Skip to main content

Transamniotic Stem Cell Therapy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1237))

Abstract

Transamniotic stem cell therapy (TRASCET) is a novel prenatal therapeutic alternative for the treatment of congenital anomalies. It is based upon the principle of augmenting the pre-existing biological role of select populations of fetal stem cells for targeted therapeutic benefit. For example, amniotic fluid-derived mesenchymal stem cells (afMSCs) play an integral role in fetal tissue repair, validating the use of afMSCs in regenerative strategies. The simple intra-amniotic delivery of these cells in expanded numbers via TRASCET has been shown to promote the repair of and/or significantly ameliorate the effects associated with major congenital anomalies such as neural tube and abdominal wall defects. For example, TRASCET can induce partial or complete coverage of experimental spina bifida through the formation of a host-derived rudimentary neoskin, thus protecting the spinal cord from further damage secondary to amniotic fluid exposure. Furthermore, TRASCET can significantly reduce the bowel inflammation associated with gastroschisis, a common major abdominal wall defect. After intra-amniotic injection, donor stem cells home to the placenta and the fetal bone marrow in the spina bifida model, suggesting a role for hematogenous cell routing rather than direct defect seeding. Therefore, the expansion of TRASCET to congenital diseases without amniotic fluid exposure, such as congenital diaphragmatic hernia, as well as to maternal diseases, is currently under investigation in this emerging and evolving field of fetal stem cell therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

afMSC:

amniotic fluid-derived mesenchymal stem cell

afNSC:

amniotic fluid-derived neural stem cell

CD45:

cluster of differentiation 45

CDH:

congenital diaphragmatic hernia

CVS:

chorionic villus sampling

Ece:

endothelin converting enzyme

ECMO:

extracorporeal membrane oxygenation

Egf:

epidermal growth factor

Enos:

endothelial nitric oxide synthase

Er-a:

endothelin receptor-a

Er-b:

endothelin receptor-b

FDA:

Food and Drug Administration

Fgf-2:

fibroblast growth factor-2

Fgf-10:

fibroblast growth factor-10

H&E:

hematoxin and eosin

HSC:

hematopoietic stem cell

MOMS:

management of myelomeningocele study

MRI:

magnetic resonance imaging

MSC:

mesenchymal stem cell

NSC:

neural stem cell

NTD:

Neural tube defect

PCR:

polymerase chain reaction

pMSC:

placental-derived mesenchymal stem cell

pPet-1:

pre-Proendothelin-1

qRT-PCR:

quantitative real time reverse transcription polymerase chain reaction

SPC:

surfactant protein-C

Tgfb-1:

transforming growth factor-b-1

TRASCET:

transamniotic stem cell therapy

Vegf-a:

vascular endothelial growth factor-a

References

  • Adzick NS, Thom EA, Spong CY, Brock JW 3rd, Burrows PK, Johnson MP et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364(11):993–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aula P, von Koskull H, Teramo K, Karjalainen O, Virtanen I, Lehto VP et al (1980) Glial origin of rapidly adhering amniotic fluid cells. Br Med J 281(6253):1456–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bittencourt DG, Barreto MW, Franca WM, Goncalves A, Pereira LA, Sbragia L (2006) Impact of corticosteroid on intestinal injury in a gastroschisis rat model: morphometric analysis. J Pediatr Surg 41(3):547–553

    Article  PubMed  Google Scholar 

  • Boelig MM, Flake AW (2016) In utero stem cell transplantation. In: Fauza DO, Bani M (eds) Fetal stem cells in regenerative medicine: principles and translational strategies. Springer/Humana Press, New York, pp 317–337

    Chapter  Google Scholar 

  • Botto LD, Moore CA, Khoury MJ, Erickson JD (1999) Neural-tube defects. N Engl J Med 341(20):1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Boulet SL, Yang Q, Mai C, Kirby RS, Collins JS, Robbins JM et al (2008) Trends in the postfortification prevalence of spina bifida and anencephaly in the United States. Birth Defects Res A Clin Mol Teratol 82(7):527–532

    Article  CAS  PubMed  Google Scholar 

  • Chalphin AV, Tracy SA, Kycia I, Chan C, Finkelstein A, Zurakowski D et al (eds) (2018) Donor mesenchymal stem cell kinetics in transamniotic stem cell therapy for experimental gastroschisis American Academy of Pediatrics annual meeting, Orlando, FL

    Google Scholar 

  • Chalphin AV, Tracy SA, Lazow SP, Kycia I, Zurakowski D, Fauza DO (eds) (2019a) Comparison between placental and amniotic mesenchymal stem cells in transamniotic stem cell therapy for experimental gastroschisis. American Pediatric Surgical Assocation annual meeting, Boston, MA

    Google Scholar 

  • Chalphin AV, Tracy SA, Lazow SP, Kycia I, 789 Zurakowski D, Fauza DO (eds) (2019b) Congenital diaphragmatic hernia as a potential target for transamniotic stem cell therapy. British Association of Pediatric Surgeons annual meeting, Nottingham, UK

    Google Scholar 

  • Chang YJ, Su HL, Hsu LF, Huang PJ, Wang TH, Cheng FC et al (2015) Isolation of human neural stem cells from the amniotic fluid with diagnosed neural tube defects. Stem Cells Dev 24(15):1740–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu PP (2014) New insights into congenital diaphragmatic hernia – a surgeon’s introduction to CDH animal models. Front Pediatr 2:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen JL, Wright DE, Wagers AJ, Weissman IL (2004) Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2(3):E75

    Article  PubMed  PubMed Central  Google Scholar 

  • Cragan JD, Gilboa SM (2009) Including prenatal diagnoses in birth defects monitoring: experience of the metropolitan Atlanta congenital defects program. Birth Defects Res A Clin Mol Teratol 85(1):20–29

    Article  CAS  PubMed  Google Scholar 

  • Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327(26):1832–1835

    Article  CAS  PubMed  Google Scholar 

  • Danzer E, Johnson MP (2014) Fetal surgery for neural tube defects. Semin Fetal Neonatal Med 19(1):2–8

    Article  PubMed  Google Scholar 

  • Danzer E, Schwarz U, Wehrli S, Radu A, Adzick NS, Flake AW (2005) Retinoic acid induced myelomeningocele in fetal rats: characterization by histopathological analysis and magnetic resonance imaging. Exp Neurol 194(2):467–475

    Article  CAS  PubMed  Google Scholar 

  • David-Raoudi M, Tranchepain F, Deschrevel B, Vincent JC, Bogdanowicz P, Boumediene K et al (2008) Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen 16(2):274–287

    Article  PubMed  Google Scholar 

  • Derderian SC, Jeanty C, MacKenzie TC (2016) Fet-maternal cell trafficking and labor. In: Fauza DO, Bani M (eds) Fetal stem cells in regenerative medicine: principles and translational strategies. Springer/Humana Press, New York, pp 33–45

    Chapter  Google Scholar 

  • Dionigi B, Ahmed A, Brazzo J 3rd, Connors JP, Zurakowski D, Fauza DO (2015a) Partial or complete coverage of experimental spina bifida by simple intra-amniotic injection of concentrated amniotic mesenchymal stem cells. J Pediatr Surg 50(1):69–73

    Article  PubMed  Google Scholar 

  • Dionigi B, Brazzo JA 3rd, Ahmed A, Feng C, Wu Y, Zurakowski D et al (2015b) Trans-amniotic stem cell therapy (TRASCET) minimizes Chiari-II malformation in experimental spina bifida. J Pediatr Surg 50(6):1037–1041

    Article  PubMed  Google Scholar 

  • Downard CD, Jaksic T, Garza JJ, Dzakovic A, Nemes L, Jennings RW et al (2003) Analysis of an improved survival rate for congenital diaphragmatic hernia. J Pediatr Surg 38(5):729–732

    Article  PubMed  Google Scholar 

  • Doyle NM, Lally KP (2004) The CDH Study Group and advances in the clinical care of the patient with congenital diaphragmatic hernia. Semin Perinatol 28(3):174–184

    Article  PubMed  Google Scholar 

  • Egbe A, Lee S, Ho D, Uppu S, Srivastava S (2015) Racial/ethnic differences in the birth prevalence of congenital anomalies in the United States. J Perinat Med 43(1):111–117

    Article  PubMed  Google Scholar 

  • Fauza DO (2004) Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol 18(6):877–891

    Article  PubMed  Google Scholar 

  • Fauza DO (2018) Transamniotic stem cell therapy: a novel strategy for the prenatal management of congenital anomalies. Pediatr Res 83(1–2):241–248

    Article  CAS  PubMed  Google Scholar 

  • Fauza DO, Bani M (2016) Fetal stem cells in regenerative medicine: principles and translational strategies. Springer Science, New York, 453 p

    Book  Google Scholar 

  • Feng C, Graham CD, Connors JP, Brazzo J 3rd, Zurakowski D, Fauza DO (2016a) A comparison between placental and amniotic mesenchymal stem cells for transamniotic stem cell therapy (TRASCET) in experimental spina bifida. J Pediatr Surg 51(6):1010–1013

    Article  PubMed  Google Scholar 

  • Feng C, Graham CD, Connors JP, Brazzo J 3rd, Pan AH, Hamilton JR et al (2016b) Transamniotic stem cell therapy (TRASCET) mitigates bowel damage in a model of gastroschisis. J Pediatr Surg 51(1):56–61

    Article  PubMed  Google Scholar 

  • Feng C, Graham CD, Shieh HF, Brazzo JA 3rd, Connors JP, Rohrer L et al (2017) Transamniotic stem cell therapy (TRASCET) in a leporine model of gastroschisis. J Pediatr Surg 52(1):30–34

    Article  PubMed  Google Scholar 

  • Fu X, Li H (2009) Mesenchymal stem cells and skin wound repair and regeneration: possibilities and questions. Cell Tissue Res 335(2):317–321

    Article  PubMed  Google Scholar 

  • Fuchs JR, Kaviani A, Oh JT, LaVan D, Udagawa T, Jennings RW et al (2004) Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg 39(6):834–838. discussion -8

    Article  PubMed  Google Scholar 

  • Fukutake M, Ochiai D, Masuda H, Abe Y, Sato Y, Otani T et al (2019) Human amniotic fluid stem cells have a unique potential to accelerate cutaneous wound healing with reduced fibrotic scarring like a fetus. Hum Cell 32(1):51–63

    Article  CAS  PubMed  Google Scholar 

  • Gien J, Kinsella JP (2016) Management of pulmonary hypertension in infants with congenital diaphragmatic hernia. J Perinatol 36(Suppl 2):S28–S31

    Article  PubMed  Google Scholar 

  • Goncalves FL, Bueno MP, Schmidt AF, Figueira RL, Sbragia L (2015) Treatment of bowel in experimental gastroschisis with a nitric oxide donor. Am J Obstet Gynecol 212(3):383 e1-7

    Article  PubMed  CAS  Google Scholar 

  • Gosden CM, Brock DJ (1977) Morphology of rapidly adhering amniotic-fluid cells as an aid to the diagnosis of neural-tube defects. Lancet (London, England) 1(8018):919–922

    Article  CAS  Google Scholar 

  • Graham CD, Shieh HF, Brazzo JA 3rd, Zurakowski D, Fauza DO (2017) Donor mesenchymal stem cells home to maternal wounds after transamniotic stem cell therapy (TRASCET) in a rodent model. J Pediatr Surg 52(6):1006–1009

    Article  PubMed  Google Scholar 

  • Greenebaum E, Mansukhani MM, Heller DS, Timor-Tristsch I (1997) Open neural tube defects: immunocytochemical demonstration of neuroepithelial cells in amniotic fluid. Diagn Cytopathol 16(2):143–144

    Article  CAS  PubMed  Google Scholar 

  • Grivell RM, Andersen C, Dodd JM (2015) Prenatal interventions for congenital diaphragmatic hernia for improving outcomes. Cochrane Database Syst Rev 11:Cd008925

    Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  PubMed  Google Scholar 

  • Hakguder G, Ates O, Olguner M, Api A, Ozdogan O, Degirmenci B et al (2002) Induction of fetal diuresis with intraamniotic furosemide increases the clearance of intraamniotic substances: an alternative therapy aimed at reducing intraamniotic meconium concentration. J Pediatr Surg 37(9):1337–1342

    Article  PubMed  Google Scholar 

  • Hollinger LE, Harting MT, Lally KP (2017) Long-term follow-up of congenital diaphragmatic hernia. Semin Pediatr Surg 26(3):178–184

    Article  PubMed  Google Scholar 

  • Hong HS, Lee J, Lee E, Kwon YS, Ahn W, Jiang MH et al (2009) A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med 15(4):425–435

    Article  CAS  PubMed  Google Scholar 

  • Hutchins GM, Meuli M, Meuli-Simmen C, Jordan MA, Heffez DS, Blakemore KJ (1996) Acquired spinal cord injury in human fetuses with myelomeningocele. Pediatr Pathol Lab Med 16(5):701–712

    Article  CAS  PubMed  Google Scholar 

  • Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO (2001) The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 36(11):1662–1665

    Article  CAS  PubMed  Google Scholar 

  • Klein JD, Fauza DO (2011) Amniotic and placental mesenchymal stem cell isolation and culture. Methods Mol Biol 698:75–88

    Article  CAS  PubMed  Google Scholar 

  • Klein JD, Turner CG, Steigman SA, Ahmed A, Zurakowski D, Eriksson E et al (2011) Amniotic mesenchymal stem cells enhance normal fetal wound healing. Stem Cells Dev 20(6):969–976

    Article  CAS  PubMed  Google Scholar 

  • Korenromp MJ, van Gool JD, Bruinese HW, Kriek R (1986) Early fetal leg movements in myelomeningocele. Lancet (London, England) 1(8486):917–918

    Article  CAS  Google Scholar 

  • Kunisaki SM, Fuchs JR, Steigman SA, Fauza DO (2007a) A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells. Tissue Eng 13(11):2633–2644

    Article  CAS  PubMed  Google Scholar 

  • Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, Fauza DO (2007b) Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg 42(6):974–979. discussion 9-80

    Article  PubMed  Google Scholar 

  • Kwong FN, Harris MB (2008) Recent developments in the biology of fracture repair. J Am Acad Orthop Surg 16(11):619–625

    Article  PubMed  Google Scholar 

  • Langer JC, Longaker MT, Crombleholme TM, Bond SJ, Finkbeiner WE, Rudolph CA et al (1989) Etiology of intestinal damage in gastroschisis. I: effects of amniotic fluid exposure and bowel constriction in a fetal lamb model. J Pediatr Surg 24(10):992–997

    Article  CAS  PubMed  Google Scholar 

  • Langham MR Jr, Kays DW, Ledbetter DJ, Frentzen B, Sanford LL, Richards DS (1996) Congenital diaphragmatic hernia. Epidemiol Outcome Clin Perinatol 23(4):671–688

    Article  Google Scholar 

  • Lee DH, Park S, Kim EY, Kim SK, Chung YN, Cho BK et al (2004) Enhancement of re-closure capacity by the intra-amniotic injection of human embryonic stem cells in surgically induced spinal open neural tube defects in chick embryos. Neurosci Lett 364(2):98–100

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Kim EY, Park S, Phi JH, Kim SK, Cho BK et al (2006) Reclosure of surgically induced spinal open neural tube defects by the intraamniotic injection of human embryonic stem cells in chick embryos 24 hours after lesion induction. J Neurosurg 105(2 Suppl):127–133

    PubMed  Google Scholar 

  • Lee DH, Phi JH, Kim SK, Cho BK, Kim SU, Wang KC (2010) Enhanced reclosure of surgically induced spinal open neural tube defects in chick embryos by injecting human bone marrow stem cells into the amniotic cavity. Neurosurgery 67(1):129–135. discussion 35

    Article  PubMed  Google Scholar 

  • Logghe HL, Mason GC, Thornton JG, Stringer MD (2005) A randomized controlled trial of elective preterm delivery of fetuses with gastroschisis. J Pediatr Surg 40(11):1726–1731

    Article  PubMed  Google Scholar 

  • Luthy DA, Wardinsky T, Shurtleff DB, Hollenbach KA, Hickok DE, Nyberg DA et al (1991) Cesarean section before the onset of labor and subsequent motor function in infants with meningomyelocele diagnosed antenatally. N Engl J Med 324(10):662–666

    Article  CAS  PubMed  Google Scholar 

  • Luton D, de Lagausie P, Guibourdenche J, Oury J, Sibony O, Vuillard E et al (1999) Effect of amnioinfusion on the outcome of prenatally diagnosed gastroschisis. Fetal Diagn Ther 14(3):152–155

    Article  CAS  PubMed  Google Scholar 

  • Main DM, Mennuti MT (1986) Neural tube defects: issues in prenatal diagnosis and counselling. Obstet Gynecol 67(1):1–16

    CAS  PubMed  Google Scholar 

  • Malowitz JR, Hornik CP, Laughon MM, Testoni D, Cotten CM, Clark RH et al (2015) Management practice and mortality for infants with congenital diaphragmatic hernia. Am J Perinatol 32(9):887–894

    Article  PubMed  PubMed Central  Google Scholar 

  • McGivern MR, Best KE, Rankin J, Wellesley D, Greenlees R, Addor MC et al (2015) Epidemiology of congenital diaphragmatic hernia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed 100(2):F137–F144

    Article  PubMed  Google Scholar 

  • Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86(6):897–906

    Article  CAS  PubMed  Google Scholar 

  • Mendes SC, Robin C, Dzierzak E (2005) Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development 132(5):1127–1136

    Article  CAS  PubMed  Google Scholar 

  • Mendonca ED, Gutierrez CM, Peres LC (2005) Brain tissue fragments in the amniotic fluid of rats with neural tube defect. Pathology 37(2):152–156

    Article  CAS  PubMed  Google Scholar 

  • Meuli M, Meuli-Simmen C, Yingling CD, Hutchins GM, Hoffman KM, Harrison MR et al (1995a) Creation of myelomeningocele in utero: a model of functional damage from spinal cord exposure in fetal sheep. J Pediatr Surg 30(7):1028–1032. discussion 32-3

    Article  CAS  PubMed  Google Scholar 

  • Meuli M, Meuli-Simmen C, Hutchins GM, Yingling CD, Hoffman KM, Harrison MR et al (1995b) In utero surgery rescues neurological function at birth in sheep with spina bifida. Nat Med 1(4):342–347

    Article  CAS  PubMed  Google Scholar 

  • Meuli M, Meuli-Simmen C, Yingling CD, Hutchins GM, Timmel GB, Harrison MR et al (1996) In utero repair of experimental myelomeningocele saves neurological function at birth. J Pediatr Surg 31(3):397–402

    Article  CAS  PubMed  Google Scholar 

  • Meuli M, Meuli-Simmen C, Hutchins GM, Seller MJ, Harrison MR, Adzick NS (1997) The spinal cord lesion in human fetuses with myelomeningocele: implications for fetal surgery. J Pediatr Surg 32(3):448–452

    Article  CAS  PubMed  Google Scholar 

  • Mikkola HK, Gekas C, Orkin SH, Dieterlen-Lievre F (2005) Placenta as a site for hematopoietic stem cell development. Exp Hematol 33(9):1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MA, Aly H (2012) Birth region, race and sex may affect the prevalence of congenital diaphragmatic hernia, abdominal wall and neural tube defects among US newborns. J Perinatol 32(11):861–868

    Article  CAS  PubMed  Google Scholar 

  • MRC Vitamin Study Research Group (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338(8760):131–137

    Article  Google Scholar 

  • Osaka K, Tanimura T, Hirayama A, Matsumoto S (1978) Myelomeningocele before birth. J Neurosurg 49(5):711–724

    Article  CAS  PubMed  Google Scholar 

  • Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE et al (2010) Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A Clin Mol Teratol 88(12):1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Patten BM (1953) Embryological stages in the establishing of myeloschisis with spina bifida. Am J Anat 93(3):365–395

    Article  CAS  PubMed  Google Scholar 

  • Pennington EC, Gray FL, Ahmed A, Zurakowski D, Fauza DO (2013) Targeted quantitative amniotic cell profiling: a potential diagnostic tool in the prenatal management of neural tube defects. J Pediatr Surg 48(6):1205–1210

    Article  PubMed  Google Scholar 

  • Pennington EC, Rialon KL, Dionigi B, Ahmed A, Zurakowski D, Fauza DO (2015) The impact of gestational age on targeted amniotic cell profiling in experimental neural tube defects. Fetal Diagn Ther 37(1):65–69

    Article  PubMed  Google Scholar 

  • Pratheesh MD, Dubey PK, Gade NE, Nath A, Sivanarayanan TB, Madhu DN et al (2017) Comparative study on characterization and wound healing potential of goat (Capra hircus) mesenchymal stem cells derived from fetal origin amniotic fluid and adult bone marrow. Res Vet Sci 112:81–88

    Article  CAS  PubMed  Google Scholar 

  • Seravalli V, Jelin EB, Miller JL, Tekes A, Vricella L, Baschat AA (2017) Fetoscopic tracheal occlusion for treatment of non-isolated congenital diaphragmatic hernia. Prenat Diagn 37(10):1046–1049

    Article  PubMed  Google Scholar 

  • Shieh HF, Ahmed A, Tracy SA, Zurakowski D, Fauza DO (2017) Fetal bone marrow homing of donor mesenchymal stem cells after Transamniotic stem cell therapy (TRASCET). J Pediatr Surg 53(1):174–177

    Article  Google Scholar 

  • Shieh HF, Ahmed A, Rohrer L, Zurakowski D, Fauza DO (2018) Donor mesenchymal stem cell linetics after transamniotic stem cell therapy (TRASCET) for experimental spina bifida. J Pediatr Surg 53(6):1134–1136

    Article  PubMed  Google Scholar 

  • Shieh HF, Tracy SA, Hong CR, Chalphin AV, Ahmed A, Rohrer L et al (2019) Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida. J Pediatr Surg 54(2):293–296

    Article  PubMed  Google Scholar 

  • Shu J, He X, Li H, Liu X, Qiu X, Zhou T et al (2018) The beneficial effect of human amnion mesenchymal cells in inhibition of inflammation and induction of neuronal repair in EAE mice. J Immunol Res 2018:5083797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shurtleff DB, Luthy DA, Nyberg DA, Benedetti TJ, Mack LA (1994) Meningomyelocele: management in utero and post natum. CIBA Found Symp 181:270–280. discussion 80-6

    CAS  PubMed  Google Scholar 

  • Sival DA, Begeer JH, Staal-Schreinemachers AL, Vos-Niel JM, Beekhuis JR, Prechtl HF (1997) Perinatal motor behaviour and neurological outcome in spina bifida aperta. Early Hum Dev 50(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Steigman SA, Armant M, Bayer-Zwirello L, Kao GS, Silberstein L, Ritz J et al (2008) Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. J Pediatr Surg 43(6):1164–1169

    Article  PubMed  PubMed Central  Google Scholar 

  • Tammi R, Pasonen-Seppanen S, Kolehmainen E, Tammi M (2005) Hyaluronan synthase induction and hyaluronan accumulation in mouse epidermis following skin injury. J Invest Dermatol 124(5):898–905

    Article  CAS  PubMed  Google Scholar 

  • Till H, Muensterer O, Mueller M, Klis V, Klotz S, Metzger R et al (2003) Intrauterine repair of gastroschisis in fetal rabbits. Fetal Diagn Ther 18(5):297–300

    Article  CAS  PubMed  Google Scholar 

  • Tracy SA, Chalphin AV, Kycia I, Chan C, Finkelstein A, Zurakowski D et al (eds) (2018) Insights into hematogenous donor cell routing after transamniotic stem cell therapy American Academy of Pediatrics annual meeting, Orlando, FL

    Google Scholar 

  • Tracy SA, Ahmed A, Tigges JC, Ericsson M, Pal AK, Zurakowski D et al (2019a) A comparison of clinically relevant sources of mesenchymal stem cell-derived exosomes: bone marrow and amniotic fluid. J Pediatr Surg 54(1):86–90

    Article  PubMed  Google Scholar 

  • Tracy SA, Chalphin AV, Lazow SP, Kycia I, Chan C, Finkelstein A et al (eds) (2019b) Repeat dosing in the retinoic acid model of transamniotic stem cell therapy for spina bifida. American Pediatric Surgical Assocation Annual Meeting, Boston, MA

    Google Scholar 

  • Turner CG, Klein JD, Wang J, Thakor D, Benedict D, Ahmed A et al (2013a) The amniotic fluid as a source of neural stem cells in the setting of experimental neural tube defects. Stem Cells Dev 22(4):548–553

    Article  CAS  PubMed  Google Scholar 

  • Turner CG, Pennington EC, Gray FL, Ahmed A, Teng YD, Fauza DO (2013b) Intra-amniotic delivery of amniotic-derived neural stem cells in a syngeneic model of spina bifida. Fetal Diagn Ther 34(1):38–43

    Article  PubMed  Google Scholar 

  • Vrecenak JD, Flake AW (2013) In utero hematopoietic cell transplantation--recent progress and the potential for clinical application. Cytotherapy 15(5):525–535

    Article  PubMed  Google Scholar 

  • Wu Y, Wang J, Scott PG, Tredget EE (2007) Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen 15(Suppl 1):S18–S26

    Article  PubMed  Google Scholar 

  • Yoon BS, Moon JH, Jun EK, Kim J, Maeng I, Kim JS et al (2010) Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. Stem Cells Dev 19(6):887–902

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Gonzalez-Reyes S, Diez-Pardo JA, Tovar JA (2003) Effects of prenatal dexamethasone on the intestine of rats with gastroschisis. J Pediatr Surg 38(7):1032–1035

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario O. Fauza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazow, S.P., Fauza, D.O. (2019). Transamniotic Stem Cell Therapy. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 7. Advances in Experimental Medicine and Biology(), vol 1237. Springer, Cham. https://doi.org/10.1007/5584_2019_416

Download citation

Publish with us

Policies and ethics