Skip to main content

A Comprehensive Review of Stem Cells for Cartilage Regeneration in Osteoarthritis

  • Chapter
  • First Online:
Book cover Cell Biology and Translational Medicine, Volume 2

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1089))

Abstract

Osteoarthritis (OA) is an age related joint disease associated with degeneration and loss of articular cartilage. Consequently, OA patients suffer from chronic joint pain and disability. Weight bearing joints and joints that undergo repetitive stress and excessive ‘wear and tear’ are particularly prone to developing OA. Cartilage has a poor regenerative capacity and current pharmacological agents only provide symptomatic pain relief. OA patients that respond poorly to conventional therapies are ultimately treated with surgical procedures to promote cartilage repair by implantation of artificial joint structures (arthroplasty) or total joint replacement (TJR). In the last two decades, stem cells derived from various tissues with varying differentiation and tissue regeneration potential have been used for the treatment of OA either alone or in combination with natural or synthetic scaffolds to aid cartilage repair. Although stem cells can be differentiated into chondrocytes in vitro or aid cartilage regeneration in vivo, their potential for OA management remains limited as cartilage regenerated by stem cells fails to fully recapitulate the structural and biomechanical properties of the native tissue. Efficient tissue regeneration remains elusive despite the simple design of cartilage, which unlike most other tissues is avascular and aneural, consisting of a single cell type. In this article, we have comprehensively reviewed the types of stem cells that have been proposed or tested for the management of OA, their potential efficacy as well as their limitations. We also touch on the role of biomaterials in cartilage tissue engineering and examine the prospects for their use in cell-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

ACI:

Autologous chondrocyte implantation

ACT:

Autologous chondrocyte transplantation

BM:

Bone marrow

BMAC:

Bone marrow aspirate concentrate

BMP:

Bone morphogenetic protein

CD:

Cluster of Differentiation

COX-2:

Cyclooxygenase-2

CP:

Cartilage pellet

EBs:

Embryoid bodies

ESCs:

Embryonic stem cells

FDA:

Food and drug administration

HA:

Hyaluronic acid

HSCs:

Haematopoietic stem cells

iPSCs:

Induced pluripotent stem cells

ISCT:

International Society for Cellular Therapy

MMP-13:

Matrix metallo-proteinase-13

MSCs:

Mesenchymal stem cells

NSAID:

Nonsteroidal anti-inflammatory drug

OA:

Osteoarthritis

PRP:

Platelet rich plasma

SF:

Synovial Fluid

SNRIs:

Serotonin-norepinephrine reuptake inhibitors

TGF-β:

Transforming growth factor beta

TKA:

Total knee arthroplasty

References

  • Abbas M (2017) Combination of bone marrow mesenchymal stem cells and cartilage fragments contribute to enhanced repair of osteochondral defects. Bioinformation 13:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Al Faqeh H, Hamdan BMYN, Chen HC, Aminuddin BS, Ruszymah BHI (2012) The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol 47:458–464

    Article  PubMed  Google Scholar 

  • Al-Arfaj A, Al-Boukai A (2002) Prevalence of radiographic knee osteoarthritis in Saudi Arabia. Clin Rheumatol 21:142–145

    Article  CAS  PubMed  Google Scholar 

  • Aldahmash A et al (2013) Teratoma formation in immunocompetent mice after syngeneic and allogeneic implantation of germline capable mouse embryonic stem cells. Asian Pac J Cancer Prev 14:5705–5711

    Article  PubMed  Google Scholar 

  • Apelgren P, Amoroso M, Lindahl A, Brantsing C, Rotter N, Gatenholm P, Kolby L (2017) Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS One 12:e0189428. https://doi.org/10.1371/journal.pone.0189428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armiento AR, Stoddart MJ, Alini M, Eglin D (2018) Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater 65:1–20. https://doi.org/10.1016/j.actbio.2017.11.021

    Article  CAS  PubMed  Google Scholar 

  • Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8:014103

    Article  PubMed  Google Scholar 

  • Bertassoni LE et al (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211. https://doi.org/10.1039/c4lc00030g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco P, Robey PG (2015) Skeletal stem cells. Development 142:1023–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongso A (2006) Blastocyst culture for deriving human embryonic stem cells. In: Human embryonic stem cell protocols. Springer, New York, pp 13–22

    Chapter  Google Scholar 

  • Brittberg M (2008) Autologous chondrocyte implantation—technique and long-term follow-up. Injury 39:40–49

    Article  Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  CAS  PubMed  Google Scholar 

  • Budd E, Waddell S, De Andres MC, Oreffo RO (2017) The potential of microRNAs for stem cell-based therapy for degenerative skeletal diseases. Curr Mol Biol Rep 3:263–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Buschmann MD, Hoemann CD, Hurtig MB, Shive MS (2007) Cartilage repair with chitosan-glycerol phosphate-stabilized blood clots. In: Cartilage repair strategies. Humana Press, Totowa, pp 85–104

    Chapter  Google Scholar 

  • Calabrese G et al (2017) In vivo evaluation of biocompatibility and Chondrogenic potential of a cell-free collagen-based scaffold. Front Physiol 8:984. https://doi.org/10.3389/fphys.2017.00984

    Article  PubMed  PubMed Central  Google Scholar 

  • Chappell AS, Desaiah D, Liu-Seifert H, Zhang S, Skljarevski V, Belenkov Y, Brown JP (2011) A double-blind, randomized, placebo-controlled study of the efficacy and safety of duloxetine for the treatment of chronic pain due to osteoarthritis of the knee. Pain Pract 11:33–41

    Article  PubMed  Google Scholar 

  • Christensen R, Astrup A, Bliddal H (2005) Weight loss: the treatment of choice for knee osteoarthritis? A randomized trial. Osteoarthr Cartil 13:20–27

    Article  CAS  Google Scholar 

  • Daly AC, Critchley SE, Rencsok EM, Kelly DJ (2016) A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 8:045002. https://doi.org/10.1088/1758-5090/8/4/045002

    Article  CAS  PubMed  Google Scholar 

  • Das S et al (2015) Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246. https://doi.org/10.1016/j.actbio.2014.09.023

    Article  CAS  PubMed  Google Scholar 

  • De Coppi P et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    Article  PubMed  Google Scholar 

  • DeLemos BP, Xiang J, Benson C, Gana TJ, Pascual MLG, Rosanna R, Fleming B (2011) Tramadol hydrochloride extended-release once-daily in the treatment of osteoarthritis of the knee and/or hip: a double-blind, randomized, dose-ranging trial. Am J Ther 18:216–226

    Article  PubMed  Google Scholar 

  • Diekman BO, Rowland CR, Lennon DP, Caplan AI, Guilak F (2009) Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng A 16:523–533

    Article  Google Scholar 

  • Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Duarte Campos DF, Drescher W, Rath B, Tingart M, Fischer H (2012) Supporting biomaterials for articular cartilage repair. Cartilage 3:205–221. https://doi.org/10.1177/1947603512444722

    Article  PubMed  PubMed Central  Google Scholar 

  • Duchi S et al (2017) Handheld co-axial bioprinting: application to in situ surgical cartilage repair. Sci Rep 7:5837. https://doi.org/10.1038/s41598-017-05699-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst E, Posadzki P (2011) Complementary and alternative medicine for rheumatoid arthritis and osteoarthritis: an overview of systematic reviews. Curr Pain Headache Rep 15:431–437

    Article  PubMed  Google Scholar 

  • Filardo G et al (2012) Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord 13:229. https://doi.org/10.1186/1471-2474-13-229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong C-Y, Subramanian A, Gauthaman K, Venugopal J, Biswas A, Ramakrishna S, Bongso A (2012) Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev Rep 8:195–209

    Article  CAS  PubMed  Google Scholar 

  • Foyt DA, Norman MDA, Yu TTL, Gentleman E (2018) Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine. Adv Healthc Mater. https://doi.org/10.1002/adhm.201700939

  • Gooding C, Bartlett W, Bentley G, Skinner J, Carrington R, Flanagan A (2006) A prospective, ranomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13:203–210

    Article  CAS  PubMed  Google Scholar 

  • Grogan SP, Miyaki S, Asahara H, D D’Lima D, Lotz MK (2009) Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 11:R85

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM (2007) Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 25:646–654

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Paul A, Memic A, Khademhosseini A (2015) A multilayered microfluidic blood vessel-like structure. Biomed Microdevices 17:88. https://doi.org/10.1007/s10544-015-9993-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W-N, Tso TK (2018) Etoricoxib improves osteoarthritis pain relief, joint function, and quality of life in the extreme elderly. Bosn J Basic Med Sci 18:87–94.

    Google Scholar 

  • Ismail AI, Al-Abdulwahab AH, Al-Mulhim AS (2006) Osteoarthritis of knees and obesity in Eastern Saudi Arabia. Saudi Med J 27:1742–1744

    PubMed  Google Scholar 

  • Jang J, Yi H-G, Cho D-W (2016) 3D printed tissue models: present and future. ACS Biomate Sci Eng 2(10):1722–1731

    Article  CAS  Google Scholar 

  • Jiang YZ, Zhang SF, Qi YY, Wang LL, Ouyang HW (2011) Cell transplantation for articular cartilage defects: principles of past, present, and future practice. Cell Transplant 20:593–607

    Article  PubMed  Google Scholar 

  • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312–319. https://doi.org/10.1038/nbt.3413

    Article  CAS  PubMed  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Lee PT, Li WJ (2017) Chondrogenesis of embryonic stem cell-derived mesenchymal stem cells induced by TGFβ1 and BMP7 through increased TGFβ receptor expression and endogenous TGFβ1 production. J Cell Biochem 118:172–181

    Article  CAS  PubMed  Google Scholar 

  • Lee J-C et al (2012) Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng A 18:2173–2186

    Article  CAS  Google Scholar 

  • Lee M et al (2017) A randomized, multicenter, phase III trial to evaluate the efficacy and safety of polmacoxib compared with celecoxib and placebo for patients with osteoarthritis clinics in orthopedic surgery 9:439–457

    Google Scholar 

  • Lotz M, Loeser RF (2012) Effects of aging on articular cartilage homeostasis. Bone 51:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428

    Article  CAS  PubMed  Google Scholar 

  • Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11:21–34. https://doi.org/10.1038/nrrheum.2014.157

    Article  CAS  PubMed  Google Scholar 

  • Manunta AF et al (2016) The use of embryonic cells in the treatment of osteochondral defects of the knee: an ovine in vivo study. Joints 4:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with Nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496. https://doi.org/10.1021/acs.biomac.5b00188

    Article  CAS  PubMed  Google Scholar 

  • Mathis DT, Kaelin R, Rasch H, Arnold MP, Hirschmann MT (2017) Good clinical results but moderate osseointegration and defect filling of a cell-free multi-layered nano-composite scaffold for treatment of osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 26(4):1273–1280. https://doi.org/10.1007/s00167-017-4638-z

    Article  PubMed  Google Scholar 

  • Mehrali M, Thakur A, Pennisi CP, Talebian S, Arpanaei A, Nikkhah M, Dolatshahi-Pirouz A (2016) Nanoreinforced hydrogels for tissue engineering: biomaterials that are compatible with load-bearing and electroactive tissues. Adv Mater 29(8):1603612

    Article  Google Scholar 

  • Memic A et al (2015) Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications. Biomed Mater 11:014104. https://doi.org/10.1088/1748-6041/11/1/014104

    Article  CAS  PubMed  Google Scholar 

  • Memic A et al (2017) Bioprinting technologies for disease modeling. Biotechnol Lett 39:1279–1290. https://doi.org/10.1007/s10529-017-2360-z

    Article  CAS  PubMed  Google Scholar 

  • Mistry H et al (2017) Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. National Institute for Health Research, Southampton

    Google Scholar 

  • Mobasheri A, Rayman MP, Gualillo O, Sellam J, van der Kraan P, Fearon U (2017) The role of metabolism in the pathogenesis of osteoarthritis nature reviews rheumatology. Nat Rev Rheumatol 13(5):302–311

    Article  CAS  PubMed  Google Scholar 

  • Mouser VHM et al (2017) Three-dimensional bioprinting and its potential in the field of articular cartilage regeneration. Cartilage 8:327–340. https://doi.org/10.1177/1947603516665445

    Article  PubMed  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  • Murphy C, Mobasheri A, Tancos Z, Kobolak J, Dinnyes A (2017) The Potency of induced pluripotent stem cells in cartilage regeneration and osteoarthritis treatment. In: Advances in experimental medicine and biology. Springer, Boston, pp 1–14. https://doi.org/10.1007/5584_2017_141

  • Musumeci G, Aiello FC, Szychlinska MA, Di Rosa M, Castrogiovanni P, Mobasheri A (2015) Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci 16:6093–6112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam Y, Rim YA, Jung SM, Ju JH (2017) Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res Ther 8:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen U-SD, Ayers DC, Li W, Harrold LR, Franklin PD (2016) Preoperative pain and function: profiles of patients selected for total knee arthroplasty. J Arthroplast 31:2402–2407, e2402

    Article  Google Scholar 

  • Niemeyer P et al (2014) Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee. Am J Sports Med 42:150–157

    Article  PubMed  Google Scholar 

  • Ober TJ, Foresti D, Lewis JA (2015) Active mixing of complex fluids at the microscale. Proc Natl Acad Sci U S A 112:12293–12298. https://doi.org/10.1073/pnas.1509224112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21:1257–1271. https://doi.org/10.1016/j.drudis.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Jang J, Lee JS, Cho DW (2016) Current advances in three-dimensional tissue/organ printing. Tissue Eng Regen Med 13:612–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel S, Dhillon MS, Aggarwal S, Marwaha N, Jain A (2013) Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med 41:356–364. https://doi.org/10.1177/0363546512471299

    Article  PubMed  Google Scholar 

  • Patrascu JM, Freymann U, Kaps C, Poenaru DV (2010) Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant: a follow-up at two years by MRI and histological review. J Bone Joint Surg (Br) 92:1160–1163. https://doi.org/10.1302/0301-620X.92B8.24341

    Article  CAS  Google Scholar 

  • Patrascu JM et al (2013) Polyglycolic acid-hyaluronan scaffolds loaded with bone marrow-derived mesenchymal stem cells show chondrogenic differentiation in vitro and cartilage repair in the rabbit model. J Biomed Mater Res B Appl Biomater 101:1310–1320. https://doi.org/10.1002/jbm.b.32944

    Article  CAS  PubMed  Google Scholar 

  • Pera MF, Reubinoff B, Trounson A (2000) Human embryonic stem cells. J Cell Sci 113:5–10

    CAS  PubMed  Google Scholar 

  • Poulet B, Staines KA (2016) New developments in osteoarthritis and cartilage biology. Curr Opin Pharmacol 28:8–13

    Article  CAS  PubMed  Google Scholar 

  • Richardson SM et al (2016) Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration. Methods 99:69–80. https://doi.org/10.1016/j.ymeth.2015.09.015

    Article  CAS  PubMed  Google Scholar 

  • Richter W (2009) Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med 266:390–405. https://doi.org/10.1111/j.1365-2796.2009.02153.x

    Article  CAS  PubMed  Google Scholar 

  • Saito T et al (2015) Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells. Biomed Res 36:179–186

    Article  PubMed  Google Scholar 

  • Schon BS, Hooper GJ, Woodfield TB (2017) Modular tissue assembly strategies for biofabrication of engineered cartilage. Ann Biomed Eng 45:100–114. https://doi.org/10.1007/s10439-016-1609-3

    Article  CAS  PubMed  Google Scholar 

  • Shabestari M, Vik J, Reseland J, Eriksen E (2016) Bone marrow lesions in hip osteoarthritis are characterized by increased bone turnover and enhanced angiogenesis. Osteoarthr Cartil 24:1745–1752

    Article  CAS  Google Scholar 

  • Siclari A, Mascaro G, Gentili C, Cancedda R, Boux E (2012) A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin Orthop Relat Res 470:910–919. https://doi.org/10.1007/s11999-011-2107-4

    Article  PubMed  Google Scholar 

  • Stanish WD et al (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am 95:1640–1650. https://doi.org/10.2106/JBJS.L.01345

    Article  PubMed  Google Scholar 

  • Suchorska WM, Augustyniak E, Richter M, Łukjanow M, Filas V, Kaczmarczyk J, Trzeciak T (2017) Modified methods for efficiently differentiating human embryonic stem cells into chondrocyte-like cells. Adv Hyg Exp Med/Postepy Higieny i Medycyny Doswiadczalnej 71:500–509

    Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Vaidya M (2015) Startups tout commercially 3D-printed tissue for drug screening. Nat Med 21:2–2

    Article  CAS  PubMed  Google Scholar 

  • Watt FM, Huck WT (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14:467–473

    Article  CAS  PubMed  Google Scholar 

  • Wise JK, Yarin AL, Megaridis CM, Cho M (2008) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng A 15:913–921

    Article  Google Scholar 

  • Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57:1–25. https://doi.org/10.1016/j.actbio.2017.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jordan JM (2010) Epidemiology of osteoarthritis. Clin Geriatr Med 26:355–369

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Ouyang H, Dass CR, Xu J (2016) Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 4:15040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YS et al (2017) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45:148–163. https://doi.org/10.1007/s10439-016-1612-8

    Article  PubMed  Google Scholar 

  • Zhu Z et al (2017) Cross-sectional and longitudinal associations between serum inflammatory cytokines and knee bone marrow lesions in patients with knee osteoarthritis. Osteoarthr Cartil 25:499–505

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the “Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells” and the stem cell laboratory facility at CEGMR and King Abdulaziz University Hospital.

Conflicts of Interest

The authors declare no conflict of interests.

Competing Interests and Disclosures

The authors declare no competing interests.

Author’s Contributions

G. Kalamegam and A. Memic were involved in intellectual contribution and manuscript writing. MA and EB were involved in intellectual contribution and editing of the manuscript. A. Mobasheri contributed to the synthesis and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mobasheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalamegam, G., Memic, A., Budd, E., Abbas, M., Mobasheri, A. (2018). A Comprehensive Review of Stem Cells for Cartilage Regeneration in Osteoarthritis. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 2. Advances in Experimental Medicine and Biology(), vol 1089. Springer, Cham. https://doi.org/10.1007/5584_2018_205

Download citation

Publish with us

Policies and ethics