Skip to main content

Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Enhances the Expression of Angiogenic Factors in a Mouse Acute Hindlimb Ischemic Model

  • Conference paper
  • First Online:
Stem Cells: Biology and Engineering

Abstract

Cell migration and molecular mechanisms during healing of damaged vascular or muscle tissues are emerging fields of interest worldwide. The study herein focuses on evaluating the role of allogenic adipose-derived mesenchymal stem cells (ADMSCs) in restoring damaged tissues. Using a hindlimb ischemic mouse model, ADMSC-mediated induction of cell migration and gene expression related to myocyte regeneration and angiogenesis were evaluated. ADMSCs were labeled with GFP (ADMSC-GFP). The proximal end of the femoral blood vessel of mice (over 6 months of age) are ligated at two positions then cut between the two ties. Hindlimb ischemic mice were randomly divided into two groups: Group I (n = 30) which was injected with PBS (100 μL) and Group II (n = 30) which was transplanted with ADMSC-GFP (106 cells/100 μL PBS) at the rectus femoris muscle. The migration of ADMSC-GFP in hindlimb was analyzed by UV-Vis system. The expression of genes related to angiogenesis and muscle tissue repair was quantified by real-time RT-PCR. The results showed that ADMSCs existed in the grafted hindlimb for 7 days. Grafted cells migrated to other damaged areas such as thigh and heel. In both groups the ischemic hindlimb showed an increased expression of several angiogenic genes, including Flt-1, Flk-1, and Ang-2. In particular, the expression of Ang-2 and myogenic-related gene MyoD was significantly increased in the ADMSC-treated group compared to the PBS-treated (control) group; the expression increased at day 28 compared to day 3. The other factors, such as VE-Cadherin, HGF, CD31, Myf5, and TGF-β, were also more highly expressed in the ADMSC-treated group than in the control group. Thus, grafted ADMSCs were able to migrate to other areas in the injured hindlimb, persist for approximately 7 days, and have a significantly positive impact on stimulating expression of myogenic- and angiogenesis-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADMSC:

Adipose-derived mesenchymal stem cells

bFGF:

Basic fibroblast growth factor

CD:

Cluster of differentiation

EGF:

Epidermal growth factor

GFP:

Green fluorescent protein

HGF:

Hepatic growth factor

MSC:

Mesenchymal stem cell

PBS:

Phosphate buffer saline

VEGF:

Vascular endothelial growth factor

References

  • Bakshi, A., Keck, C. A., Koshkin, V. S., LeBold, D. G., Siman, R., Snyder, E. Y., & McIntosh, T. K. (2005). Caspase-mediated cell death predominates following engraftment of neural progenitor cells into traumatically injured rat brain. Brain Research, 1065, 8–19.

    Article  CAS  PubMed  Google Scholar 

  • Ball, L. M., & Egeler, R. M. (2008). Acute GvHD: Pathogenesis and classification. Bone Marrow Transplantation, 41, S58–S64.

    Article  CAS  PubMed  Google Scholar 

  • Baraniak, P. R., & McDevitt, T. C. (2010). Stem cell paracrine actions and tissue regeneration. Regenerative Medicine, 5, 121–143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buschmann, I., & Schaper, W. (1999). Arteriogenesis versus angiogenesis: Two mechanisms of vessel growth. Physiology, 14, 121–125.

    Article  Google Scholar 

  • Conway, E. M., Collen, D., & Carmeliet, P. (2001). Molecular mechanisms of blood vessel growth. Cardiovascular Research, 49, 507–521.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Z., Zhou, H., He, C., Wang, W., Yang, Y., & Tan, Q. (2015). Upregulation of Bcl-2 enhances secretion of growth factors by adipose-derived stem cells deprived of oxygen and glucose. Bioscience Trends, 9, 122–128.

    Article  CAS  PubMed  Google Scholar 

  • DeLisser, H. M., Christofidou-Solomidou, M., Strieter, R. M., Burdick, M. D., Robinson, C. S., Wexler, R. S., Kerr, J. S., Garlanda, C., Merwin, J. R., & Madri, J. A. (1997). Involvement of endothelial PECAM-1/CD31 in angiogenesis. The American Journal of Pathology, 151, 671.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, S., Merkulova-Rainon, T., Han, Z. C., & Tobelem, G. (2003). HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood, 101, 4816–4822.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak, H. F., Brown, L. F., Detmar, M., & Dvorak, A. M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. The American Journal of Pathology, 146, 1029–1039.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fagiani, E., & Christofori, G. (2013). Angiopoietins in angiogenesis. Cancer Letters, 328, 18–26.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, N., Gerber, H.-P., & LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9, 669–676.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari, G., Cook, B. D., Terushkin, V., Pintucci, G., & Mignatti, P. (2009). Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (vegf)-mediated apoptosis. Journal of Cellular Physiology, 219, 449–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong, G.-H., Zhang, L., Bryce, D.-M., & Peng, J. (1999). Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development, 126, 3015–3025.

    CAS  PubMed  Google Scholar 

  • Fouraschen, S. M. G., Wolf, J. H., van der Laan, L. J. W., de Ruiter, P. E., Hancock, W. W., van Kooten, J. P., Verstegen, M. M. A., Olthoff, K. M., & de Jonge, J. (2015). Mesenchymal stromal cell-derived factors promote tissue repair in a small-for-size ischemic liver model but do not protect against early effects of ischemia and reperfusion injury. Journal of Immunology Research, 2015, 202975. doi:10.1155/2015/202975. Epub 2015 Aug 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch, S. M., & Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. The Journal of Cell Biology, 124, 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Gayraud-Morel, B., Chrétien, F., Flamant, P., Gomès, D., Zammit, P. S., & Tajbakhsh, S. (2007). A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Developmental Biology, 312, 13–28.

    Article  CAS  PubMed  Google Scholar 

  • Gerber, H.-P., Condorelli, F., Park, J., & Ferrara, N. (1997). Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. Journal of Biological Chemistry, 272, 23659–23667.

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt, H., & Betsholtz, C. (2003). Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research, 314, 15–23.

    Article  PubMed  Google Scholar 

  • Gille, H., Kowalski, J., Li, B., LeCouter, J., Moffat, B., Zioncheck, T. F., Pelletier, N., & Ferrara, N. (2001). Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. The Journal of Biological Chemistry, 276, 3222–3230.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, S.-I., Morishita, R., Nakamura, S., Yamamoto, K., Moriguchi, A., Nagano, T., Taiji, M., Noguchi, H., Matsumoto, K., Nakamura, T., et al. (1999). Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease. Downregulation of HGF in Response to Hypoxia in Vascular Cells, 100, II-301–II-308.

    CAS  Google Scholar 

  • Hellingman, A. A., Bastiaansen, A. J. N. M., de Vries, M. R., Seghers, L., Lijkwan, M. A., Löwik, C. W., Hamming, J. F., & Quax, P. H. A. (2010). Variations in surgical procedures for hind limb Ischaemia mouse models result in differences in collateral formation. European Journal of Vascular and Endovascular Surgery, 40, 796–803.

    Article  CAS  PubMed  Google Scholar 

  • Hertig, A. T. (1935). Angiogenesis in the early human chorion and in the primary placenta of the macaque monkey. Contrib Embryol, 25, 39–81.

    Google Scholar 

  • Iwase, T., Nagaya, N., Fujii, T., Itoh, T., Murakami, S., Matsumoto, T., Kangawa, K., & Kitamura, S. (2005). Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovascular Research, 66, 543–551.

    Article  CAS  PubMed  Google Scholar 

  • Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., Li, T., Isner, J. M., & Asahara, T. (2000). Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 97, 3422–3427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Tsutsumi, Y., Ozono, R., Masaki, H., Mori, Y., Iba, O., Tateishi, E., et al. (2001). Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation, 104, 1046–1052.

    Article  CAS  PubMed  Google Scholar 

  • Kappas, N. C., Zeng, G., Chappell, J. C., Kearney, J. B., Hazarika, S., Kallianos, K. G., Patterson, C., Annex, B. H., & Bautch, V. L. (2008). The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. The Journal of Cell Biology, 181, 847–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karamysheva, A. F. (2008). Mechanisms of angiogenesis. Biochemistry Biokhimiia, 73, 751–762.

    Article  CAS  PubMed  Google Scholar 

  • Kim, N., & Cho, S. G. (2015). New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. International Journal of Stem Cells, 8, 54–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 39, 678–683.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. T., Jang, J. H., Cheong, J. W., Kim, J. S., Maemg, H. Y., Hahn, J. S., Ko, Y. W., & Min, Y. H. (2002). Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. British Journal of Haematology, 118, 1128–1131.

    Article  PubMed  Google Scholar 

  • Li, D., Zhang, M., Zhang, Q., Wang, Y., Song, X., & Zhang, Q. (2015). Functional recovery after acute intravenous administration of human umbilical cord mesenchymal stem cells in rats with cerebral ischemia-reperfusion injury. Intractable & Rare Diseases Research, 4, 98–104.

    Article  Google Scholar 

  • Marti, H. J. H., Bernaudin, M., Bellail, A., Schoch, H., Euler, M., Petit, E., & Risau, W. (2000). Hypoxia-induced vascular endothelial growth factor expression precedes Neovascularization after cerebral ischemia. The American Journal of Pathology, 156, 965–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura, T., Wolff, K., & Petzelbauer, P. (1997). Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. Journal of Immunology (Baltimore, Md: 1950), 158, 3408–3416

    Google Scholar 

  • Morishita, R., Aoki, M., Hashiya, N., Yamasaki, K., Kurinami, H., Shimizu, S., Makino, H., Takesya, Y., Azuma, J., & Ogihara, T. (2004). Therapeutic angiogenesis using hepatocyte growth factor (HGF). Current Gene Therapy, 4, 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., Matsuda, H., & Nakamura, T. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. The Journal of Clinical Investigation, 106, 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newby, A. C. (2005). Dual role of matrix metalloproteinases (Matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiological Reviews, 85, 1–31.

    Article  CAS  PubMed  Google Scholar 

  • Ning, H., Yang, F., Jiang, M., Hu, L., Feng, K., Zhang, J., Yu, Z., Li, B., Xu, C., Li, Y., et al. (2008). The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: Outcome of a pilot clinical study. Leukemia, 22, 593–599.

    Article  CAS  Google Scholar 

  • Nishi, J.-I., Minamino, T., Miyauchi, H., Nojima, A., Tateno, K., Okada, S., Orimo, M., Moriya, J., Fong, G.-H., & Sunagawa, K. (2008). Vascular endothelial growth factor receptor-1 regulates postnatal angiogenesis through inhibition of the excessive activation of Akt. Circulation Research, 103, 261–268.

    Article  CAS  PubMed  Google Scholar 

  • Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in cancer. Vascular Health and Risk Management, 2, 213–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olofsson, B., Korpelainen, E., Pepper, M. S., Mandriota, S. J., Aase, K., Kumar, V., Gunji, Y., Jeltsch, M. M., Shibuya, M., & Alitalo, K. (1998). Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proceedings of the National Academy of Sciences, 95, 11709–11714.

    Article  CAS  Google Scholar 

  • Park, J. E., Chen, H. H., Winer, J., Houck, K. A., & Ferrara, N. (1994). Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. Journal of Biological Chemistry, 269, 25646–25654.

    CAS  PubMed  Google Scholar 

  • Pipino, C., & Pandolfi, A. (2015). Osteogenic differentiation of amniotic fluid mesenchymal stromal cells and their bone regeneration potential. World Journal of Stem Cells, 7, 681–690.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pusztaszeri, M. P., Seelentag, W., & Bosman, F. T. (2006). Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 54, 385–395.

    Article  CAS  Google Scholar 

  • Rennert, R. C., Sorkin, M., Garg, R. K., & Gurtner, G. C. (2012). Stem cell recruitment after injury: Lessons for regenerative medicine. Regenerative Medicine, 7, 833–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruster, B., Gottig, S., Ludwig, R. J., Bistrian, R., Muller, S., Seifried, E., Gille, J., & Henschler, R. (2006). Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 108, 3938–3944.

    Article  CAS  PubMed  Google Scholar 

  • Shi, M., Li, J., Liao, L., Chen, B., Li, B., Chen, L., Jia, H., & Zhao, R. C. (2007). Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: Role in homing efficiency in NOD/SCID mice. Haematologica, 92, 897–904.

    Article  PubMed  Google Scholar 

  • Shibuya, M. (2006). Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): A dual regulator for angiogenesis. Angiogenesis, 9, 225–230. discussion 231.

    Article  CAS  PubMed  Google Scholar 

  • Shin, D., Garcia-Cardena, G., Hayashi, S.-I., Gerety, S., Asahara, T., Stavrakis, G., Isner, J., Folkman, J., Gimbrone, M. A., & Anderson, D. J. (2001). Expression of EphrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Developmental Biology, 230, 139–150.

    Article  CAS  PubMed  Google Scholar 

  • Smart, N., & Riley, P. R. (2008). The stem cell movement. Circulation Research, 102, 1155–1168.

    Article  CAS  PubMed  Google Scholar 

  • Sohni, A., & Verfaillie, C. M. (2013). Mesenchymal stem cells migration homing and tracking. Stem Cells International, 2013, 8.

    Article  CAS  Google Scholar 

  • Strem, B. M., Hicok, K. C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R. E., Fraser, J. K., & Hedrick, M. H. (2005). Multipotential differentiation of adipose tissue-derived stem cells. The Keio Journal of Medicine, 54, 132–141.

    Article  CAS  PubMed  Google Scholar 

  • Sun, C. K., Leu, S., Hsu, S. Y., Zhen, Y. Y., Chang, L. T., Tsai, C. Y., Chen, Y. L., Chen, Y. T., Tsai, T. H., Lee, F. Y., et al. (2015). Mixed serum-deprived and normal adipose-derived mesenchymal stem cells against acute lung ischemia-reperfusion injury in rats. American Journal of Translational Research, 7, 209–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.

    Article  PubMed  Google Scholar 

  • Ucuzian, A. A., Gassman, A. A., East, A. T., & Greisler, H. P. (2010). Molecular mediators of angiogenesis. Journal of Burn Care & Research: Official Publication of the American Burn Association, 31, 158.

    Article  Google Scholar 

  • van Hinsbergh, V. W., Engelse, M. A., & Quax, P. H. (2006). Pericellular proteases in angiogenesis and vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 716–728.

    Article  CAS  PubMed  Google Scholar 

  • Van Pham, P., Vu, N. B., Phan, N. L.-C., Le, D. M., Truong, N. C., Truong, N. H., Bui, K. H.-T., & Phan, N. K. (2014). Good manufacturing practice-compliant isolation and culture of human adipose-derived stem cells. Biomedical Research and Therapy, 1, 133–141.

    Google Scholar 

  • Vestweber, D. (2008). VE-cadherin: The major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 223–232.

    Article  CAS  PubMed  Google Scholar 

  • Vianello, F., & Dazzi, F. (2008). Mesenchymal stem cells for graft-versus-host disease: A double edged sword? Leukemia, 22, 463–465.

    Article  CAS  PubMed  Google Scholar 

  • Vu, N. B., Trinh, V. N.-L., Phi, L. T., Bui, A. N.-T., Ta, V. T., Phan, N. K., & Van Pham, P. (2013). Optimizing the procedure for preparing immune- deficient hindlimb ischemia mouse model. Vietnam Joural of Physiology, 17, 27–36.

    Google Scholar 

  • Yuan, J., & Yankner, B. A. (2000). Apoptosis in the nervous system. Nature, 407, 802–809.

    Article  CAS  PubMed  Google Scholar 

  • Zentilin, L., Tafuro, S., Zacchigna, S., Arsic, N., Pattarini, L., Sinigaglia, M., & Giacca, M. (2006). Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood, 107, 3546–3554.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Christofidou-Solomidou, M., Garlanda, C., & DeLisser, H. M. (1999). Antibody against murine PECAM-1 inhibits tumor angiogenesis in mice. Angiogenesis, 3, 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang, H., Zhang, X., Zhu, C., Tang, X., Yu, F., Shang, G. W., & Cai, X. (2016). Molecular mechanisms of PPAR-gamma governing MSC osteogenic and adipogenic differentiation. Current Stem Cell Research & Therapy, 11, 255–264.

    Article  CAS  Google Scholar 

  • Zygmunt, M., Herr, F., Munstedt, K., Lang, U., & Liang, O. D. (2003). Angiogenesis and vasculogenesis in pregnancy. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 110(Suppl 1), S10–S18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the University of Science, Vietnam National University, Ho Chi Minh City, Vietnam, under grant number T2016-20.

Competing Interests

The authors declare that no competing interests exist.

Authors’ Contributions

NBV and NPK were responsible for suggesting the idea for this study, creating the experiment design, analyzing the data, writing the result, discussing, and preparing the figures. HLTN was responsible for performing the RT-PCR analysis and writing the introduction and methods. LTP was responsible for performing the ADMSCs cultures. TTTD was responsible for creating GFP-ADMSC and preparing muscle cell for flow cytometry analysis. NBV and VTT were responsible for analyzing the flow cytometry and revising the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Bich Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vu, N.B., Le, H.TN., Dao, T.TT., Phi, L.T., Phan, N.K., Ta, V.T. (2017). Allogeneic Adipose-Derived Mesenchymal Stem Cell Transplantation Enhances the Expression of Angiogenic Factors in a Mouse Acute Hindlimb Ischemic Model. In: Van Pham, P. (eds) Stem Cells: Biology and Engineering. Advances in Experimental Medicine and Biology(), vol 1083. Springer, Cham. https://doi.org/10.1007/5584_2017_63

Download citation

Publish with us

Policies and ethics