Skip to main content

In Vitro Production of Cartilage Tissue from Rabbit Bone Marrow-Derived Mesenchymal Stem Cells and Polycaprolactone Scaffold

  • Conference paper
  • First Online:
Tissue Engineering and Regenerative Medicine

Abstract

In vitro production of tissues or tissue engineering is a promising approach to produce artificial tissues for regenerative medicine. There are at least three important components of tissue engineering, including stem cells, scaffolds and growth factors. This study aimed to produce cartilage tissues in vitro from culture and chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMMSCs), induced by chondrogenesis medium, on biodegradable polycaprolactone (PCL) scaffolds. BMMSCs were isolated from rabbit bone marrow according to the standard protocol. The adherence, proliferation and differentiation of BMMSCs on scaffolds were investigated using two scaffold systems: PCL scaffolds and collagen-coated PCL (PCL/col) scaffolds. The results showed that BMMSCs could attach and grow on both PCL and PCL/col scaffolds. However, the adhesion efficacy of BMMSCs on the PCL/col scaffolds was significantly better than on PCL scaffolds. Under induced conditions, BMMSCs on PLC/col scaffolds showed increased aggrecan accumulation and upregulated expression of chondrogenesis-associated genes (e.g. collagen type II, collagen type I, aggrecan and collagen type X) after 3, 7, 21 and 28 days of induction. These in vitro cartilage tissues could form mature chondrocyte-like cells after they were grafted into rabbits. The results suggest that use of BMMSCs in combination with polycaprolactone scaffolds and chondrogenesis medium can be a way to form in vitro cartilage tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMMSCs:

Bone marrow-derived mesenchymal stem cells

CD:

Cluster of differentiation

ECM:

Extracellular matrix

GFP:

Green fluorescent protein

MSC:

Mesenchymal stem cell

PBS:

Phosphate buffer saline

PCL:

Polycaprolactone

PCL/col:

Collagen-coated PCL

PCR:

Polymer chain reaction

References

  • Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.

    Article  CAS  Google Scholar 

  • Ayala, R., Zhang, C., Yang, D., Hwang, Y., Aung, A., Shroff, S. S., Arce, F. T., Lal, R., Arya, G., & Varghese, S. (2011). Engineering the cell-material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials, 32, 3700–3711.

    Article  CAS  Google Scholar 

  • Dawson, E., Mapili, G., Erickson, K., Taqvi, S., & Roy, K. (2008). Biomaterials for stem cell differentiation. Advanced Drug Delivery Reviews, 60, 215–228.

    Article  CAS  Google Scholar 

  • Dexheimer, V., Gabler, J., Bomans, K., Sims, T., Omlor, G., & Richter, W. (2016). Differential expression of TGF-beta superfamily members and role of Smad1/5/9-signalling in chondral versus endochondral chondrocyte differentiation. Scientific Reports, 6, 36655.

    Article  CAS  Google Scholar 

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  Google Scholar 

  • Elisseeff, J., Ferran, A., Hwang, S., Varghese, S., & Zhang, Z. (2006). The role of biomaterials in stem cell differentiation: Applications in the musculoskeletal system. Stem Cells and Development, 15, 295–303.

    Article  CAS  Google Scholar 

  • Gao, Y., Liu, S., Huang, J., Guo, W., Chen, J., Zhang, L., Zhao, B., Peng, J., Wang, A., Wang, Y., et al. (2014). The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. BioMed Research International, 2014, 648459.

    PubMed  PubMed Central  Google Scholar 

  • Goldring, M. B., Tsuchimochi, K., & Ijiri, K. (2006). The control of chondrogenesis. Journal of Cellular Biochemistry, 97, 33–44.

    Article  CAS  Google Scholar 

  • Grassel, S., & Ahmed, N. (2007). Influence of cellular microenvironment and paracrine signals on chondrogenic differentiation. Frontiers in Bioscience: A Journal and Virtual Library, 12, 4946–4956.

    Article  CAS  Google Scholar 

  • Hall, B. K. (2012). Cartilage V1: Structure, function, and biochemistry. New York: Academic Press.

    Google Scholar 

  • Hidaka, C., & Goldring, M. B. (2008). Regulatory mechanisms of chondrogenesis and implications for understanding articular cartilage homeostasis. Current Rheumatology Reviews, 4, 12.

    Article  Google Scholar 

  • Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21, 2529–2543.

    Article  CAS  Google Scholar 

  • Hwang, N. S., Varghese, S., & Elisseeff, J. (2008). Controlled differentiation of stem cells. Advanced Drug Delivery Reviews, 60, 199–214.

    Article  CAS  Google Scholar 

  • Hwang, N. S., Varghese, S., Li, H., & Elisseeff, J. (2011). Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. Cell and Tissue Research, 344, 499–509.

    Article  CAS  Google Scholar 

  • Karande, T. S., Ong, J. L., & Agrawal, C. M. (2004). Diffusion in musculoskeletal tissue engineering scaffolds: Design issues related to porosity, permeability, architecture, and nutrient mixing. Annals of Biomedical Engineering, 32, 1728–1743.

    Article  Google Scholar 

  • Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.

    Article  CAS  Google Scholar 

  • Kozhemyakina, E., Lassar, A. B., & Zelzer, E. (2015). A pathway to bone: Signaling molecules and transcription factors involved in chondrocyte development and maturation. Development, 142, 817–831.

    Article  CAS  Google Scholar 

  • Krishna, L., Dhamodaran, K., Jayadev, C., Chatterjee, K., Shetty, R., Khora, S. S., & Das, D. (2016). Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Research & Therapy, 7, 188.

    Article  Google Scholar 

  • Lefebvre, V., Huang, W., Harley, V. R., Goodfellow, P. N., & de Crombrugghe, B. (1997). SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Molecular and Cellular Biology, 17, 2336–2346.

    Article  CAS  Google Scholar 

  • Minina, E., Kreschel, C., Naski, M. C., Ornitz, D. M., & Vortkamp, A. (2002). Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Developmental Cell, 3, 439–449.

    Article  CAS  Google Scholar 

  • O’Brien, F. J., Harley, B., Yannas, I. V., & Gibson, L. J. (2005). The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 26, 433–441.

    Article  Google Scholar 

  • Oberlender, S. A., & Tuan, R. S. (1994). Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development, 120, 177–187.

    CAS  PubMed  Google Scholar 

  • Okazaki, K., & Sandell, L. J. (2004). Extracellular matrix gene regulation. Clinical Orthopaedics and Related Research, 427, S123–S128.

    Article  Google Scholar 

  • Oseni, A. O., Crowley, C., Boland, M. Z., Butler, P. E., & Seifalian, A. M. (2011). Cartilage tissue engineering: The application of nanomaterials and stem cell technology. In Tissue engineering and regenerative medicine, tissue engineering for tissue and organ regeneration. London: Intech open access.

    Google Scholar 

  • Pizette, S., & Niswander, L. (2000). BMPs are required at two steps of limb chondrogenesis: Formation of prechondrogenic condensations and their differentiation into chondrocytes. Developmental Biology, 219, 237–249.

    Article  CAS  Google Scholar 

  • Pogue, R., & Lyons, K. (2006). BMP signaling in the cartilage growth plate. Current Topics in Developmental Biology, 76, 1–48.

    Article  CAS  Google Scholar 

  • Portocarrero, G., Collins, G., & Livingston Arinzeh, T. (2013). Challenges in cartilage tissue engineering. Tissue Science & Engineering.

    Google Scholar 

  • Puissant, B., Barreau, C., Bourin, P., Clavel, C., Corre, J., Bousquet, C., Taureau, C., Cousin, B., Abbal, M., Laharrague, P., et al. (2005). Immunomodulatory effect of human adipose tissue-derived adult stem cells: Comparison with bone marrow mesenchymal stem cells. British Journal of Haematology, 129, 118–129.

    Article  Google Scholar 

  • Reinisch, A., Etchart, N., Thomas, D., Hofmann, N. A., Fruehwirth, M., Sinha, S., Chan, C. K., Senarath-Yapa, K., Seo, E. Y., Wearda, T., et al. (2015). Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood, 125, 249–260.

    Article  CAS  Google Scholar 

  • Roosa, S. M. M., Kemppainen, J. M., Moffitt, E. N., Krebsbach, P. H., & Hollister, S. J. (2010). The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. Journal of Biomedical Materials Research Part A, 92, 359–368.

    Article  Google Scholar 

  • Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18, 696–704.

    Article  Google Scholar 

  • Tuan, R. S. (2003). Cellular signaling in developmental chondrogenesis: N-cadherin, Wnts, and BMP-2. The Journal of Bone and Joint Surgery, 85, 137–141.

    Article  Google Scholar 

  • Van Natta, F. J., Hill, J. W., & Carruthers, W. H. (1934). Polymerization and ring formation, ε-caprolactone and its polymers. Journal of the American Chemical Society, 56, 5–7.

    Article  Google Scholar 

  • Vu, N. B., Phi, L. T., Dao, T. T.-T., Le, H. T.-N., Ta, V. T., & Pham, P. V. (2016). Adipose derived stem cell transplantation is better than bone marrow mesenchymal stem cell transplantation in treating hindlimb ischemia in mice. Biomedical Research and Therapy, 3, 844–856.

    Google Scholar 

  • Vu, N.B., Le, H.T., Dao, T.T., Phi, L.T., Phan, N.K., & Ta, V.T. (2017). Allogeneic adipose-derived mesenchymal stem cell transplantation enhances the expression of Angiogenic factors in a mouse acute Hindlimb ischemic model. Advances in Experimental Medicine and Biology. https://doi.org/10.1007/5584_2017_63.

    Google Scholar 

  • Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35, 1217–1256.

    Article  CAS  Google Scholar 

  • Woodward, S. C., Brewer, P., Moatamed, F., Schindler, A., & Pitt, C. (1985). The intracellular degradation of poly (ε-caprolactone). Journal of Biomedical Materials Research Part A, 19, 437–444.

    Article  CAS  Google Scholar 

  • Yamashita, A., Nishikawa, S., & Rancourt, D. E. (2010). Identification of five developmental processes during chondrogenic differentiation of embryonic stem cells. PLoS One, 5, e10998.

    Article  Google Scholar 

  • Yanez, R., Lamana, M. L., Garcia-Castro, J., Colmenero, I., Ramirez, M., & Bueren, J. A. (2006). Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells, 24, 2582–2591.

    Article  CAS  Google Scholar 

  • Zhu, X., Shi, W., Tai, W., & Liu, F. (2012). The comparison of biological characteristics and multilineage differentiation of bone marrow and adipose derived mesenchymal stem cells. Cell and Tissue Research, 350, 277–287.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant numbers TX2017-18-02 and C2017-18-24/HĐ-KHCN and University of Science Ho Chi Minh City under grant number T2017-44.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Bich Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dao, T.TT. et al. (2017). In Vitro Production of Cartilage Tissue from Rabbit Bone Marrow-Derived Mesenchymal Stem Cells and Polycaprolactone Scaffold. In: Pham, P. (eds) Tissue Engineering and Regenerative Medicine. Advances in Experimental Medicine and Biology(), vol 1084. Springer, Cham. https://doi.org/10.1007/5584_2017_133

Download citation

Publish with us

Policies and ethics