, Rowland SJ, Thompson RC (2014) Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185:16–23

    CAS  Google Scholar 

  57. Ross PS, Birnbaum LS (2010) Integrated human and ecological risk assessment: a case study of persistent organic pollutants (POPs) in humans and wildlife. Hum Ecol Risk Assess 9:303–324

    Google Scholar 

  58. Browne MA, Dissanayake A, Galloway TS et al (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42(13):5026–5031

    CAS  Google Scholar 

  59. von Moos N, Burkhardt-Holm P, Köhler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46(20):11327–11335

    Google Scholar 

  60. Wright SL, Rowe D, Thompson RC et al (2013) Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23(23):R1031–R1033

    CAS  Google Scholar 

  61. Rochman CM, Kurobe T, Flores I et al (2014) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661

    CAS  Google Scholar 

  62. Hunter D, Salzman J, Zaelke D (2011) International environmental law and policy, 4th edn. Thomson Reuters/Foundation Press, New York

    Google Scholar 

  63. Rainbow P (2006) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33:576–582

    Google Scholar 

  64. Vallack H, Bakker DJ, Brandt I et al (1998) Controlling persistent organic pollutants—what’s next? Environ Toxicol Pharmacol 6:143–175

    CAS  Google Scholar 

  65. Zhuang P, McBride M, Xia H et al (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    CAS  Google Scholar 

  66. Vasseur P, Cossu-Leguille C (2006) Linking molecular interactions to consequent effects of persistent organic pollutants (POPs) upon populations. Chemosphere 63:1033–1042

    Google Scholar 

  67. Oehlmann J, Schulte-Oehlmann U, Kloas W et al (2009) A critical analysis of the biological impacts of plasticizers on wildlife. Philos Trans R Soc B 364:2047–2062

    CAS  Google Scholar 

  68. Cartwright SR, Coleman RA, Browne MA (2006) Ecologically relevant effects of pulse application of copper on the limpet. Patella vulgata. Mar Ecol Prog Ser 326:187–194

    CAS  Google Scholar 

  69. Brown RJ, Galloway TS, Lowe D et al (2004) Differential sensitivity of three marine invertebrates to copper assessed using multiple biomarkers. Aquat Toxicol 66:267–278

    CAS  Google Scholar 

  70. Roberts DA, Johnston EL, Poore AGB (2008) Contamination of marine biogenic habitats and effects upon associated epifauna. Mar Pollut Bull 56:1057–1065

    CAS  Google Scholar 

  71. Pease CJ, Johnston EL, Poore AGB (2010) Genetic variability in tolerance to copper contamination in a herbivorous marine invertebrate. Aquat Toxicol 99:10–16

    CAS  Google Scholar 

  72. Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157:1745–1752

    CAS  Google Scholar 

  73. Seltenrich N (2015) New link in the food chain? Marine plastic pollution and seafood safety. Environ Health Perspect 123(2):A34

    Google Scholar 

  74. Li J, Yang D, Li L, Jabeen K, Shi H (2015) Microplastics in commercial bivalves from China. Environ Pollut 207:190–195

    CAS  Google Scholar 

  75. Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, Teh F, Werorilangi S, Teh SJ (2015) Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep 5:14340

    CAS  Google Scholar 

  76. Law KL, Morét-Ferguson S, Maximenko NA et al (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329(5996):1185–1188

    CAS  Google Scholar 

  77. Goldstein MC, Rosenberg M, Cheng L (2012) Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol Lett 8(5):817–820

    Google Scholar 

  78. Jambeck JR, Geyer R, Wilcox C et al (2015) Plastic waste inputs from land into the ocean. Science 347(6223):768–771

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsea M. Rochman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rochman, C.M. (2016). The Role of Plastic Debris as Another Source of Hazardous Chemicals in Lower-Trophic Level Organisms. In: Takada, H., Karapanagioti, H.K. (eds) Hazardous Chemicals Associated with Plastics in the Marine Environment. The Handbook of Environmental Chemistry, vol 78. Springer, Cham. https://doi.org/10.1007/698_2016_17

Download citation

Publish with us

Policies and ethics