Skip to main content

Boron-Doped Diamond and Graphitic Multiarrays for Neurotransmitter Sensing

  • Chapter
  • First Online:
Carbon-Based Nanosensor Technology

Abstract

Synaptic transmission is based on quantal release of neurotransmitters. Alterations of the molecular mechanisms and components governing exocytosis are at the basis of several neurological and neurodegenerative diseases. The aim of this chapter is to provide an overview on the most recent advances of boron-doped diamond (BDD) and graphitic multiarrays in monitoring quantal release of oxidizable neurotransmitters with submillisecond time resolution.

In Sect. 1, diamond technology for realizing planar and flexible implantable arrays is detailed, as well as the electrochemical, Raman, and optical characterization of the materials. Section 2 is mainly dedicated to unravel the advantages of using high-density and low-density micro- and ultramicroarrays to perform multisite detection of quantal exocytosis, demonstrating their suitability to resolve subcellular exocytosis and to detect release from many cells simultaneously. The physiological relevance of the amperometric spike and its correspondence with the exocytotic event is described. Section 3 is focused on the great potentiality of emerging sensors based on quantum detection and their application in biosensing for imaging with atomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srikanth VVSS, Jiang X (2011) Synthesis of diamond films. Synthetic diamond films: preparation, electrochemistry, characterization, and applications. Wiley, Hoboken, pp 21–55

    Chapter  Google Scholar 

  2. Kohn E, Denisenko A (2009) Doped diamond electron devices. CVD diamond for electronic devices and sensors. Wiley, Chichester, pp 313–377

    Chapter  Google Scholar 

  3. Kusterer J, Kohn E (2009) CVD diamond MEMS. CVD diamond for electronic devices and sensors. Wiley, Chichester, pp 467–544

    Chapter  Google Scholar 

  4. Goss JP, Eyre RJ, Briddon PR (2008) Theoretical models for doping diamond for semiconductor applications. Phys Status Solidi Basic Res 245:1679–1700. https://doi.org/10.1002/pssb.200744115

    Article  CAS  Google Scholar 

  5. Johnson JB (1928) Thermal agitation of electricity in conductors. Phys Rev 32:97–109. https://doi.org/10.1103/PhysRev.32.97

    Article  CAS  Google Scholar 

  6. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32:110–113. https://doi.org/10.1103/PhysRev.32.110

    Article  CAS  Google Scholar 

  7. Dimitriadis CA, Kamarinos G, Brini J (2001) Model of low frequency noise in polycrystalline silicon thin-film transistors. IEEE Electron Device Lett 22:381–383. https://doi.org/10.1109/55.936350

    Article  CAS  Google Scholar 

  8. Blanter YM, Buttiker M (1999) Shot noise in mesoscopic conductors. Phys Rep 336:1–166. https://doi.org/10.1016/S0370-1573(99)00123-4

    Article  Google Scholar 

  9. Madenach AJ, Werner J (1985) Non-lorentzian noise at semiconductor interfaces. Phys Rev Lett 55:1212–1215. https://doi.org/10.1103/PhysRevLett.55.1212

    Article  CAS  PubMed  Google Scholar 

  10. Muret P, Pernot J, Kumar A et al (2010) Deep hole traps in boron-doped diamond. Phys Rev B Condens Matter Mater Phys 81:235205. https://doi.org/10.1103/PhysRevB.81.235205

    Article  CAS  Google Scholar 

  11. Ghodbane S, Omnès F, Agnès C (2010) A cathodoluminescence study of boron doped {111}-homoepitaxial diamond films. Diam Relat Mater 19:273–278. https://doi.org/10.1016/j.diamond.2009.11.003

    Article  CAS  Google Scholar 

  12. Vanhove E, De Sanoit J, Mailley P et al (2009) High reactivity and stability of diamond electrodes: the influence of the B-doping concentration. Phys Status Solidi Appl Mater Sci 206:2063–2069. https://doi.org/10.1002/pssa.200982235

    Article  CAS  Google Scholar 

  13. Dipalo M (2008) Nanocrystalline diamond growth and device applications. Universität Ulm. https://doi.org/10.18725/OPARU-1066

  14. Kobayashi T, Ariki T, Iwabuchi M et al (1994) Analytical studies on multiple delta doping in diamond thin films for efficient hole excitation and conductivity enhancement. J Appl Phys 76:1977–1979. https://doi.org/10.1063/1.357661

    Article  CAS  Google Scholar 

  15. Denisenko A, Kohn E (2005) Diamond power devices. Concepts and limits. Diam Relat Mater 14:491–498. https://doi.org/10.1016/j.diamond.2004.12.043

    Article  CAS  Google Scholar 

  16. Maida O, Tabuchi T, Ito T (2017) Improvement on p-type CVD diamond semiconducting properties by fabricating thin heavily-boron-doped multi-layer clusters isolated each other in unintentionally boron-doped diamond layer. J Cryst Growth 480:51–55. https://doi.org/10.1016/j.jcrysgro.2017.10.008

    Article  CAS  Google Scholar 

  17. Chen CF, Chen SH (1995) Electrical properties of boron-doped diamond films after annealing treatment. Diam Relat Mater 4:451–455. https://doi.org/10.1016/0925-9635(94)05317-0

    Article  CAS  Google Scholar 

  18. Gu SS, Hu XJ (2013) Enhanced p-type conduction of B-doped nanocrystalline diamond films by high temperature annealing. J Appl Phys 114:23506. https://doi.org/10.1063/1.4813134

    Article  CAS  Google Scholar 

  19. Yao J, Gillis KD (2012) Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes. Analyst 137:2674. https://doi.org/10.1039/c2an35157a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Larsen ST, Heien ML, Taboryski R (2012) Amperometric noise at thin film band electrodes. Anal Chem 84:7744–7749. https://doi.org/10.1021/ac301136x

    Article  CAS  PubMed  Google Scholar 

  21. Heinze J (1993) Ultramicroelectrodes in electrochemistry. Angew Chem Int Ed Engl 32:1268–1288. https://doi.org/10.1002/anie.199312681

    Article  Google Scholar 

  22. Williams OA, Douhéret O, Daenen M et al (2007) Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem Phys Lett 445:255–258. https://doi.org/10.1016/j.cplett.2007.07.091

    Article  CAS  Google Scholar 

  23. Tsigkourakos M, Hantschel T, Janssens SD et al (2012) Spin-seeding approach for diamond growth on large area silicon-wafer substrates. Phys Status Solidi Appl Mater Sci 209:1659–1663. https://doi.org/10.1002/pssa.201200137

    Article  CAS  Google Scholar 

  24. Janischowsky K, Ebert W, Kohn E (2003) Bias enhanced nucleation of diamond on silicon (100) in a HFCVD system. Diam Relat Mater 12:336–339. https://doi.org/10.1016/S0925-9635(02)00294-7

    Article  CAS  Google Scholar 

  25. Yugo S, Kanai T, Kimura T, Muto T (1991) Generation of diamond nuclei by electric field in plasma chemical vapor deposition. Appl Phys Lett 58:1036–1038. https://doi.org/10.1063/1.104415

    Article  CAS  Google Scholar 

  26. Chen YC, Tzeng Y, Cheng AJ et al (2009) Inkjet printing of nanodiamond suspensions in ethylene glycol for CVD growth of patterned diamond structures and practical applications. Diam Relat Mater 18:146–150. https://doi.org/10.1016/j.diamond.2008.10.004

    Article  CAS  Google Scholar 

  27. Zhuang H, Song B, Staedler T, Jiang X (2011) Microcontact printing of monodiamond nanoparticles: an effective route to patterned diamond structure fabrication. Langmuir 27:11981–11989. https://doi.org/10.1021/la2024428

    Article  CAS  PubMed  Google Scholar 

  28. Bonnauron M, Saada S, Mer C et al (2008) Transparent diamond-on-glass micro-electrode arrays for ex-vivo neuronal study. Phys Status Solidi Appl Mater Sci 205:2126–2129. https://doi.org/10.1002/pssa.200879733

    Article  CAS  Google Scholar 

  29. Granado TC, Neusser G, Kranz C et al (2015) Progress in transparent diamond microelectrode arrays. Phys Status Solidi Appl Mater Sci 212:2445–2453. https://doi.org/10.1002/pssa.201532168

    Article  CAS  Google Scholar 

  30. Carabelli V, Gosso S, Marcantoni A et al (2010) Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells. Biosens Bioelectron 26:92–98. https://doi.org/10.1016/j.bios.2010.05.017

    Article  CAS  PubMed  Google Scholar 

  31. Colombo E, Men Y, Scharpf J et al (2011) Fabrication of a NCD microelectrode array for amperometric detection with micrometer spatial resolution. Diam Relat Mater 20:793–797. https://doi.org/10.1016/j.diamond.2011.03.032

    Article  CAS  Google Scholar 

  32. Gao Z, Carabelli V, Carbone E et al (2010) Transparent diamond microelectrodes for biochemical application. Diam Relat Mater 19:1021–1026. https://doi.org/10.1016/j.diamond.2010.03.014

    Article  CAS  Google Scholar 

  33. Kiran R, Rousseau L, Lissorgues G et al (2012) Multichannel boron doped nanocrystalline diamond ultramicroelectrode arrays: design, fabrication and characterization. Sensors (Switzerland) 12:7669–7681. https://doi.org/10.3390/s120607669

    Article  CAS  Google Scholar 

  34. Pasquarelli A, Carabelli V, Xu Y et al (2009) Diamond microelectrodes for amperometric detection of secretory cells activity. IFMBE Proc 25:208–211. https://doi.org/10.1007/978-3-642-03887-7-58

    Article  Google Scholar 

  35. Vahidpour F, Curley L, Biró I et al (2017) All-diamond functional surface micro-electrode arrays for brain-slice neural analysis. Phys Status Solidi Appl Mater Sci 214:1532347. https://doi.org/10.1002/pssa.201532347

    Article  CAS  Google Scholar 

  36. Chan HY, Aslam DM, Wiler JA, Casey B (2009) A novel diamond microprobe for neuro-chemical and -electrical recording in neural prosthesis. J Microelectromech Syst 18:511–521. https://doi.org/10.1109/JMEMS.2009.2015493

    Article  CAS  Google Scholar 

  37. Varney MW, Aslam DM, Janoudi A et al (2011) Polycrystalline-diamond MEMS biosensors including neural microelectrode-arrays. Biosensors 1:118–133. https://doi.org/10.3390/bios1030118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nataraj R, Audu ML, Triolo RJ (2017) Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury. Med Eng Phys 42:13–25. https://doi.org/10.1016/j.medengphy.2017.01.023

    Article  PubMed  PubMed Central  Google Scholar 

  39. Semework M (2015) Microstimulation: principles, techniques, and approaches to somatosensory neuroprosthesis. Crit Rev Biomed Eng 43:61–95. https://doi.org/10.1615/CritRevBiomedEng.2015012287

    Article  PubMed  Google Scholar 

  40. Seymour JP, Wu F, Wise KD, Yoon E (2017) State-of-the-art MEMS and microsystem tools for brain research. Microsyst Nanoeng 3:16066. https://doi.org/10.1038/micronano.2016.66

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polym Sci B 49:18–33. https://doi.org/10.1002/polb.22169

    Article  CAS  Google Scholar 

  42. Hess AE, Sabens DM, Martin HB, Zorman CA (2011) Diamond-on-polymer microelectrode arrays fabricated using a chemical release transfer process. J Microelectromech Syst 20:867–875. https://doi.org/10.1109/JMEMS.2011.2159099

    Article  CAS  Google Scholar 

  43. Fan B, Zhu Y, Rechenberg R et al (2017) Large-scale, all polycrystalline diamond structures transferred on flexible Parylene-C films for neurotransmitter sensing. Lab Chip 17:3159–3167. https://doi.org/10.1039/C7LC00229G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olivero P, Amato G, Bellotti F et al (2009) Direct fabrication of three-dimensional buried conductive channels in single crystal diamond with ion microbeam induced graphitization. Elsevier B.V., New York

    Book  Google Scholar 

  45. Zaitsev AM (2001) Optical properties of diamond. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  46. Battiato A, Bosia F, Ferrari S et al (2012) Spectroscopic measurement of the refractive index of ion-implanted diamond. Opt Lett 37:671–673. https://doi.org/10.1364/OL.37.000671

    Article  CAS  PubMed  Google Scholar 

  47. Olivero P, Calusi S, Giuntini L et al (2010) Controlled variation of the refractive index in ion-damaged diamond. Diam Relat Mater 19:428–431. https://doi.org/10.1016/j.diamond.2009.12.011

    Article  CAS  Google Scholar 

  48. Lagomarsino S, Olivero P, Bosia F et al (2010) Evidence of light guiding in ion-implanted diamond. Phys Rev Lett 105:233903. https://doi.org/10.1103/PhysRevLett.105.233903

    Article  CAS  PubMed  Google Scholar 

  49. Lagomarsino S, Olivero P, Calusi S et al (2012) Complex refractive index variation in proton-damaged diamond. Opt Express 20:19382–19394. https://doi.org/10.1364/OE.20.019382

    Article  CAS  PubMed  Google Scholar 

  50. Gregory J, Steigerwald A, Takahashi H et al (2012) Ion implantation induced modification of optical properties in single-crystal diamond studied by coherent acoustic phonon spectroscopy. Appl Phys Lett 101:181904. https://doi.org/10.1063/1.4765647

    Article  CAS  Google Scholar 

  51. Draganski MA, Finkman E, Gibson BC et al (2012) Tailoring the optical constants of diamond by ion implantation. Opt Mater Exp 2:644–649. https://doi.org/10.1364/OME.2.000644

    Article  CAS  Google Scholar 

  52. Bosia F, Calusi S, Giuntini L et al (2010) Finite element analysis of ion-implanted diamond surface swelling. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:2991–2995. https://doi.org/10.1016/j.nimb.2010.05.025

    Article  CAS  Google Scholar 

  53. Bosia F, Argiolas N, Bazzan M et al (2011) Modification of the structure of diamond with MeV ion implantation. Diam Relat Mater 20:774–778. https://doi.org/10.1016/j.diamond.2011.03.025

    Article  CAS  Google Scholar 

  54. Bosia F, Argiolas N, Bazzan M et al (2013) Direct measurement and modelling of internal strains in ion-implanted diamond. J Phys Condens Matter 25:385403. https://doi.org/10.1088/0953-8984/25/38/385403

    Article  CAS  PubMed  Google Scholar 

  55. Olivero P, Bosia F, Fairchild BA et al (2013) Splitting of photoluminescent emission from nitrogen-vacancy centers in diamond induced by ion-damage-induced stress. New J Phys 15:043027. https://doi.org/10.1088/1367-2630/15/4/043027

    Article  CAS  Google Scholar 

  56. Vavilov VS, Krasnopevtsev VV, Miljutin YV et al (1974) On structural transitions in ion-implanted diamond. Radiat Eff 22:141–143. https://doi.org/10.1080/00337577408232161

    Article  CAS  Google Scholar 

  57. Picollo F, Olivero P, Bellotti F et al (2010) Formation of buried conductive micro-channels in single crystal diamond with MeV C and He implantation. Diam Relat Mater 19:466–469. https://doi.org/10.1016/j.diamond.2010.01.005

    Article  CAS  Google Scholar 

  58. Prawer S, Kalish R (1995) Ion-beam-induced transformation of diamond. Phys Rev B 51:15711–15722. https://doi.org/10.1103/PhysRevB.51.15711

    Article  CAS  Google Scholar 

  59. Sato S, Iwaki M (1988) Target temperature dependence of sheet resistivity and structure of Ar-implanted diamonds. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 32:145–149. https://doi.org/10.1016/0168-583X(88)90198-X

    Article  Google Scholar 

  60. Sankaran KJ, Panda K, Sundaravel B et al (2014) Enhancing electrical conductivity and electron field emission properties of ultrananocrystalline diamond films by copper ion implantation and annealing. J Appl Phys 115:63701. https://doi.org/10.1063/1.4865325

    Article  CAS  Google Scholar 

  61. Popov VP, Safronov LN, Naumova OV et al (2012) Conductive layers in diamond formed by hydrogen ion implantation and annealing. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 282:100–107. https://doi.org/10.1016/j.nimb.2011.08.050

    Article  CAS  Google Scholar 

  62. Avigal Y, Richter V, Fizgeer B et al (2004) The nature of ion-implanted contacts to polycrystalline diamond films. Diam Relat Mater 13:1674–1679. https://doi.org/10.1016/j.diamond.2004.02.004

    Article  CAS  Google Scholar 

  63. Sharkov AI, Galkina TI, Klokov AY et al (2002) High-speed bolometric detector based on a graphitized layer buried into bulk diamond. Vacuum 68:263–267. https://doi.org/10.1016/S0042-207X(02)00455-4

    Article  CAS  Google Scholar 

  64. Brandes GR, Beetz CP, Feger CF et al (1999) Ion implantation and anneal to produce low resistance metal–diamond contacts. Diam Relat Mater 8:1936–1943. https://doi.org/10.1016/S0925-9635(99)00161-2

    Article  CAS  Google Scholar 

  65. Yang Q, King BVV (1995) Radiation damage and conductivity changes in ion implanted diamond. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 106:555–559. https://doi.org/10.1016/0168-583X(95)00769-5

    Article  CAS  Google Scholar 

  66. Olivero P, Amato G, Bellotti F et al (2010) Direct fabrication and IV characterization of sub-surface conductive channels in diamond with MeV ion implantation. Eur Phys J B 75:127–132. https://doi.org/10.1140/epjb/e2009-00427-5

    Article  CAS  Google Scholar 

  67. Hauser JJ (1977) Electrical, structural and optical properties of amorphous carbon. J Non-Cryst Solids 23:21–41. https://doi.org/10.1016/0022-3093(77)90035-7

    Article  Google Scholar 

  68. Saada D, Adler J, Kalish R (1998) Transformation of diamond (sp(3)) to graphite (sp(2)) bonds by ion-impact. Int J Mod Phys C 9:61–69. https://doi.org/10.1142/s0129183198000066

    Article  Google Scholar 

  69. Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879–2882. https://doi.org/10.1103/PhysRevLett.61.2879

    Article  CAS  PubMed  Google Scholar 

  70. Baskin E, Reznik a, Saada D et al (2001) Model for the defect-related electrical conductivity in ion-damaged diamond. Phys Rev B 64:1–9. https://doi.org/10.1103/PhysRevB.64.224110

    Article  CAS  Google Scholar 

  71. Prins JF (1985) Onset of hopping conduction in carbon-ion-implanted diamond. Phys Rev B 31:2472–2478. https://doi.org/10.1103/PhysRevB.31.2472

    Article  CAS  Google Scholar 

  72. Picollo F, Gatto Monticone D, Olivero P et al (2012) Fabrication and electrical characterization of three-dimensional graphitic microchannels in single crystal diamond. New J Phys 14:53011. https://doi.org/10.1088/1367-2630/14/5/053011

    Article  CAS  Google Scholar 

  73. Lühmann T, Wunderlich R, Schmidt-Grund R et al (2017) Investigation of the graphitization process of ion-beam irradiated diamond using ellipsometry, Raman spectroscopy and electrical transport measurements. Carbon 121:512–517. https://doi.org/10.1016/j.carbon.2017.05.093

    Article  CAS  Google Scholar 

  74. Trajkov E, Prawer S (2006) Conduction mechanisms in ion-implanted and annealed polycrystalline CVD diamond. Diam Relat Mater 15:1714–1719. https://doi.org/10.1016/j.diamond.2006.02.004

    Article  CAS  Google Scholar 

  75. Prins JF (2001) Graphitization and related variable-range-hopping conduction in ion-implanted diamond. J Phys D Appl Phys 34:2089–2096. https://doi.org/10.1088/0022-3727/34/14/302

    Article  CAS  Google Scholar 

  76. Hauser JJ, Patel JR, Rodgers JW (1977) Hard conducting implanted diamond layers. Appl Phys Lett 30:129–130. https://doi.org/10.1063/1.89323

    Article  CAS  Google Scholar 

  77. Shklovskii BI, Efros AL (1984) Electronic properties of doped semiconductors, I. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  78. Mott NF (1969) Conduction in non-crystalline materials. Philos Mag A J Theor Exp Appl Phys 19:835–852. https://doi.org/10.1080/14786436908216338

    Article  CAS  Google Scholar 

  79. Susumu S, Hiroshi W, Katsuo T et al (1991) Electrical conductivity and Raman spectra of C+-ion implanted diamond depending on the target temperature. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 59–60:1391–1394. https://doi.org/10.1016/0168-583X(91)95838-5

    Article  Google Scholar 

  80. Prawer S, Hoffman A, Kalish R (1990) Ion-beam induced conductivity in chemically vapor-deposited diamond films. Appl Phys Lett 57:2187–2189

    Article  CAS  Google Scholar 

  81. Fontaine F, Gheeraert E, Deneuville A (1996) Conduction mechanisms in boron implanted diamond films. Diam Relat Mater 5:752–756. https://doi.org/10.1016/0925-9635(95)00383-5

    Article  CAS  Google Scholar 

  82. Prins JF (2001) C+-damaged diamond: electrical measurements after rapid thermal annealing to 500°C. Diam Relat Mater 10:463–468

    Article  CAS  Google Scholar 

  83. Reznik A, Richter V, Kalish R (1997) Kinetics of the conversion of broken diamond (sp3) bonds to graphitic (sp2) bonds. Phys Rev B 56:7930–7934. https://doi.org/10.1103/PhysRevB.56.7930

    Article  CAS  Google Scholar 

  84. Khmelnitsky RA, Dravin VA, Tal AA et al (2015) Damage accumulation in diamond during ion implantation. J Mater Res 30:1583–1592. https://doi.org/10.1557/jmr.2015.21

    Article  CAS  Google Scholar 

  85. Battiato A, Lorusso M, Bernardi E et al (2016) Softening the ultra-stiff: controlled variation of Young’s modulus in single-crystal diamond by ion implantation. Acta Mater 116:95–103. https://doi.org/10.1016/j.actamat.2016.06.019

    Article  CAS  Google Scholar 

  86. Olivero P, Rubanov S, Reichart P et al (2006) Characterization of three-dimensional microstructures in single-crystal diamond. Diam Relat Mater 15:1614–1621. https://doi.org/10.1016/j.diamond.2006.01.018

    Article  CAS  Google Scholar 

  87. Hickey DP, Jones KS, Elliman RG (2009) Amorphization and graphitization of single-crystal diamond – a transmission electron microscopy study. Diam Relat Mater 18:1353–1359. https://doi.org/10.1016/j.diamond.2009.08.012

    Article  CAS  Google Scholar 

  88. Nshingabigwi EKK, Derry TEE, Naidoo SRR et al (2014) Electron microscopy profiling of ion implantation damage in diamond: dependence on fluence and annealing. Diam Relat Mater 49:1–8. https://doi.org/10.1016/j.diamond.2014.07.010

    Article  CAS  Google Scholar 

  89. Uzan-Saguy C, Richter V, Prawer S et al (1995) Nature of damage in diamond implanted at low temperatures. Diam Relat Mater 4:569–574. https://doi.org/10.1016/0925-9635(94)05290-5

    Article  CAS  Google Scholar 

  90. Fairchild BA, Rubanov S, Lau DWM et al (2012) Mechanism for the amorphisation of diamond. Adv Mater 24:2024–2029. https://doi.org/10.1002/adma.201104511

    Article  CAS  PubMed  Google Scholar 

  91. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM – the stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:1818–1823. https://doi.org/10.1016/j.nimb.2010.02.091

    Article  CAS  Google Scholar 

  92. Wu W, Fahy S (1994) Molecular-dynamics study of single-atom radiation damage in diamond. Phys Rev B 49:3030–3035. https://doi.org/10.1103/PhysRevB.49.3030

    Article  CAS  Google Scholar 

  93. Picollo F, Battiato A, Bernardi E et al (2016) All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters. Sci Rep 6. https://doi.org/10.1038/srep20682

  94. Picollo F, Battiato A, Carbone E et al (2015) Development and characterization of a diamond-insulated graphitic multi electrode array realized with ion beam lithography. Sensors (Switzerland) 15:515–528. https://doi.org/10.3390/s150100515

    Article  CAS  Google Scholar 

  95. Picollo F, Gosso S, Vittone E et al (2013) A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells. Adv Mater 25:4696–4700. https://doi.org/10.1002/adma.201300710

    Article  PubMed  Google Scholar 

  96. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, Hoboken

    Book  Google Scholar 

  97. Oldham KB, Myland JC, Bond AM (2011) Transient voltammetry. Electrochemical science and technology. Wiley, Chichester, pp 329–364

    Chapter  Google Scholar 

  98. Sarada BV, Rao TN, Tryk DA, Fujishima A (2000) Electrochemical oxidation of histamine and serotonin at highly boron-doped diamond electrodes. Anal Chem 72:1632–1638. https://doi.org/10.1021/ac9908748

    Article  CAS  PubMed  Google Scholar 

  99. Pavitt AS, Bylaska EJ, Tratnyek PG et al (2017) Oxidation potentials of phenols and anilines: correlation analysis of electrochemical and theoretical values. Environ Sci Process Impacts 19:339–349. https://doi.org/10.1039/C6EM00694A

    Article  CAS  PubMed  Google Scholar 

  100. Abt B, Hartmann A, Pasquarelli A et al (2016) Electrochemical determination of sulphur-containing pharmaceuticals using boron-doped diamond electrodes. Electroanalysis 28:1641–1646. https://doi.org/10.1002/elan.201501150

    Article  CAS  Google Scholar 

  101. Wang J (2006) Study of electrode reactions and interfacial properties. Analytical electrochemistry. Wiley, Hoboken, pp 29–66

    Chapter  Google Scholar 

  102. Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502. https://doi.org/10.1038/121501c0

    Article  CAS  Google Scholar 

  103. Serrano-Cinca C, Fuertes-Callén Y, Mar-Molinero C (2005) Measuring DEA efficiency in internet companies. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  104. Long DA (2002) The Raman effect. Wiley, Chichester

    Book  Google Scholar 

  105. Vandenabeele P (2013) Practical Raman spectroscopy – an introduction. Wiley, Chichester

    Book  Google Scholar 

  106. Crisci A, Mermoux M, Saubat-Marcus B (2008) Deep ultra-violet Raman imaging of CVD boron-doped and non-doped diamond films. Diam Relat Mater 17:1207–1211. https://doi.org/10.1016/j.diamond.2008.01.025

    Article  CAS  Google Scholar 

  107. Wagner J, Wild C, Koidl P (1991) Resonance effects in Raman scattering from polycrystalline diamond films. Appl Phys Lett 59:779–781. https://doi.org/10.1063/1.105340

    Article  CAS  Google Scholar 

  108. Prawer S, Nugent K, Jamieson D et al (2000) The Raman spectrum of nanocrystalline diamond. Chem Phys Lett 332:93–97. https://doi.org/10.1016/S0009-2614(00)01236-7

    Article  CAS  Google Scholar 

  109. Prawer S, Nemanich RJ (2004) Raman spectroscopy of diamond and doped diamond. Philos Trans R Soc A Math Phys Eng Sci 362:2537–2565. https://doi.org/10.1098/rsta.2004.1451

    Article  CAS  Google Scholar 

  110. Korepanov VI, Hamaguchi HO, Osawa E et al (2017) Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon 121:322–329. https://doi.org/10.1016/j.carbon.2017.06.012

    Article  CAS  Google Scholar 

  111. Dychalska A, Popielarski P, Franków W et al (2015) Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater Sci Pol 33:799–805. https://doi.org/10.1515/msp-2015-0067

    Article  CAS  Google Scholar 

  112. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124:1866–1878. https://doi.org/10.1103/PhysRev.124.1866

    Article  CAS  Google Scholar 

  113. Mortet V, Vlčková Živcová Z, Taylor A et al (2017) Insight into boron-doped diamond Raman spectra characteristic features. Carbon 115:279–284. https://doi.org/10.1016/j.carbon.2017.01.022

    Article  CAS  Google Scholar 

  114. Bernard M, Deneuville A, Muret P (2004) Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy. Diam Relat Mater 13:282–286. https://doi.org/10.1016/j.diamond.2003.10.051

    Article  CAS  Google Scholar 

  115. Pippione G, Olivero P, Fischer M et al (2017) Characterization of CVD heavily B-doped diamond thin films for multi electrode array biosensors. Phys Status Solidi Appl Mater Sci 214:1700223. https://doi.org/10.1002/pssa.201700223

    Article  CAS  Google Scholar 

  116. Baldelli P, Novara M, Carabelli V et al (2002) BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+ channels signalling. Eur J Neurosci 16:2297–2310. https://doi.org/10.1046/j.1460-9568.2002.02313.x

    Article  CAS  PubMed  Google Scholar 

  117. Evans RM, Zamponi GW (2006) Presynaptic Ca2+ channels – integration centers for neuronal signaling pathways. Trends Neurosci 29:617–624. https://doi.org/10.1016/j.tins.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  118. Jacus MO, Uebele VN, Renger JJ, Todorovic SM (2012) Presynaptic CaV3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 32:9374–9382. https://doi.org/10.1523/JNEUROSCI.0068-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Katz B, Miledi R (1969) Spontaneous and evoked activity of motor nerve endings in calcium ringer. J Physiol 203:689–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547. https://doi.org/10.1146/annurev.neuro.26.041002.131412

    Article  CAS  PubMed  Google Scholar 

  121. Wadel K, Neher E, Sakaba T (2007) The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53:563–575. https://doi.org/10.1016/j.neuron.2007.01.021

    Article  CAS  PubMed  Google Scholar 

  122. Acuna C, Liu X, Südhof TC (2016) How to make an active zone: unexpected universal functional redundancy between RIMs and RIM-BPs. Neuron 91:792–807. https://doi.org/10.1016/j.neuron.2016.07.042

    Article  CAS  PubMed  Google Scholar 

  123. Chow RH, von Rüden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356:60–63. https://doi.org/10.1038/356060a0

    Article  CAS  PubMed  Google Scholar 

  124. Neher E (2006) A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse. Pflugers Arch Eur J Physiol 453:261–268. https://doi.org/10.1007/s00424-006-0143-9

    Article  CAS  Google Scholar 

  125. Robinson IM, Finnegan JM, Monck JR et al (1995) Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells. Proc Natl Acad Sci U S A 92:2474–2478. https://doi.org/10.1073/PNAS.92.7.2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477. https://doi.org/10.1126/science.1161748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Südhof TC (2014) The molecular machinery of neurotransmitter release (Nobel lecture). Angew Chem Int Ed 53:12696–12717. https://doi.org/10.1002/anie.201406359

    Article  CAS  Google Scholar 

  128. Neher E (2018) Neurosecretion: what can we learn from chromaffin cells. Pflugers Arch Eur J Physiol 470:7–11. https://doi.org/10.1007/s00424-017-2051-6

    Article  CAS  Google Scholar 

  129. Guarina L, Vandael DHF, Carabelli V, Carbone E (2017) Low pHo boosts burst firing and catecholamine release by blocking TASK-1 and BK channels while preserving Cav1 channels in mouse chromaffin cells. J Physiol 595:2587–2609. https://doi.org/10.1113/JP273735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marcantoni A, Vandael DHF, Mahapatra S et al (2010) Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells. J Neurosci 30:491–504. https://doi.org/10.1523/JNEUROSCI.4961-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vandael DHF, Marcantoni A, Carbone E (2015) Cav1.3 channels as key regulators of neuron-like firings and catecholamine release in chromaffin cells. Curr Mol Pharmacol 8:149–161. https://doi.org/10.2174/1874467208666150507105443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lingle CJ, Martinez-Espinosa PL, Guarina L, Carbone E (2018) Roles of Na+, Ca2+, and K+ channels in the generation of repetitive firing and rhythmic bursting in adrenal chromaffin cells. Pflugers Arch Eur J Physiol 470:39–52. https://doi.org/10.1007/s00424-017-2048-1

    Article  CAS  Google Scholar 

  133. Vandael DHF, Ottaviani MM, Legros C et al (2015) Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells. J Physiol 593:905–927. https://doi.org/10.1113/jphysiol.2014.283374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fenwick EM, Fajdiga PB, Howe NB, Livett BG (1978) Functional and morphological characterization of isolated bovine adrenal medullary cells. J Cell Biol 76:12–30

    Article  CAS  PubMed  Google Scholar 

  135. Finnegan JM, Pihel K, Cahill PS et al (1996) Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic β-cells. J Neurochem 66:1914–1923. https://doi.org/10.1046/j.1471-4159.1996.66051914.x

    Article  CAS  PubMed  Google Scholar 

  136. Borges R, Camacho M, Gillis KD (2008) Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods. Acta Physiol 192:173–184. https://doi.org/10.1111/j.1748-1716.2007.01814.x

    Article  CAS  Google Scholar 

  137. Carabelli V, Marcantoni A, Comunanza V et al (2007) Chronic hypoxia up-regulates α 1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 584:149–165. https://doi.org/10.1113/jphysiol.2007.132274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Garcia AG, Garcia-De-Diego AM, Gandia L et al (2006) Calcium signaling and exocytosis in adrenal chromaffin cells. Physiol Rev 86:1093–1131. https://doi.org/10.1152/physrev.00039.2005

    Article  CAS  PubMed  Google Scholar 

  139. Dhara M, Mohrmann R, Bruns D (2018) v-SNARE function in chromaffin cells. Pflugers Arch Eur J Physiol 470:169–180. https://doi.org/10.1007/s00424-017-2066-z

    Article  CAS  Google Scholar 

  140. Zhao WD, Hamid E, Shin W et al (2016) Hemi-fused structure mediates and controls fusion and fission in live cells. Nature 534:548–552. https://doi.org/10.1038/nature18598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Van Kempen GTH, Vanderleest HT, Van Den Berg RJ et al (2011) Three distinct modes of exocytosis revealed by amperometry in neuroendocrine cells. Biophys J 100:968–977. https://doi.org/10.1016/j.bpj.2011.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mosharov EV, Sultzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658. https://doi.org/10.1038/NMETH782

    Article  CAS  PubMed  Google Scholar 

  143. Bruns D, Riedel D, Klingauf J, Jahn R (2000) Quantal release of serotonin. Neuron 28:205–220. https://doi.org/10.1016/S0896-6273(00)00097-0

    Article  CAS  PubMed  Google Scholar 

  144. Travis ER, Wightman RM (1998) Spatio-temporal resolution of exocytosis from individual cells. Annu Rev Biophys Biomol Struct 27:77–103. https://doi.org/10.1146/annurev.biophys.27.1.77

    Article  CAS  PubMed  Google Scholar 

  145. Wightman RM, Jankowski JA, Kennedy RT et al (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88:10754–10758. https://doi.org/10.1073/pnas.88.23.10754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wightman RM, Schroeder TJ, Finnegan JM et al (1995) Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells. Biophys J 68:383–390. https://doi.org/10.1016/S0006-3495(95)80199-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Leszczyszyn DJ, Jankowski JA, Viveros OH et al (1990) Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells: chemical evidence for exocytosis. J Biol Chem 265:14736–14737

    CAS  PubMed  Google Scholar 

  148. Chen TK, Luo G, Ewing AG (1994) Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (PC12) cells at the zeptomole level. Anal Chem 66:3031–3035. https://doi.org/10.1021/ac00091a007

    Article  CAS  PubMed  Google Scholar 

  149. Pothos EN, Davila V, Sulzer D (1998) Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J Neurosci 18:4106–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Staal RGW, Mosharov EV, Sulzer D (2004) Dopamine neurons release transmitter via a flickering fusion pore. Nat Neurosci 7:341–346. https://doi.org/10.1038/nn1205

    Article  CAS  PubMed  Google Scholar 

  151. Zhou Z, Misler S (1995) Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons. Proc Natl Acad Sci U S A 92:6938–6942. https://doi.org/10.1073/pnas.92.15.6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Alvarez de Toledo G, Fernández-Chacón R, Fernández J (1993) Release of secretory products during transient vesicle fusion. Nature 363:554–558. https://doi.org/10.1038/363554a0

    Article  CAS  PubMed  Google Scholar 

  153. Paras CD, Kennedy RT (1995) Electrochemical detection of exocytosis at single rat melanotrophs. Anal Chem 67:3633

    Article  CAS  PubMed  Google Scholar 

  154. Paras CD, Qian W, Lakey JR et al (2000) Localized exocytosis detected by spatially resolved amperometry in single pancreatic β-cells. Cell Biochem Biophys 33:227–240. https://doi.org/10.1385/CBB:33:3:227

    Article  CAS  PubMed  Google Scholar 

  155. Mosharov EV (2008) Analysis of single-vesicle exocytotic events recorded by amperometry. Methods Mol Biol 440:315–327. https://doi.org/10.1007/978-1-59745-178-9_24

    Article  CAS  PubMed  Google Scholar 

  156. Gillis KD, Liu XA, Marcantoni A, Carabelli V (2018) Electrochemical measurement of quantal exocytosis using microchips. Pflugers Arch Eur J Physiol 470:97–112. https://doi.org/10.1007/s00424-017-2063-2

    Article  CAS  Google Scholar 

  157. Amatore C, Delacotte J, Guille-Collignon M, Lemaître F (2015) Vesicular exocytosis and microdevices – microelectrode arrays. Analyst 140:3687–3695. https://doi.org/10.1039/C4AN01932F

    Article  CAS  PubMed  Google Scholar 

  158. Carabelli V, Marcantoni A, Picollo F et al (2017) Planar diamond-based multiarrays to monitor neurotransmitter release and action potential firing: new perspectives in cellular neuroscience. ACS Chem Neurosci 8:252–264. https://doi.org/10.1021/acschemneuro.6b00328

    Article  CAS  PubMed  Google Scholar 

  159. Kisler K, Kim BN, Liu X et al (2012) Transparent electrode materials for simultaneous amperometric detection of exocytosis and fluorescence microscopy. J Biomater Nanobiotechnol 3:243–253. https://doi.org/10.4236/jbnb.2012.322030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang B, Heien MLAV, Santillo MF et al (2011) Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays. Anal Chem 83:571–577. https://doi.org/10.1021/ac102502g

    Article  CAS  PubMed  Google Scholar 

  161. Berberian K, Kisler K, Qinghua F, Lindau M (2009) Improved surface-patterned platinum microelectrodes for the study of exocytotic events. Anal Chem 81:8734–8740. https://doi.org/10.1021/ac900674g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ghosh J, Liu X, Gillis KD (2013) Electroporation followed by electrochemical measurement of quantal transmitter release from single cells using a patterned microelectrode. Lab Chip 13:2083. https://doi.org/10.1039/c3lc41324a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gao C, Sun X, Gillis KD (2013) Fabrication of two-layer poly(dimethyl siloxane) devices for hydrodynamic cell trapping and exocytosis measurement with integrated indium tin oxide microelectrodes arrays. Biomed Microdevices 15:445–451. https://doi.org/10.1007/s10544-013-9744-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sen A, Barizuddin S, Hossain M et al (2009) Preferential cell attachment to nitrogen-doped diamond-like carbon (DLC:N) for the measurement of quantal exocytosis. Biomaterials 30:1604–1612. https://doi.org/10.1016/j.biomaterials.2008.11.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gao Z, Carabelli V, Carbone E et al (2011) Transparent microelectrode array in diamond technology. J Micro-Nano Mechatronics 6:33–37. https://doi.org/10.1007/s12213-010-0032-3

    Article  Google Scholar 

  166. Pasquarelli A, Carabelli V, Xu Y et al (2011) Diamond microelectrodes arrays for the detection of secretory cell activity. Int J Environ Anal Chem 91:150–160. https://doi.org/10.1080/03067310903353511

    Article  CAS  Google Scholar 

  167. Hafez I, Kisler K, Berberian K et al (2005) Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Proc Natl Acad Sci U S A 102:13879–13884. https://doi.org/10.1073/pnas.0504098102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dias AF, Dernick G, Valero V et al (2002) An electrochemical detector array to study cell biology on the nanoscale. Nanotechnology 13:285

    Article  CAS  Google Scholar 

  169. Gosso S, Turturici M, Franchino C et al (2014) Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays. J Physiol 592:3215–3230. https://doi.org/10.1113/jphysiol.2014.274951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Schroeder TJ, Jankowski JA, Senyshyn J et al (1994) Zones of exocytotic release on bovine adrenal medullary cells in culture. J Biol Chem 269:17215–17220

    CAS  PubMed  Google Scholar 

  171. Pasquarelli A, Marcantoni A, Gavello D et al (2016) Simultaneous fluorescent and amperometric detection of catecholamine release from neuroendocrine cells with transparent diamond MEAs. Front Neurosci 10. https://doi.org/10.3389/conf.fnins.2016.93.00129

  172. Picollo F, Battiato A, Bernardi E et al (2016) Microelectrode arrays of diamond-insulated graphitic channels for real-time detection of exocytotic events from cultured chromaffin cells and slices of adrenal glands. Anal Chem 88:7493–7499. https://doi.org/10.1021/acs.analchem.5b04449

    Article  CAS  PubMed  Google Scholar 

  173. Raina S, Kang WP, Davidson JL (2010) Fabrication of nitrogen-incorporated nanodiamond ultra-microelectrode array for dopamine detection. Diam Relat Mater 19:256–259. https://doi.org/10.1016/j.diamond.2009.10.013

    Article  CAS  Google Scholar 

  174. Smirnov W, Yang N, Hoffmann R et al (2011) Integrated all-diamond ultramicroelectrode arrays: optimization of faradaic and capacitive currents. Anal Chem 83:7438–7443. https://doi.org/10.1021/ac201595k

    Article  CAS  PubMed  Google Scholar 

  175. Soh KL, Kang WP, Davidson JL et al (2008) Diamond-derived ultramicroelectrodes designed for electrochemical analysis and bioanalyte sensing. Diam Relat Mater 17:900–905. https://doi.org/10.1016/j.diamond.2007.12.041

    Article  CAS  Google Scholar 

  176. Taylor IM, Robbins EM, Catt KA et al (2017) Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens Bioelectron 89:400–410. https://doi.org/10.1016/j.bios.2016.05.084

    Article  CAS  PubMed  Google Scholar 

  177. Machado JD, Morales A, Gomez JF, Borges R (2001) cAmp modulates exocytotic kinetics and increases quantal size in chromaffin cells. Mol Pharmacol 60:514–520

    CAS  PubMed  Google Scholar 

  178. Robinson DL, Venton BJ, Heien MLAV, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49:1763–1773. https://doi.org/10.1373/49.10.1763

    Article  CAS  PubMed  Google Scholar 

  179. Phillips PEM, Wightman RM (2003) Critical guidelines for validation of the selectivity of in-vivo chemical microsensors. TrAC Trends Anal Chem 22:509–514. https://doi.org/10.1016/S0165-9936(03)00907-5

    Article  CAS  Google Scholar 

  180. Hébert C, Cottance M, Degardin J et al (2016) Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy. Mater Sci Eng C 69:77–84. https://doi.org/10.1016/j.msec.2016.06.032

    Article  CAS  Google Scholar 

  181. Piret G, Hébert C, Mazellier JP et al (2015) 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53:173–183. https://doi.org/10.1016/j.biomaterials.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  182. Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply with basic assumptions of formal learning theory. Nature 412:43–48. https://doi.org/10.1038/35083500

    Article  CAS  PubMed  Google Scholar 

  183. Hafizi S, Kruk ZL, Stamford JA (1990) Fast cyclic voltammetry: improved sensitivity to dopamine with extended oxidation scan limits. J Neurosci Methods 33:41–49. https://doi.org/10.1016/0165-0270(90)90080-Y

    Article  CAS  PubMed  Google Scholar 

  184. Wightman R, Heien M (2006) Phasic dopamine signaling during behavior, reward, and disease states. CNS Neurol Disord Drug Targets 5:99–108. https://doi.org/10.2174/187152706784111605

    Article  PubMed  Google Scholar 

  185. Hermans A, Seipel AT, Miller CE, Wightman RM (2006) Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. Langmuir 22:1964–1969. https://doi.org/10.1021/la053032e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kawagoe KT, Wightman RM (1994) Characterization of amperometry for in vivo measurement of dopamine dynamics in the rat brain. Talanta 41:865–874. https://doi.org/10.1016/0039-9140(94)E0064-X

    Article  CAS  PubMed  Google Scholar 

  187. Patel JC, Rice ME (2013) Monitoring axonal and somatodendritic dopamine release using fast-scan cyclic voltammetry in brain slices. Methods Mol Biol 964:243–273

    Article  CAS  PubMed  Google Scholar 

  188. Venton BJ, Zhang H, Garris PA et al (2003) Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem 87:1284–1295. https://doi.org/10.1046/j.1471-4159.2003.02109.x

    Article  CAS  PubMed  Google Scholar 

  189. Poh WC, Loh KP, De Zhang W et al (2004) Biosensing properties of diamond and carbon nanotubes. Langmuir 20:5484–5492. https://doi.org/10.1021/la0490947

    Article  CAS  PubMed  Google Scholar 

  190. Song M-J, Lee S-K, Kim J-H, Lim D-S (2012) Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal Sci 28:583–587. https://doi.org/10.2116/analsci.28.583

    Article  CAS  PubMed  Google Scholar 

  191. Suzuki A, Ivandini TA, Yoshimi K et al (2007) Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal Chem 79:8608–8615. https://doi.org/10.1021/ac071519h

    Article  CAS  PubMed  Google Scholar 

  192. Yoshimi K, Naya Y, Mitani N et al (2011) Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes. Neurosci Res 71:49–62. https://doi.org/10.1016/j.neures.2011.05.013

    Article  PubMed  Google Scholar 

  193. Bennet KE, Tomshine JR, Min H-K et al (2016) A diamond-based electrode for detection of neurochemicals in the human brain. Front Hum Neurosci 10:102. https://doi.org/10.3389/fnhum.2016.00102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhou FC, Tao-Cheng JH, Segu L et al (1998) Serotonin transporters are located on the axons beyond the synaptic junctions: anatomical and functional evidence. Brain Res 805:241–254. https://doi.org/10.1016/S0006-8993(98)00691-X

    Article  CAS  PubMed  Google Scholar 

  195. Hansen MB, Witte AB (2008) The role of serotonin in intestinal luminal sensing and secretion. Acta Physiol 193:311–323. https://doi.org/10.1111/j.1748-1716.2008.01870.x

    Article  CAS  Google Scholar 

  196. Coates MD, Johnson AC, Greenwood-Van Meerveld B, Mawe GM (2006) Effects of serotonin transporter inhibition on gastrointestinal motility and colonic sensitivity in the mouse. Neurogastroenterol Motil 18:464–471. https://doi.org/10.1111/j.1365-2982.2006.00792.x

    Article  CAS  PubMed  Google Scholar 

  197. Spiller R (2008) Serotonin and GI clinical disorders. Neuropharmacology 55:1072–1080. https://doi.org/10.1016/j.neuropharm.2008.07.016

    Article  CAS  PubMed  Google Scholar 

  198. Dankoski EC, Wightman RM (2013) Monitoring serotonin signaling on a subsecond time scale. Front Integr Neurosci 7. https://doi.org/10.3389/fnint.2013.00044

  199. Hashemi P, Dankoski EC, Wood KM et al (2011) In vivo electrochemical evidence for simultaneous 5-HT and histamine release in the rat substantia nigra pars reticulata following medial forebrain bundle stimulation. J Neurochem 118:749–759. https://doi.org/10.1111/j.1471-4159.2011.07352.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kita JM, Kile BM, Parker LE, Wightman RM (2009) In vivo measurement of somatodendritic release of dopamine in the ventral tegmental area. Synapse 63:951–960. https://doi.org/10.1002/syn.20676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Rice ME, Richards CD, Nedergaard S et al (1994) Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro. Exp Brain Res 79:395–406. https://doi.org/10.1007/BF00229180

    Article  Google Scholar 

  202. Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-Hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 18:4854–4860. https://doi.org/10.1016/0165-0173(90)90015-G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Duran B, Brocenschi RF, France M et al (2014) Electrochemical activation of diamond microelectrodes: implications for the in vitro measurement of serotonin in the bowel. Analyst 139:3160–3166. https://doi.org/10.1039/C4AN00506F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Jackson BP, Dietz SM, Wightman RM (1995) Fast-scan cyclic voltammetry of 5-hydroxytryptamine. Anal Chem 67:1115–1120. https://doi.org/10.1021/ac00102a015

    Article  CAS  PubMed  Google Scholar 

  205. Gerhardt GA, Oke AF, Nagy G et al (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res 290:390–395. https://doi.org/10.1016/0006-8993(84)90963-6

    Article  CAS  PubMed  Google Scholar 

  206. Güell AG, Meadows KE, Unwin PR, Macpherson JV (2010) Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes. Phys Chem Chem Phys 12:10108. https://doi.org/10.1039/c0cp00675k

    Article  CAS  PubMed  Google Scholar 

  207. Patel AN, Tan SY, Miller TS et al (2013) Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine. Anal Chem 85:11755–11764. https://doi.org/10.1021/ac401969q

    Article  CAS  PubMed  Google Scholar 

  208. Patel AN, Unwin PR, Macpherson JV (2013) Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Phys Chem Chem Phys 15:18085. https://doi.org/10.1039/c3cp53513d

    Article  CAS  PubMed  Google Scholar 

  209. Dong H, Wang S, Galligan J, Swain G (2011) Boron-doped diamond nano/microelectrodes for biosensing and in vitro measurements. Front Biosci (Schol Ed) 3:518

    Article  Google Scholar 

  210. Patel BA, Bian X, Quaiserová-Mocko V et al (2007) In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the Guinea pig ileum. Analyst 132:41–47. https://doi.org/10.1039/B611920D

    Article  CAS  PubMed  Google Scholar 

  211. Zhao H, Bian X, Galligan JJ, Swain GM (2010) Electrochemical measurements of serotonin (5-HT) release from the Guinea pig mucosa using continuous amperometry with a boron-doped diamond microelectrode. Diam Relat Mater 19:182–185. https://doi.org/10.1016/j.diamond.2009.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Singh YS, Sawarynski LE, Michael HM et al (2010) Boron-doped diamond microelectrodes reveal reduced serotonin uptake rates in lymphocytes from adult rhesus monkeys carrying the short allele of the 5-HTTLPR. ACS Chem Neurosci 1:49–64. https://doi.org/10.1021/cn900012y

    Article  CAS  PubMed  Google Scholar 

  213. Nantaphol S, Channon RB, Kondo T et al (2017) Boron doped diamond paste electrodes for microfluidic paper-based analytical devices. Anal Chem 89:4100–4107. https://doi.org/10.1021/acs.analchem.6b05042

    Article  CAS  PubMed  Google Scholar 

  214. Meunier A, Fulcrand R, Darchen F et al (2012) Indium Tin Oxide devices for amperometric detection of vesicular release by single cells. Biophys Chem 162:14–21. https://doi.org/10.1016/j.bpc.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  215. Meunier A, Jouannot O, Fulcrand R et al (2011) Coupling amperometry and total internal reflection fluorescence microscopy at ITO surfaces for monitoring exocytosis of single vesicles. Angew Chem Int Ed 50:5081–5084. https://doi.org/10.1002/anie.201101148

    Article  CAS  Google Scholar 

  216. Chuang MC, Lai HY, Annie Ho JA, Chen YY (2013) Multifunctional microelectrode array (mMEA) chip for neural-electrical and neural-chemical interfaces: characterization of comb interdigitated electrode towards dopamine detection. Biosens Bioelectron 41:602–607. https://doi.org/10.1016/j.bios.2012.09.030

    Article  CAS  PubMed  Google Scholar 

  217. Liu C, Song Y, Lin N et al (2013) Planar microelectrode chip for synchronous simulative neurochemical and neuroelectrial monitoring. J Nanosci Nanotechnol 13:736–740. https://doi.org/10.1166/jnn.2013.6015

    Article  CAS  PubMed  Google Scholar 

  218. Ariano P, Lo Giudice A, Marcantoni A et al (2009) A diamond-based biosensor for the recording of neuronal activity. Biosens Bioelectron 24:2046–2050. https://doi.org/10.1016/j.bios.2008.10.017

    Article  CAS  PubMed  Google Scholar 

  219. Maybeck V, Edgington R, Bongrain A et al (2014) Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv Healthc Mater 3:283–289. https://doi.org/10.1002/adhm.201300062

    Article  CAS  PubMed  Google Scholar 

  220. Halpern JM, Cullins MJ, Chiel HJ, Martin HB (2010) Chronic in vivo nerve electrical recordings of Aplysia californica using a boron-doped polycrystalline diamond electrode. Diam Relat Mater 19:178–181. https://doi.org/10.1016/j.diamond.2009.08.006

    Article  CAS  Google Scholar 

  221. Balasubramanian G, Chan IY, Kolesov R et al (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455:648–651. https://doi.org/10.1038/nature07278

    Article  CAS  PubMed  Google Scholar 

  222. Wu Y, Jelezko F, Plenio MB, Weil T (2016) Diamond quantum devices in biology. Angew Chem Int Ed 55:6586–6598. https://doi.org/10.1002/anie.201506556

    Article  CAS  Google Scholar 

  223. Levinshtein M, Rumyantsev SL, Shur MS (1996) Handbook series on semiconductor parameters. World Scientific, Singapore

    Google Scholar 

  224. Rondin L, Tetienne J-P, Hingant T et al (2014) Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys 77:56503. https://doi.org/10.1088/0034-4885/77/5/056503

    Article  CAS  Google Scholar 

  225. Jelezko F, Wrachtrup J (2006) Single defect centres in diamond: a review. Phys Status Solidi Appl Mater Sci 203:3207–3225. https://doi.org/10.1002/pssa.200671403

    Article  CAS  Google Scholar 

  226. Schirhagl R, Chang K, Loretz M, Degen CL (2014) Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem 65:83–105. https://doi.org/10.1146/annurev-physchem-040513-103659

    Article  CAS  PubMed  Google Scholar 

  227. Balasubramanian G, Lazariev A, Arumugam SR, Duan DW (2014) Nitrogen-vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. Curr Opin Chem Biol 20:69–77. https://doi.org/10.1016/j.cbpa.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  228. Hsiao WWW, Hui YY, Tsai PC, Chang HC (2016) Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc Chem Res 49:400–407. https://doi.org/10.1021/acs.accounts.5b00484

    Article  CAS  PubMed  Google Scholar 

  229. Guarina L, Calorio C, Gavello D et al (2018) Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits. Sci Rep 8:2221. https://doi.org/10.1038/s41598-018-20528-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Steinert S, Ziem F, Hall LT et al (2013) Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat Commun 4:1607. https://doi.org/10.1038/ncomms2588

    Article  CAS  PubMed  Google Scholar 

  231. Glenn DR, Lee K, Park H et al (2015) Single-cell magnetic imaging using a quantum diamond microscope. Nat Methods 12:736–738. https://doi.org/10.1038/nmeth.3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ziem FC, Götz NS, Zappe A et al (2013) Highly sensitive detection of physiological spins in a microfluidic device. Nano Lett 13:4093–4098. https://doi.org/10.1021/nl401522a

    Article  CAS  PubMed  Google Scholar 

  233. Hall LT, Beart GCG, Thomas EA et al (2012) High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci Rep 2:1–9. https://doi.org/10.1038/srep00401

    Article  CAS  Google Scholar 

  234. Barry JF, Turner MJ, Schloss JM et al (2016) Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Natl Acad Sci 113:14133–14138. https://doi.org/10.1073/pnas.1601513113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Carabelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pasquarelli, A., Picollo, F., Carabelli, V. (2018). Boron-Doped Diamond and Graphitic Multiarrays for Neurotransmitter Sensing. In: Kranz, C. (eds) Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, vol 17. Springer, Cham. https://doi.org/10.1007/5346_2018_24

Download citation

Publish with us

Policies and ethics